
DOpE — a Window Server for Real-Time and Embedded Systems
— Extended Abstract —

Norman Feske and Hermann Härtig
Technische Universität Dresden

Department of Computer Science
{nf2,haertig}@os.tu-dresden.de

Abstract

A window server used in real-time applications should
be able to assure previously agreed-upon redrawing rates
for a subset of windows while providing best-effort services
to the remaining windows and operations such as mov-
ing windows. A window server used in embedded systems
should be small and require only minimal operating sys-
tem support, for example just threads and address spaces
as provided by microkernels.

In this paper, we present the design and an implementa-
tion of the DOpE window server. The key techniques used
are to move redrawing responsibility from client applica-
tions to the window server and to devise a simple schedul-
ing discipline for the redrawing subtasks.

1. Introduction

Applications that need graphical representations can
roughly be characterized as belonging to one of two do-
mains:

• Interactive applications basically execute a loop in
which the application waits for user input, changes its
internal state, and updates its graphical representation
accordingly. Typical representatives of this class are
word processors, spreadsheet programs, web browsers,
editors, and other dialog-based applications. The time
requirements of these applications are imposed by the
user’s ability to supply input events fast enough. Thus,
they spend most of the time idling. The only require-
ment with respect to user responsiveness is that the de-
lay between a state change and update of the represen-
tation is less than approximately 100 ms.

• Isochronous and multimedia applications are driven
not by user input events but by time. The output of such
applications, for example video frames, must be avail-
able on the user interface in a periodic manner. Even

L4/Fiasco Microkernel

DOpE
window
server

non-real-time
L4Linux

X-Window
System

real-time
application

Figure 1. Real-time and non-real-time appli-
cations running in one environment

small delays are perceivable for the user and compro-
mise the quality of service that is expected.

We refer to multimedia applications as real-time (RT) and
to other applications as non-real-time (NRT) load.

The task of a window server is to multiplex graphical
representations of concurrently running client applications
onto the screen, which is one single physical resource. The
objective is to guarantee the quality of service of real-time
client applications even in overload situations. Such over-
load situations can be induced by massive output of non-
real-time applications or by the user who interactively rear-
ranges windows. Window servers that are used in scenarios
as described above often exhibit undesirable behaviour. Un-
awareness of real-time versus non-real-time requirements



leads to uniform performance degradation in overload situ-
ations, even if there are enough resources available to serve
the real-time client applications properly.

With Artifact [7], there is only one real-time window
server about which we have non-trivial architectural infor-
mation. Artifact dynamically creates real-time models for
client and server and then makes global admission deci-
sions.

DOpE (Desktop Operating Environment), the window
server presented in this paper, is implemented on top of
the Dresden Real-Time Operating System (DROPS) [3].
DROPS enables the sharing of higher-level resources such
as disk and network bandwidth via dedicated resource man-
agers [4]. DOpE is such a resource manager that maps
CPU cycles and main memory to window-redrawing band-
width. In a general DROPS setting, DOpE supports real-
time clients as well as L4Linux and XFree86 as non-real-
time clients.

With Artifact [7], there is only one real-time window
server about which we have non-trivial architectural infor-
mation. Artifact dynamically creates real-time models for
client and server and then makes global admission deci-
sions. In contrast, DOpE is based on a localized, simple,
essentially time-driven scheduling approach. A further dis-
cussion about how DOpE relates to Artifact can be found in
the full version of this paper [2].

In this paper, we present the overall architecture of
DOpE (Section 2) and then concentrate on the real-time op-
eration. We give some details about the implementation in
Section 3. In Section 4 we rate the application of DOpE
in the context of secure system architectures. We conclude
this paper with a summary of the most important facts about
DOpE and an outlook at our future work.

2. DOpE’s architecture

The two key properties of DOpE’s client-server architec-
ture in regard to its real-time capability are:

• A client application and the window server share a
compact description of the client application’s graph-
ical representation in a language with a semantics
known to the window server. Thus, the window server
can redraw the graphical representation of any client
application without the active cooperation of the af-
fected client application. This way no assumptions
about the response time of client applications are
needed.

• A client application updates the shared representation
and then triggers a corresponding redraw operation in
the window server. Figure 2 illustrates this architec-
ture. In contrast, the classical approach is based on a
fine-grained interface to submit graphical primitives to

Client
application

Window
server

rectangle
list

Frame-buffer

draw

trigger redraw interactive

user event

Shared representation
of client application

feed read interpret
1

2

3

4

Figure 2. The client application and the win-
dow server share a compact description of
the client’s representation

the server that — in turn — immediately performs the
needed graphical operations.

With regard to real-time, our design allows local schedul-
ing of redraw operations within the window server. The re-
draw operations are designed such that their execution time
is known in advance.

For the output of real-time client applications we intro-
duce a periodic activity in the window server that triggers
redraw operations in a defined (and predictable) way.

To establish a periodical real-time output, a client appli-
cation has to request an admission at the server by specify-
ing the size and update frequency of the desired output area
(widget) on the screen. Figure 3 shows an exemplary admis-
sion scenario.

After a successful admission, the server refreshes the
negotiated widget periodically, based on the known repre-
sentation of the client application’s data, and optionally in-
forms the client about a completed redraw using synchro-
nization messages. It is up to the real-time client applica-
tion to timely feed its current state to the graphical repre-
sentation which, in turn, is shared with the window server.

We successfully address overload situations induced by
NRT load with separating the cause and execution of NRT
redraw requests. Incoming NRT requests are queued in a
redraw queue on which we apply operations such as split-
ting large requests and merging requests that affect the same
screen area. This way, all entries of the redraw queue re-
fer to distinct screen areas. Thus, the maximum number of
queued pixels is limited and we can guarantee a maximum
latency for any output on the screen. These techniques are
covered in more detail in the full version of this paper [2].

3. Implementation

We implemented the conceptual ideas discussed in Sec-
tion 2 in the window server DOpE.

The DOpE window server runs on the top of the
L4/Fiasco [6, 8] microkernel which provides threads, ad-



RT Client
application

rectangle
list

Frame-buffer

NRT Client
application

trigger NRT redraw

Window
server

periodic
activity

?admit (size, frame rate)

Interactive user

triggers redraw

synchronisation
message

Figure 3. Example scenario showing real-
time-admission, synchronization feedback
and the triggering of non-real-time redraw re-
quests

Mouse
driver

Keyboard
driverFrame buffer

Graphics layer Input device abstraction layer

Command
Interface

Event
delivery

Static
Widget

Static
Widget

Protocol
Widget Widget layer

cu
sto

m protoco
l

DOpE
window
server

event
listener

DOpE
client

applicationIPC IPC

Figure 4. Schematic overview of the DOpE
window server

dress spaces and inter-process communication including
means to establish shared memory.

3.1. DOpE server structure

Figure 4 illustrates the structure of the DOpE win-
dow server. Currently, we use software rendering routines
(Graphics layer) to access a VESA frame buffer. It man-
ages clipping and contains functions for drawing graphical
primitives such as scaled images and text.

The mouse and keyboard drivers are ported from Linux
to the L4/Fiasco platform. On top of the input device drivers
there is an input abstraction layer with support for different
keymaps. DOpE handles user input events in a non block-

ing way. Thus, the interactive user does not impact the con-
tinuous output of real-time client applications when inter-
acting with the window server — for example by moving a
window.

The representation of client applications on the DOpE
window server is based on widgets and their relationship to
each other (topology). A widget defines the graphical repre-
sentation of a dedicated type of data or protocol and the re-
sponse to user interactivity. As illustrated in Figure 4, proto-
col widgets can establish a dedicated communication chan-
nel to the client application, for example via shared mem-
ory. This way the representation of a client application can
be shared with the window server using custom protocols.

The widget layer is built on top of the graphics and in-
put abstraction layers and contains the implementation of
the following widget types:

• Window, button, scrollbar, scale, and frame as the ba-
sic primitives of the window server

• Grid allowing the arrangement of multiple child wid-
gets to be aligned in a rectangular grid

• Terminal for textual output with support for a subset of
VT100 escape sequences

With VScreen (virtual screen) we implemented a protocol
widget with a separate communication interface to the as-
sociated client application. VScreen uses raw pixel data as
shared representation of the client application. It can be
used as a periodically updated real-time widget. The client
application and the interactive user can vary the size of each
VScreen widget resulting in a scaled output of the repre-
sented pixel data.

Similar to the approach of Tcl/Tk, user interface widgets
are created and configured by using a text-command-based
communication interface to the client application.

Input events are primarily handled by the affected wid-
gets. In turn, widgets can forward events to the client appli-
cation via the event delivery component (see Figure 4).

3.2. L4Linux, XFree86 and other non-real-time
client applications

L4Linux [1] is a user level implementation of the Linux
kernel on top of the L4/Fiasco microkernel.

We implemented a driver module for the XFree86 X
Window System which forwards the graphical output of the
X Window System to a DOpE widget. Thus, we are able
to run the broad range of non-real-time X11 applications
together with native real-time applications in one environ-
ment.



3.3. Real-time clients

With VScrTest we implemented a real-time client appli-
cation that makes use of the VScreen widget to display a
continuous stream of pixel data. It calculates four different
graphical effects: a 3D particle effect, a bumpmapping ef-
fect, a voxel landscape and a feedback effect. The effects are
rendered into a shared memory buffer which, in turn, is dis-
played by the DOpE window server at a guaranteed frame
rate of 25 frames per second. As VScrTest makes use of the
real-time features of DOpE, the rearrangement of windows
and the graphical output of concurrently running client ap-
plications have no impact on the constant update rate of the
real-time client.

4. Secure systems and source-code complexity

In secure system architectures (as proposed in [5]) the
graphical user interface is part of the trusted computing
base. Thus, it is important to keep the source-code complex-
ity of the window server low. Also, when window servers
are used in embedded systems with limited resources, they
should be small and they should not rely on large operat-
ing systems.

Altogether, the current implementation of DOpE con-
sists of about 10,000 lines of code. This code includes a ba-
sic set of widgets (window, scrollbar, grid-layout, vscreen,
terminal), all graphical rendering routines and abstractions
for shared memory, screen, timers and input devices.

Internally, DOpE is structured in a component-based
way, which allows a high degree of customization for spe-
cial applications. By leaving out higher-level widgets such
as grid-layout, DOpE can be scaled down to a minimalis-
tic but fully working window server with about 7,000 lines
of code. DOpE’s extremly low source-code complexity en-
ables an exhaustive verification of the window server and
makes it viable for secure platforms.

The size of the executable binary of DOpE including in-
put device drivers, graphics routines, graphical data (four
bitmap fonts), and all widget types mentioned above is 250
KByte. The core functionality (without input drivers and the
L4 Environment) of DOpE enfolds a binary size of only 150
Kbyte.

5. Conclusion

In this paper we presented DOpE — a window server
that is capable of serving real-time clients and non-real-time
clients together in one environment. After a successful ad-
mission, DOpE guarantees fixed update rates to its real-time
clients while offering best effort to non-real-time clients.
We devised a method for preventing overload situations
by handling redraw operations predictably. We achieved

this with only 10.000 lines of code and still, require only
minimal support by the underlying operating system. This
facts makes DOpE viable for embedded systems and se-
cure architectures in which the window server belongs to
the trusted computing base. A more detailed description of
our approach is covered in the full version of this paper [2].

Currently, there is work in progress to create a driver in-
frastructure for the support of graphics-acceleration hard-
ware to boost the overall performance of DOpE’s graphi-
cal output. While doing this, we want to preserve the pre-
dictability of these operations by introducing models for the
time response of these operations on specific hardware.

References

[1] Martin Borriss, Michael Hohmuth, Jean Wolter, and Hermann
Härtig. Portierung von Linux auf denµ-Kern L4. In Int. wiss.
Kolloquium, Ilmenau, September 1997.

[2] Norman Feske and Hermann Härtig. DOpE — a Window
Server for Real-Time and Embedded Systems. Technical Re-
port TUD-FI03-10-September-2003, TU Dresden, 2003.

[3] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg, and
J. Wolter. DROPS: OS support for distributed multimedia ap-
plications. InProceedings of the Eighth ACM SIGOPS Euro-
pean Workshop, Sintra, Portugal, September 1998.

[4] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul.
Cooperating resource managers. InFifth IEEE Real-Time
Technology and Applications Symposium (RTAS), Vancouver,
Canada, June 1999.

[5] Hermann Härtig. Security Architectures Revisited. InPro-
ceedings of the Tenth ACM SIGOPS European Workshop,
Saint-Emilion, France, September 2002.

[6] Michael Hohmuth. The Fiasco kernel: System architec-
ture. Technical Report TUD-FI02-06-Juli-2002, TU Dresden,
2002.

[7] Jay K. Strosnider John E. Sasinowski. Artifact: An experi-
mental real-time window system. 1995.

[8] J. Liedtke. Onµ-kernel construction. In15th ACM Sympo-
sium on Operating System Principles (SOSP), pages 237–250,
Copper Mountain Resort, CO, December 1995.


