TECHNISCHE UNIVERSITAT
DRESDEN

Fakult at Informatik

TUD-FI04—-02—Mérz 2004

Norman Feske and Christian

Technische Berichte Helmuth
I Institute for System Architecture, Operating
Technical Reports o
ISSN 1430-211X Overlay Window Management:

User interaction with multiple
security domains

Technische Universitéat Dresden
Fakultat Informatik

D-01062 Dresden

Germany

URL: http://www.inf.tu-dresden.de/

Overlay Window Management: User interaction with
multiple security domains

Norman Feske and Christian Helmuth

Abstract one physical computer system into multiple protection do-
mains where each domain can be an entirely different oper-
Graphical user interfaces for high-assurance systems mustating system. rtig [15] presents an overview of such ar-
fulfill a range of security requirements such as pro- chitectures and emphasizes the trend of wide application of
tected and reliable presentation, prevention of unautho-these techniques in system design. Virtual machines lead
rized cross-domain talk, and prevention of user-input to an unmatched flexibility and availability of user applica-
eavesdropping. Additionally, it is desirable to support tions. As described in [14], the latests efforts with secure
legacy applications running in confined compartments. booting techniques—namely TCPA [6]—pushed the appli-
Standard isolation methods such as virtual-machine mon-cation area of these approaches even further. Even though
itors provide one frame buffer per security domain, where the known approaches are technically different, they have
each frame buffer is managed by one legacy window sys- one drawback in common that shrinks the application area
tem. This raises the question of how to safely integrate significantly. There exists virtually no model for secure
multiple (legacy) window systems and protect the dis- user interaction with multiple security domains.
played data while preserving the usability of modern user |n this paper, we present a generic solution for the
interfaces. addressed problem and discuss application scenarios of
Our paper describes the Overlay Window System, a gen-deploying virtualization and sandboxing techniques com-
eral mechanism for multiplexing windows of multiple dis- bined with our user-interaction model.
tinct window systems into the host frame buffer. Thus, Currently available virtual machines perform user inter-
each legacy window appears to the user as one correspondaction based on consoles. Traditionally, there exist two in-
ing host window that can be moved and resized. To achieveterfaces for the interaction with the user: input devices and
this, only slight modifications of the legacy window sys- g frame buffer display. This paradigm appears antiquated
tem are required whereby, the source code does not have teegarding the modern way of user interaction with com-
be available. Our implementation of an Overlay Window pyter systems. Today, we expect to interact with windowed
System successfully multiplexes Linux, GEM and native applications that can freely be arranged on the screen.
L4 applications. Existing virtual machines do not to deal with such ap-
plications but leave the window management to the virtu-
. alized legacy operating system. This way, the virtual frame
1 Introduction buffer, containing all windows of the legacy operating sys-

. _ . N tem, is presented to the user as one host window or as full
The ever-increasing number of security-sensitive platforms screen (Figure 1).

connected to untrusted public networks raises a high de-
mand of executing trusted and untrusted applications side-
by-side on one device. For example, people store and

process private data on PDAs using trusted software andimmegiately arises and the full-screen approach becomes
execute gadgets—downloaded from untrusted sources— hteasible.

which are potentially malicious (malware). There exist We want to integrate multiple legacy window systems

ﬁ:teon:\)//v(())fcggloonrise? deal with such scenarios, which fall into one user environment. Thus, we approach the follow-
9 : ing problems:

Firstly, there are operating systems that provide strong
application-level isolation and protection. Prominent _
examples are the L4 family [18] and EROS [19]—a e The way of how windows are ma.naged and how re-
capability-based operating system. They provide a cus- draw operations are performed differs among legacy
tom infrastructure to build applications, which in turn are operating systems.
especially designed for these operating systems. For exam-
ple, with DOpE [11, 12] and EWS [20] there exist custom e We want to integrate proprietary legacy operating sys-
trusted window systems for these operating systems. The tems of which the source code is not available.
common drawback of these solutions is the lack of avail-
able applications. e \We cannot access the internal data structures that rep-
Secondly, with virtual machine monitors and sandbox- resent the user interface on the legacy operating sys-
ing techniques, there exist powerful solutions to partition tem.

Once multiple instances of virtual machines come into
play, as described in the numerous application scenarios
in [13], the problem of multiplexing virtual frame buffers

o All properties of used virtualization and sandboxing
techniques in regard to isolation and protection of se-
curity domains must persist.

In this paper, we present a solution for the problems men-
tioned above. We can integrate any number of legacy win-
dow systems running on different virtual machines. The
legacy window systems can even use virtual frame buffers
of different sizes and color depths. This can be achieved
with virtually no (or marginal) modifications of the legacy
operating systems. As a proof-of-concept, we integrated
three entirely different window systems—namely X11,
GEM and DOpE—into one user environment while run-
ning them inside fully isolated security domains. For this,
we required no access to the GEM source code.

The rest of the paper is structured as follows: In Sec-
tion 2 we describe our basic mechanism to multiplex win-
dow systems. It is followed by Section 3 that describes
the actual implementation of our mechanism. Section 4
highlights new application fields, which can be captured
by virtual machines combined with our technique. In Sec-
tion 5 we give an overview about related work and put our
work in the context of trusted window systems. Section 6
concludes the paper with an outlook to future work.

2 Mechanism

2.1 Nested-window-systems approach

Current implementations of virtual machines virtualize (or

emulate) standard hardware devices to enable guest oper:

ating systems to perform I/O operations. This way, legacy

operating systems reuse existing device drivers to accesz{n
virtual input devices or graphics cards, and thus, the host

system.

The common technique for emulating graphics cards is
to provide a virtual frame buffer to the guest. The legacy
window system renders its private window stack into the
virtual frame buffer (Figure 1). Thereby, the window sys-
tem translates its logical representation (e. g., window lists
and window-decoration configuration) into the physical

Window layer 1

Window layer 2

Logical representation

Physical representation

Legacy window system

Windowed frame

‘
/

hysical frame buffer

Host window system

Figure 1. Virtual frame buffer displayed as one host win-
dow. Legacy window information are only exported as
virtual frame buffer and the virtual machine displays the
entire frame as one host window. Windows are displayed
with shadows at the logical representation level to high-
light the fact, that the semantics are known not only the
pixel data.

important information on the way from the legacy win-
dow system to the host representation. Since the exist-
ing interfaces—frame buffer and input devices—alone are
insufficient, we looked for novel ways to obtain the se-
antics of legacy windows. An ideal (i.e. cooperative)
egacy window system for our purposes would provide
additional window information besides the virtual frame
buffer. Thus, a host window system is able to manage
legacy and host windows similarly, as it would know about
the semantics of legacy windows. This approach is com-
parable to remote GUI protocols (e.g., X11 or RDP), but
needs fewer high-level commands.

We have to tackle the problem of how to export legacy

representation of pixels in the frame buffer. The physical Window contents, positions, and sizes. Furthermore, the
representation of the legacy system contains no semanticd'0St window system needs to know the legacy window
about the displayed information anymore, so that the logi- Stacking order to present a consistent global window state
cal representation is not known to the host window system. t0 the user. Figure 2 illustrates this idea.

Therefore, established virtual machines render the virtual ~ The generic export of window state information from ar-
frame buffer into one big host window. bitrary legacy window systems is tricky, as the used data
This approach has several usability drawbacks. Firstly, structures differ significantly. Keeping the two window
the virtual-machine window is unhandy due to its size and stacks—Ilegacy and host—consistent on the basis of totally
pollutes the screen. Secondly, all legacy windows are on different structures appears to be infeasible. On the other

the same stacking level regarding host window order. This hand, window-statehangege. g., movement or resizing)
highly restricts the flexibility of application-window place- are very easy to export. The host window system can use
ment. Interaction with such nested window systems is nei- them to reconstruct the legacy window configuration on
ther natural nor efficient. the host side.

We call such a window systefverlay Window System
as it overlays distinct window stacks and thus, legacy and
host windows. The Overlay Window System tradke
(come to front),move resize open and close window-
The above-mentioned limitations are not caused by the state-change events, it receives from the legacy system.
utilization of the virtual frame buffer but by the loss of This way, the Overlay Window System is at all times

2.2 Overlay window system—hosting
legacy windows

Window layer 1

Logical representation

Physical representation

Legacy window system

Overlay representation

Physical frame buffer

Overlay window system

Figure 2: Overlay window system hosting legacy win-
dows. The legacy window system provides window infor-
mation to the Overlay Window System. The host presents
legacy windows as separate host windows (marked by
shadows in the overlay representation) to the user.

in a consistent state with the legacy window system and
may cover all possible legacy window configurations. We

about these state changes via the view abstraction. In turn,
the hooked function initiates reconfiguration of the appro-
priate window. Thus, the state of the view remains consis-
tent.

We assume the legacy window system keeps its window
stack at all time locally consistent—Ilocal windows may
overlap invisible regions—and the virtual frame buffer
contains the appropriate physical representation. Other
host windows displayed may overlap existing legacy win-
dows, but cannot reveal locally-overlapped (i. e., invisible)
legacy regions. Thereby, the Overlay Window System can
display a consistent window configuration at all time uti-
lizing the virtual frame buffer and the view abstraction.

2.3 Hosting multiple legacy systems

Since the consistency property holds for multiple legacy
systems too, the approach described above is sufficient to
multiplex several legacy window stacks in an elegant way
(Figure 3). We exploit this fact to host two or more legacy
systems (e. g., operating systems for multiple security lev-
els) sharing one overlay screen. The distinct legacy win-
dow systems can even use different screen resolutions and
color depths. In this case, the Overlay Window System
scales the physical representation.

Legacy systems never interfere regarding the overlay
screen, because the Overlay Window System strongly sep-
arates different clients/systems. The implementation of the

implemented a simple state machine/tracker to map eachdisplay policy inside the Overlay Window System permits

legacy window to a corresponding overlay window.

In contrast to remote protocols with high-level func-
tions, the Overlay Window System utilizes the physical
representation—virtual frame buffe—to access the actual

configurations tailored to user or security demands, for ex-
ample, that no window of legacy systekoverlaps the top
window of B. Discussion of security policies is out of the
scope of this paper.

window contents and is thus more general than these proto-

cols. The frame-buffer representation is sufficient and it is
not required to know the complete contents of each single
window.

Virtual machines provide two low-level interfaces—
input devices and frame buffer—that enable the legacy sys-
tem to communicate with the host. The Overlay Window
System adds the high-level abstraction ofien. A view
is a rectangular region of the frame buffer plus a stream of
window events corresponding to one legacy window. For
this purposehooksinside the legacy windowing software
have to be identified and exploited vi@oked functions
Hooks are instructions that provide interfaces for future

3

We implemented our concept to proof its application in
real scenarios. The Overlay-Window-System mechanism
in not tied to any particular operating system and thus, it
could easily be implemented on top of the Linux operating
system with its large infrastructure. However, our argu-
mentation refers to trusted systems. Therefore, the mini-
mal complexity of the trusted computing base is our major
design criteria. We consider the monolithic Linux kernel
including its device drivers as far too complex to be part of

Implementation

expansion. The hooked function exports a state change toPUr trusted computing base.

the Overlay Window System via the view, when the con-
figuration of a legacy window changes. The view may be
a virtual device or may utilize another mechanism of the
virtualization platform (e. g., microkernel IPC).

The Overlay Window System receives all input events
from the user. It propagates only input events referring to
the inside of windows to the legacy system. In this case,
the input events are injected into the virtual input device of
the virtual machine.

User inputs referring the window controls cause state
changes of the windows (e.g., resize) and are a higher-
level problem. The Overlay Window System informs the
hooked function installed at the legacy window system

A revision of our actual requirements led us to fairly
basic architectural demands:

e The host kernel must enforce isolation between multi-
ple protection domains but needs to enable monitored
communication between these domains.

On top of the host kernel, there must exist a trusted
window system with native drivers for at least input
devices and the physical frame buffer.

A sandbox for the safe execution of a legacy operat-
ing system is needed. This could be achieved with a
virtual machine monitor, an emulator, or a ported OS
personality.

~ Window layer 1

L/

Window layer 1

/ Window layer 2

1

Virtual frame buffer

[

(I

(I
1

0 0

1

|

7

Virtual frame buffer

Physical frame buffer

Overlay window system

Figure 3: Overlay Window System hosting legacy windows
tion is at all times consistent with all legacy systems.

3.1 Architectural playground

With the L4/Fiasco [18, 17] microkernel, there exists a
kernel that provides exactly the needed functionality of
enforcing protection domains and performing safe inter-
protection-domain communication. Furthermore, it pro-
vides some additional features such as real-time capability
and shared memory, which will pay off in our concrete ap-
plication scenarios described in Section 4. L4/Fiasco is
implemented with only 15,000 lines of code and runs on
x86 PCs.

With L“Linux [16], we identified a grateful victim to act
as a sandbox. “Linux is an user-level port of the Linux
kernel on top of L4. The L4 kernel revokes all privileges
to access host devices fromLinux. Multiple instances
of L*Linux can be started inside fully isolated protection
domains running unmodified Linux programs, for example
the X window system.

Right on top of the L4/Fiasco microkernel, we run a
stripped-down version of DOpE as the trusted window sys-
tem. Containing only 7,000 lines of C code, it features
powerful mechanisms to scale, display and synchronize
pixel buffers with client applications. It enforces separa-
tion of client applications, which can only receive user in-
put events refering to a window of the actual application.
As an additional candy, it is able to provide the real-time
capabilities of L4/Fiasco at the user-interface level [11].

3.2 Integrating XFree86 with DOpE

As described in Section 2, the Overlay Window System
relies on a virtual frame buffer, input devices, and views
to integrate a legacy window system. Fortunately, the
XFree86 [9] X window system provides clearly docu-

mented hooks for these interfaces:

of multiple legacy operating systems. The overlaid representa-

e XFree86 provides a custom driver infrastructure to
access graphics cards and plain frame buffers. Thus,
we were able to export the output of X via a custom
virtual display driver, whose implementation was a
straightforward task—thanks to the shadowfb module
of XFree86.

e Input events can be passed to the X server via the

input-driver interface of XFree86.

e In X, the arrangement of windows is handled by a
window manager. We used a slightly modified ver-
sion of AEWM [1] to propagate window events from
X to the Overlay Window System and vice versa.

The hooks for these interfaces belong to one and the same
instance of ELinux but are implemented in different pro-
cesses (X server and Window Manager). Therefore, they
cannot directly speak to DOpE because DOpE would con-
sider them as distinct client applications and thus, would
isolate them from each other.

With the Overlay Mediator, we introduce a new compo-
nent that acts as one DOpE client application while pro-
viding three distinct interfaces—namely Screen, Input and
View—to one sandbox. For each sandbox window, it cre-
ates a DOpE window that displays its corresponding part
of the virtual frame buffer and keeps its position, size and
stacking order consistent with the associated window of
the sandboxed window system. The Overlay Mediator for-
wards all input events applied to one of its DOpE windows
to the sandbox via the Input interface. Figure 4 illustrates
the relationship between DOpE, the Overlay Mediator, and
XFree86.

This way, we successfully integrated XFree86 windows
into DOpPE by only using existing interfaces of XFree86.
We did not need to changéllinux, our legacy operating
system, at all.

XFree86
display input window
driver driver manager
\ \ 1
\ / L4Linux

Screen Input

Overlay Mediator

(

Trusted
DOpE Computing
trusted window system

| Base

L4/Fiasco, basic resource managers

-

Figure 4: Relationship between DOpE, the Overlay Medi-
ator and XFree86

As soon as a legacy window system provides interfaces

for screen drivers, input drivers, and window management,
it can be integrated into an Overlay Window System with

moderate effort. This is the case for almost all modern
window systems, for example, the graphical user interface
of the Microsoft Windows operating system.

3.3 A harder nut to crack: Atari GEM

With a modicum of effort, even legacy window systems
that lack clean interfaces for input devices, display devices

and window management can be convinced to cooperate

with an Overlay Window System.

We picked out one of the earliest window-based graph-
ical user interfaces—namely GEM—to demonstrate the
universality of our approach. For running GEM inside
a sandbox, we ported the Atari ST emulator Hatari [3]
to the L4/Fiasco platform. Hatari emulates all hardware
components of an Atari ST including display, mouse, and
keyboard; Hatari itself uses libSDL [4] as its hardware-
abstraction layer. We provided a custom version of lib-

SDL that uses the Screen and Input interfaces of a dedi-

cated Overlay Mediator as its backend. For passing win-

dow events in and out of the Hatari sandbox, we enhanced

Hatari by adding a new virtual hardware that provides win-
dow views. Hatari now passes all window events coming
from the Overlay Mediator into the sandbox via a memory-
mapped device. Until this point we did not modify GEM

112

Allgemein

[ET—— T —
(| KONTROLLFELD .

. Konfig. CPX

Fensterfarben

Figure 5: GEM and X11 window systems integrated into
DOpE. The sessions running are Linux with Xeyes (left)
and Xterm (center), GEM (upper left and top), and native
L4 real-time applications (right and lower left).

into our Overlay Window System with only a very small
effort—even without having any source code of GEM.

3.4 Results

Our successful experiments with integrating the user inter-
faces of the sandboxed legacy operating systethsux
(X11) and GEM into the trusted DOpE environment
demonstrate the universality of the Overlay Window Sys-
tem approach (Figure 5).

Thanks to the used L4/Fiasco kernel, we kept the code
complexity of the trusted computing base in our scenario
as low as only 30,000 lines of code. In Figure 4, the
components of the trusted computing base are highlighted.
Note that the Overlay Mediator does not belong to the
trusted computing base. It acts as a translation tool that
is exlusively used by one sandbox. Therefore, it belongs to
the protection domain of this actual sandbox.

The raw output performance of the sandboxed window
system is equal to the traditional desktop-in-a-window ap-
proach because we do not introduce new pixel-copy oper-
ations. With the help of L4/Fiasco, DOpE can share pixel
buffers with its client applications. Thus, a virtual machine
can render its graphical output into the same buffer that is
used by DOpE to draw the window on screen.

4 Application scenarios

itself. The same way, the sandboxed operating system4 1 Multiple instances of L “Linux

can propagate its window events to Hatari that—in turn—
forwards them to the Overlay Mediator.

To make GEM actually use these new virtual hard-
ware facilities, we had to install a small hook of less than
200 lines of assembly code at the GEM system-call inter-

In Section 3, we presented how we integrated XFree86
with an Overlay Window System. This technique can
now be deployed to realize the initial scenario of running
trusted and untrusted applications on one device as consti-

face. Thus, we succeeded to integrate basic GEM windowstuted in Section 1.

4.1.1 Multi-level security

X11 Windows X11
This scenario is a special case of a multi-level security ar- | Application Application Application
chitecture. For each security level, we start one instance of -____ RS ¢4 ¢4\ C2 C/ .
L*Linux with a corrsponding Overlay Mediator. For exam- :
ple, when using two instances dfilinux, one instance can : Windows
be used to perform security-sensitive tasks such as edit- :
ing and storing confidential data, while another instance is : VMware
dedicated to download files from the Internet and execute : emedyiaill

untrusted code. Both instances run inside isolated protec- :

tion domains unable to communicate with each other on : *.m m -View
their own. From the user’s point of view, both instances :

are integrated into one desktop environment. Thus, he can
interact with both domains in a natural way. The Overlay

Overlay Mediator

Window System labels all windows with their correspond- ’ ‘ Xi 1 ' I
ing domain to provide the integrity of displayed informa- I
tion to the user. Additionally, there is a menu bar on top of ’ Linux ‘

the screen that cannot be covered by any window. It dis-
plays the identity of the currently focused window. Thus,
we can prevent trojan horses running at the untrusted do-
main to gather security-sensitive information from the at-
tentive user.

Figure 6: Running Microsoft Windows applications and
Linux/X11 applications side by side. VMware uses a rem-
edy X11 with virtual frame buffer and custom input device
driver while the Overlay Mediator displays guest windows
4.1.2 Monitored flow of information as host (X11) windows. Microsoft Windows is extended

by a hooked function that uses the view via network sock-
In [20], there is an extensive discussion about the flow of gts

information between applications—authorized by the user
via explicit drag-and-drop and copy-and-paste operations.
Although all information flow from the trusted domain
to the untrusted domain must be blocked, we need to pro-
vide a mechanism for transfering data from the untrusted
domain to the trusted domain. For this, we want to use
the well established X clipboard mechanism. A dedicated
oneway-communication channel from the untrusted do-
main to the trusted domain must be established and moni-
tored by the L4/Fiasco kernel. This communication chan-
nel can now be used to implement a custom protocol into

edy X11 uses custom drivers for input and a virtual frame
buffer, which use the Overlay Mediator as backend.

For synchronizing the views between the Overlay Me-
diator and Windows, a hook in the Windows Operating
system is needed. One way to implement such a hook is
providing a custom Explorer replacement. The communi-
cation of the hook with the Overlay Mediator can be per-
formed via sockets through the host-only networking facil-

two dedicated X client applications—each running inside ity of VMware.
one domain—to tunnel clipboard information over the uni-
directional communication channel. 4.3 Enhancing X11
As identified in [20], the X window system relies on co-
4.2 Linux and Windows applications on operating client applications. It does not protect client ap-
one desktop plications against each other. Once a client application has

access to the X server, it can compromise the security of
VMware [7] permits to run a sandboxed Microsoft Win- the X session by sniffing keys, grabbing the mouse, taking
dows operating system on top of Linux. Thus, the great screenshots and blocking the whole screen via a fullscreen
functionality of Windows can be combined with security window.

policies implemented in Linux. With the current imple- The LLinux approach combined with an Overlay Win-
mentation, VMware either uses a fullscreen mode or dis- dow System as presented in Section 3 allows the execution
plays the Windows desktop inside one X11 window. of high-availability and trusted applications aside a run-

In Figure 6, we illustrated a proposed solution for in- ning X server as native L4 processes. Examples for such
tegrating Windows and Linux/X11 applications into one trusted applications are password checkers, signing appli-
desktop environment. The foundation of this scenario is cations, login managers, and video players with support
a commodity Linux running an X11 session with normal for digital rights management. These applications can nei-
X11 desktop applications and an Overlay Mediator imple- ther be affected nor observed biLinux and thus, can im-
mented as a plain X11 application. Just beside the visi- plement indispensable services. Furthermore, L4/Fiasco
ble X session, a second X server (Remedy X11) is exe- and the DOpE window system provide real-time support
cuted in the background and hosts the fullscreen window for native L4 applications, which can implement real-time
of VMware running the Windows operating system. Rem- services with graphical output at guaranteed frame rates.

From the user’s point of view, such trusted or real-time the host-system infrastructure and provides the Applica-
applications are tightly integrated into one environment to- tion Binary Interface (ABI) of the Windows operating sys-
gether with X client applications. tem. This approach is inherently platform specific and

tight-knit with the host operating system to achieve reason-
o]] able performance. A grave shortcoming of this approach
4.4 Digging out buried operating sys- is that Wine has to provide the complete ABI; a goal not
tems achieved until now because new features are added to the
)))) ABI continuously and used by new applications. This
Ancient operating systems were designed without any S€-problem does not exist in our approach combined with a
curity considerations assuming a nice behaviour of all ap- \irtyal machine. A further advantage of an Overlay Win-

plications. This assumption does not hold true with todays 4q, System compared to Wine is its simplicity and modest
broad use of the Internet. Still, such operating systems yemands to the host platform.

host a wide base of available applications. Instead of aban-

doning these operating systems including all applications,

their functionality can still be used via appropriate sand- 5.2 Trusted window systems

boxes. The Overlay Window System goes a step further

and enables a tight integration of ancient applications into Trusted X [10] was an approach to make the X Window

a productive user environment of today. System usable for multi-level security systems by running
Figure 5 depicts an examp|e of this app”cation scenario. dedicated untrusted X sessions (Single-level Server) for dif-

Window-based GEM applications running inside an Atari ferent compartments and factoring out the commonly used,

ST emulator are displayed in distinct DOpE windows as security-critical functionality into a separate trusted com-

described in Section 3. There is also an X session run- Ponent (TX master). TX master composes the output of

ning on an LLinux instance. Additionally, there are na- the single-level servers, distributes input events and im-

tive windows of the DOpE window system displaying the Plements the policy for the sharing of information among

output of real-time applications. Although the applications the single-level servers. It implements similar functional-

belong to completely isolated protection domains, the win- ity as an Overlay Window Server but is tied to one partic-

dows of these applications are integrated into one user en-ular protocol (X protocol). Trusted X is an example of a
vironment. hardened legacy window system that is able to execute the

broad range of commodity X client software. The concrete

implementation of the security-sensitive parts of Trusted

Relat work X— as presented in [10]—consists of 30,000 lines of code.

5 elated wo As discussed in [20], such enhardened legacy window sys-
tems can still be regarded as complex when compared to
other approaches of trusted window systems and funda-

In this section, we go into prominent examples for solu- Mental design flaws remain.
tions integrating existing software into foreign platforms. A much lower complexity can be achived by consider-
The virtual-machine approach adopted by VMware [7] and ing adequate security models during the design of a trusted
Mac-on-Linux [5] is the first solution that comes to mind. Window system. For example, the EROS window system
These virtual machines do a good job in reusing any oper- consists of only 5,000 lines of code while it implements
ating system and application completely unmodified. The Security policies at the granularity of applications. The
dark side of the virtual-machine approach is that existing drawback of such solutions is the absence of any available
implementations obtain almost no user-friendly interfaces. commodity applications.
The user ends up with console-style graphical user inter- An Overlay Window System as presented in this paper
faces abandoned years ago. combines the advantages of both the broad range of exist-
Beside virtual machines, MacOS X [2] perfectly inte- iNg applications on legacy systems and the ultimately low
grates modern and classic MacOS applications with appli- complexity of specially-designed trusted window systems.
cations based on UNIX and X11 because usability is the
major design criteria for MacOS. In MacOS X (Quartz),
each window is buffered individually and the buffers pos- 6 Conclusion
sibly consume a better part of the memory. The Overlay
Window System approach needs no extra space beside onén this paper we presented a mechanism and its implemen-
virtual frame buffer for each legacy OS. In general, the Ma- tation to integrate multiple legacy window systems of dis-
cOS solution needs—depending on the affected host oper-tinct security domains into one trusted user environment.
ating system—extensive modifications of the legacy sys- While deploying unmodified legacy window systems exe-
tem respectively (as with MacOS X) strong consideration cuted at the trust levels of their corresponding domains, the
in the design process. On the other hand, the Overlay Win-trusted computing base contains only a simple multiplexer
dow System approach only needs small helpers or patchegOverlay Window System). With our implementation, we
of the legacy system. kept the overall trusted computing base lower than 30,000
Another, radically different approach is the basis for lines of code—including the L4/Fiasco kernel, basic re-
Wine [8]. It implements Windows functionality based on source managers and DOpE as Overlay Window System.

5.1 Integration of legacy software

In our paper we focused on virtual frame buffers for References

passing raw pixel data from legacy systems to the Overlay
Window System and thus left the hardware-acceleration
facilities of modern graphics cards unheeded. However,
these facilities are essential for a lot of today’s applica-
tions, for example, games and 3D software. Furthermore
in the current design, legacy systems cannot export fea-
tures like desktop enhancements, icons, or menubars out-
side of windows. In future work, we will address these
problems.

We described in Section 3.3 how we extended an emula-
tor by adding a dedicated virtual device for the propagation
of window events between the sandboxed operating sys-
tem and the host system—the view interface. In reverse: If
such a view interface pays off in an emulator/virtual ma-
chine, could this be also a reasonable extension for real
hardware? Modern graphics cards already implement a
very similar feature—called overlay. It is mostly used to
display video streams while bypassing the host’s window-
ing system and thus, avoiding overhead when displaying [10]
streaming data. Consequently, a graphics card could be
the right place to implement (at least parts of) a minimal-
complexity Overlay Window System.

(1]
(2]

(3]

(5]
(6l
(7
(8]

El

(11]

(12]

(23]

(14]

(18]

(16]

(17]

(18]

(19]

(20]

Aewm website. URL:
http://www.red-bean.com/~decklin/aewm/.

Apple MacOS X Website, howpublished = URL:
http://www.apple.com/macosx/.

Hatari website. URL:
http://hatari.sourceforge.net.

libSDL website. URL:
http://www.libsdl.org.

Mac-on-Linux website. URL:
http://www.maconlinux.org/.

TCPA website. URL.:
http://www.trustedcomputing.org.

VMware website. URL:
http://www.vmware. com.

Wine website. URL:
http://www.winehq.org/.

XFree86 website. URL:
http://www.xfree86.org.

Jeremy Epstein, John McHugh, Hilarie Orman, Rita Pascale, Ann
Marmor-Squires, and Bonnie Danner et al. A high assurance win-
dow system prototype.

Norman Feske and Hermanratig. Demonstration of DOpE —
a Window Server for Real-Time and Embedded System=4th
IEEE Real-Time Systems Symposium (R &8s 74—77, Cancun,
Mexico, December 2003.

Norman Feske and Hermaniatig. DOpE — a Window Server for
Real-Time and Embedded Systems. Technical Report TUD-FIO3-
10-September-2003, TU Dresden, 2003.

Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. Terra: A virtual-machine based platform for trusted com-
puting. InProceedings of the 19th ACM Symposium on Operating
Systems Principles, Bolton Landing, New Y@ktober 2003.

Tal Garfinkel, Mendel Rosenblum, and Dan Boneh. Flexible os sup-
port and applications for trusted computing. Rroceedings of the
9th Workshop on Hot Topics in Operating Systems (HotOS;VIII)
May 2003.

Hermann Hrtig. Security Architectures Revisited. Rroceed-
ings of the Tenth ACM SIGOPS European WorksSaint-Emilion,
France, September 2002.

Hermann Hrtig, Michael Hohmuth, and Jean Wolter. Taming
Linux. In Proceedings of the 5th Annual Australasian Conference
on Parallel And Real-Time Systems (PART ,98}elaide, Aus-
tralia, September 1998.

Michael Hohmuth. The Fiasco kernel: System architecture. Tech-
nical Report TUD-FI02-06-Juli-2002, TU Dresden, 2002.

J. Liedtke. L4 reference manual (486, Pentium, PPro). Arbeitspa-
piere der GMD No. 1021, GMD — German National Research

Center for Information Technology, Sankt Augustin, September

1996. Also Research Report RC 20549, IBM T. J. Watson Research
Center, Yorktown Heights, NY, September 1996.

J. S. Shapiro. EROS: A Capability System PhD thesis, Uni-
versity of Pennsylvania, April 1999. Available from URL:
http://srl.cs.jhu.edu/"shap/ER0S/thesis.ps.

Jonathan Shapiro, John Vanderburgh, Eric Northup, and David
Chizmadia. The EROS trusted window system. Technical Report
SRL2003-05, Johns Hopkins University, 2003.

