Diplomar beit
zum Thema

Entwicklung eines echtzeitfahigen Dateisystems

an der
Technischen Universitat Dresden
Fakultat Informatik
Institut fir Betriebssysteme, Datenbanken und Rechnernetze
Lehrstuhl fir Betriebssysteme

Eingereicht von: Lars Reuther
Eingereicht am: 15. Januar 1998

Verantwortlicher Hochschullehrer:
Prof. Dr. H. Hartig

Betreuer:

Dr. Claude-Joachim Hamann
Dipl.-Inf. Sebastian Schénberg

| nhaltsver zeichnis

1 Einleitung 5
2 Stand der Technik 7
2.1 Dateisystem-Mechanismen e 7

2.1.1 Verwendung mehrerer Festplatten— Striping 8

2.1.2 Auftragsplanung 11
2.2 Beispiele fur Dateisysteme 12
2.2.1 Standard-Dateisysteme 12
2.2.2 Multimedia-Dateisysteme 13
2.2.3 Echtzeit-Datenbanken 16
3 Entwurf 19
3.1 Grundlagen 19
3.1.1 SCSI-Auftragsplanung e 19
3.1.2 DROPS/ALINUX. o i 20
3.1.3 QoS-Parameter. 21
3.1.4 AdmissionControl 21
3.1.5 Begriffshestimmung 21
3.2 Entwurfsziele e 22
3.3 Systemstruktur e 22
3.3.1 Zusammenwirken Admission Control — Dateisystem — SCSI Treiber
3.3.2 Schnittstellen 23
3.4 Block-Verwaltung e e e e 25
3.4.1 Freispeicherverwaltung. 25
3.4.2 Datenlayout 27
3.5 Dateien e 29
3.6 Puffersystem 29
3.7 Auftragsplanung 30
3.8 Schwankungsbeschrankte Datenstréme 31
3.9 Zusammenfassung e e 32

22

Implementierung

4.1 Threadstruktur.

4.2
4.3

4.4
4.5

4.6

Auftragsbearbeitung
Speicherverwaltung
431 Pager
4.3.2 Pufferverwaltung
Festplattenverwaltung...
Dateien

4.5.1 Anlegen der Dateien

4.5.2 Speicherung der Strombeschreibungen

Stand der Implementierung

L eistungshewertung

51 Testumgebung.
5.2 Melergebnisse

Zusammenfassung und Ausblick

Glossar

INHALTSVERZEICHNIS

Kapitel 1
Einlaitung

Fur den Begriff Echtzeit existieren eine Reihe von Definitionen. Urspriinglich wurden Echtzeitsysteme
zur Steuerung von Maschinen oder Industrieanlagen eingesetzt. Diese Systeme mul3ten Zusagen Uber
Reaktions- und Antwortzeiten auf z.B. Sensorensignale einhalten kdnnen um eine korrekte Funktionsweise
der entsprechenden Anlage zu gewahrleisten. Die Zeitauflésungen gehen dabei bis in den Mikrosekunden-
bereich und die Systeme miissen garantieren, da® die Zusagen generell eingehalten werden. Eine derar-
tige Charakterisierung wird auch nhirter Echtzeitbezeichnet. Diese Systeme sollen hier jedoch nicht
betrachtet werden. Der Begriff Echtzeit wird in letzter Zeit auch immer haufiger in Verbindung mit Mul-
timediasystemen gebraucht. Damit sind Systeme gemeint, die verschiedene Medientypen wie Video, Ton
oder Text gleichzeitig verwenden. Die Bezeichnung als Echtzeitsystem beruht auf den Eigenschaften ei-
niger dieser Medientypen. Beispielsweise erfordert die Verwendung von Videosequenzen, dal’ das System
ebenfalls Zusagen Uber die Geschwindigkeit machen kann, mit der diese Daten gelesen werden kénnen,
um eine stérungsfreie Anzeige dieser Videos zu ermdglichen. Allerdings sind diese Zusagen weit weniger
streng zu sehen als bei einer Anlagensteuerung, weshalb diese Form awelchbs Echtzeibezeichnet

wird.

Im Rahmen des ProjekBresden Real Time Operating System (DRC&8)_ehrstuhl fiir Betriebssysteme

der Technischen Universitat Dresden wird gegenwartig untersucht, wie derartige Zusagen durch die Ver-
wendung vorQuality of Service (QoFyarametern unterstitzt werden kdnnen. Ein Teilprojekt beschaftigt

sich dabei mit der Entwicklung eines zusageféhigen Speichersystems. Dieses besteht aus einem zusagefa-
higen SCSI-Treiber zum Zugriff auf die Festplatten sowie einem Dateisystem zur Verwaltung des Speicher-
platzes und der Dateien. Ein separater Teil des Dateisystems beschéftigt sich mit der Admission Control,
der Entscheidung tber das Akzeptieren neuer Anforderungen basierend auf deren QoS-Beschreibungen.
Die vorliegende Arbeit beschreibt den Entwurf und die Implementierung des Dateisystems; der SCSI-
Treiber und die Admission Control sind Gegenstand anderer Arbeiten.

Warum ist nun aber die Entwicklung neuer Speichersysteme fir diese Daten notwendig? Video- und Audio-
daten unterscheiden sich von den herkémmlichen Datentypen wie etwa Text im wesentlichen durch zwei
Eigenschaften:

¢ Kontinuierliches Abspielen
Die Daten bestehen meistens aus einer Menge von Teilobjekten (Bildern oder Samples), die fur eine
korrekte Wiedergabe mit einer bestimmten Geschwindigkeit abgespielt werden mussen. Aufgrund
dieser Eigenschaft werden Video- und Audiostrome auclatginuous Media Dathezeichnet.

e Datenvolumen
Im Vergleich zu Textdokumenten missen vor allem bei Videostromen sehr grol3e Datenmengen ver-
waltet werden. Ein einzelnes Video kann durchaus mehrere GByte an Speicherplatz erfordern.

Diesen Anforderungen sind herkbmmliche Dateisysteme nicht gewachsen. An der Entwicklung von Datei-
systemen fir die Verwaltung von Continuous Media Daten wurde bereits an verschiedenen Stellen gearbei-

5

6 KAPITEL 1. EINLEITUNG

tet, und flr einige Spezialanwendungen existieren auch eine Reihe von Lésungen, z.B. fiir Video-Server.
Es besteht allerdings nach wie vor noch der Bedarf nach universellen Systemen, die neben Continuous
Media Daten sowohl andere Daten mit Echtzeitanforderungen als auch Nicht-Echtzeitdaten gleichermaf3en
speichern kénnen.

Gliederung

Das folgende Kapitel enthalt einen Uberblick tiber die wichtigsten Mechanismen zur Dateiverwaltung so-
wie eine genauere Beschreibung der fur den Entwurf des Dateisystems besonders bedeutsamen Verfahren.
Anschlieend daran werden beispielhaft einige bekannte Dateisysteme kurz erlautert. In Kapitel 3 wird
ausgehend von diesen Grundlagen der Entwurf des Echtzeitdateisystems fiir DROPS beschrieben. Uber
einige Details der Implementierung wird im darauf folgenden Kapitel eingegangen. Die Arbeit wird mit
einer zusammenfassenden Bewertung sowie einem Ausblick auf weitere Arbeiten beschlossen.

Kapitel 2

Stand der Technik

Das permanente Speichern von Daten gehért neben der Verwaltung des Hauptspeichers und von Prozessen
zu einer der wichtigsten Aufgaben eines Betriebssystems. Mit der fortschreitenden Entwicklung der Be-
triebssysteme wurden daher auch auf dem Gebiet der Dateisysteme verschiedene Verfahren zur Verwaltung
persistenter Daten entwickelt. Im folgenden sollen einige der grundlegenden Mechanismen erlautert sowie
verschiedene Dateisysteme beispielhaft beschrieben werden.

2.1 Dateisystem-M echanismen

Jedes Dateisystem muf3 unabhangig von seinem Einsatzgebiet eine Reihe grundlegender Aufgaben erfiillen:
es mufd den Speicherplatz des Hintergrundspeichers (z.B. der Festplatte) verwalten, fir die Daten muf3
Speicherplatz reserviert werden und die Dateien miissen in einer geeigneten Form nach auf3en reprasentiert
werden. Fur jede dieser Aufgaben existieren eine Reihe verschiedener Losungen [Tan94]:

e Freispeicherverwaltung
Fur die Verwaltung des freien Speichers werden hauptsachlich zwei verschiedene Techniken ange-
wendet: Freispeicherlisten und Bitmaps. Bei der ersten Variante werden die freien Bereiche in Form
einer verketteten Liste verwaltet, wobei jedes Element dieser Liste den Verweis auf einen freien
Block enthélt. Demgegenuber wird bei der Verwendung einer Bitmap jeder Block durch ein Bit in
diesem Bitfeld représentiert und durch die Belegung dieses Bits der Block als frei bzw. belegt ge-
kennzeichnet.

Die Verwendung einer Bitmap erfordertin der Regel weniger Speicherplatz als eine Freispeicherliste,
fur die Suche eines freien Blocks in einer Bitmap wird allerdings mehr Zeit benétigt. Ein Vorteil
einer Bitmap ist die konstante Grof3e, wodurch deren Verwaltung wesentlich einfacher als die einer
Freispeicherliste ist.

¢ Block-Allokation und Verwaltung
In einem ersten Schritt lassen sich die Verfahren zur Block-Allokation in kontinuierliche und nicht-
kontinuierliche Allokation unterteilen. Bei einer kontinuierlichen Reservierung werden fir eine Da-
tei aufeinanderfolgende Blécke verwendet, fur die Beschreibung dieser Datei ist nur die Kenntnis
des ersten Blocks und der Dateigréf3e notwendig. Dieses Verfahren hat den Vorteil, da3 sequentielle
Lese- oder Schreiboperationen ohne Neupositionierungen des Festplatten-Kopfes auskommen. Al-
lerdings fuhrt es sehr schnell zu einer starken Fragmentierung der Festplatte, so daf3 fir das Speichern
von Dateien kein gentigend grof3er kontinuierlicher Speicherbereich zur Verfugung steht. Durch ei-
ne nicht-kontinuierliche Allokation der Blocke kann dieses Problem geltst werden, allerdings muf3
dann fiir jede Datei eine Liste mit den zu der Datei gehérenden Festplattenblécken verwaltet werden.
Dies kann auf verschiedene Weise erfolgen:

7

8 KAPITEL 2. STAND DER TECHNIK

— Jeder Block enthalt einen Verweis auf den nachsten Block, zum Zugriff auf die Datei ist nur
das Speichern der Adresse des ersten Blocks notwendig. Ein gro3er Nachteil dieser Variante ist,
daf beim zufalligen Zugriff auf die Datei alle Blocke bis zu dem angeforderten Block gelesen
werden missen, um dessen Adresse zu ermitteln.

— Der Verweis auf den nachsten Block wird nicht in dem Datenblock selbst, sondernin einer dafir
vorgesehenen Tabelle gespeichert. Der Index dieser Tabelle ist die Nummer des Plattenblocks,
der Inhalt der Verweis auf den néchsten Block der Datei. Bei einem zufélligen Zugriff auf
eine Datei muf3 zwar nach wie vor die gesamte Liste durchsucht werden, da diese jetzt jedoch
separat verwaltet wird kann dies deutlich schneller erfolgen.

— Die zu einer Datei gehdrenden Blocke werden in einem Index-Knoterd gespeichert.
Die Adressen der ersten Blécke werden direkt in dieser Inode gespeichert, fir gréRere Dateien
werden Datenbldcke zum Speichern der Adressen verwendet, diese werden durch eine Baum-
struktur verwaltet. Bei sehr gro3en Dateien kann diese Struktur bis zu drei Ebenen enthalten,
die fur die Knoten des Baums verwendeten Datenbldocke enthalten dann wiederum Verweise
auf die Datenbldcke, in denen die Blockliste gespeichert ist.

— In [RO92] wird ein Verfahren beschrieben, bei dem zumindestens beim Schreiben die Vorteile
der kontinuierlichen Allokation genutzt werden sollen. Dazu werden mehrere Schreiboperatio-
nen zu einer einzelnen grofRen zusammengefalit, diegarvird dann kontinuierlich auf die
Platte geschrieben, zusétzlich werden fiir das Lesen Indexstrukturen erzeugt.

— Gelegentlich (z.B. in [Rei97]) werden Baumstrukturen zur Verwaltung der Dateiinformationen
benutzt. Durch die Verwendung derartiger Strukturen wird besonders der wahlfreie Zugriff auf
Dateien beschleunigt, sie haben allerdings den Nachteil einer sehr aufwendigen Implementie-
rung im Gegensatz zu den anderen erwahnten Verfahren.

¢ Repréasentation der Daten
Bei der Reprasentation der Daten kann man im wesentlichen zwischen einer ,flachen“ und einer
strukturierten Darstellung unterscheiden. Bei der flachen Darstellung besteht die Datei aus einer Fol-
ge von Bytes, die durch das Dateisystem nicht weiter interpretiert werden. Diese Art der Darstellung
wird von den meisten Standard-Dateisystemen verwendet. Von Datenbanksystemen wird vorzugs-
weise eine strukturierte Darstellung verwendet, bei der die Daten z.B. als He&tmnr{3 verwaltet
werden.

2.1.1 Verwendung mehrerer Festplatten — Striping

Dateisysteme, die zum Lesen oder Schreiben mit hohen Datenraten bzw. zur Verwaltung von grofR3en Da-
tenmengen verwendet werden, benutzen haufig mehrere Festplatten gleichzeitig, um die gestellten An-
forderungen zu erfilllen. Da die beiden genannten Anforderungen, hohe Datenraten und Datenmengen,
insbesondere auch fir Multimediadaten gelten, sollen die Techniken zur Verwaltung mehrerer Festplatten
an dieser Stelle etwas genauer beschrieben werden.

RAID

Urspringlich wurden mehrere Festplatten gleichzeitig eingesetzt, um den Leistungsnachteil (was sowohl
die Speicherkapazitét als auch die Ubertragungsraten betrifft) kostengiinstiger Festplatten gegeniiber teuren
Hochleistungsplatten zu kompensieren. In [PGK88] werden eine Reihe von Techniken vorgestellt, die mit
RAID (Redundant Arrays of Inexpensive Diskszeichnet werden. Dabei soll vor allem durch Redundanz

die hohe Fehleranfélligkeit, die durch den gleichzeitigen Einsatz mehrerer Festplatten entsteht, reduziert
werden. Tabelle 2.1 gibt einen Uberblick iber die RAID-Hierarchie.

Bei einer bitweisen Verteilung der Daten befinden sich alle Schreib-/Leseképfe der einzelnen Festplatten
immer an der gleichen Position, weshalb dieses Verfahren augkptalelsynchron“bezeichnet wird.

Durch dieses synchrone Verhalten der Festplatten kann das Array auch als eine grof3e Festplatte mit einer
Datenrate angesehen werden, die der Summe der Datenraten der einzelnen Festplatten entspricht.

2.1. DATEISYSTEM-MECHANISMEN 9

RAID-Stufe | Beschreibung

1 Daten werden auf einer zweiten Festplatte gespiegelt

2 Verwendung eines Hamming-Codes, Daten werden bitwgise
Uber die Festplatten verteilt

3 Benutzung eines Paritéatsbits, Daten werden bitweise verteilt

4 wie 3, Daten werden jedoch blockweise Uber die Festplatten
verteilt

5 wie 4, Paritatsblocke werden jedoch zyklisch tber alle
Festplatten verteilt

Tabelle 2.1: RAID-Hierarchie

Striping

Neben den RAID-Systemen existieren eine Reihe von Systemen, die ohne Redundanz arbeiten (gelegent-
lich werden derartige Systeme in die RAID-Hierarchie auf der Stufe 0 eingeordnet). Diese Verfahren wer-
den meistens miBtriping' bezeichnet. Fiir den gleichzeitigen Einsatz mehrerer Festplatten gibt es haupt-
séachlich drei Grinde:

¢ die Speicherkapazitat einer einzelnen Festplatte ist fiir das Speichern der Daten nicht ausreichend;
¢ die geforderten Datenraten sind héher als die der Festplatten;

¢ eine Verteilung der Auftrage in einem Mehrbenutzer-System.
Die Klassifizierung der Verfahren kann anhand von zwei Kriterien vorgenommen werden:

1. Granularitat der Verteilung der Daten

2. Anzahl der pro Zugriff verwendeten Festplatten.

Anhand der Granularitat werden Verfahren mit einer feinen Aufteilung der Daten (bit-, byte- oder sektor-
weise) und mit einer groben Aufteilung (bis zu mehreren 100 KByte) unterschieden. Wie bereits weiter
oben erwahnt, fiihrt eine sehr feine Aufteilung der Daten zu einem synchronen Betrieb der Festplatten, so
daf pro Zugriff in der Regel alle Festplatten gleichzeitig verwendet werden. Bei einer groben Verteilung
der Daten wird in der Regel nur eine Festplatte pro Zugriff verwendet, es sei denn die Bandbreite einer
einzelnen Festplatte ist nicht ausreichend, so daf3 zwei oder mehr Festplatten verwendet werden missen.

In [RzS96] werden diese beiden Vorgehensweisen (doringtgrained stripingind coarse-grained stri-

ping bezeichnet) miteinander verglichen. Als Grundlage fiir diesen Vergleich dient ein Video-Server, der
mehrere Videostrome gleichzeitig liefern soll. Die Videostrdme werden in kleine Teilstiicke zerlegt. In einer
Rundewird dann jeweils genau ein Teilstlick jedes Videostroms gelesen. Das Ergebnis dieses Vergleichs ist,
daf aufgrund der nicht vorhandenen Nebenlaufigkeit beim Lesen der Strome die Latenz bei fine-grained
Striping héher ist als bei coarse-grained Striping, die durch einen gréReren Puffer ausgeglichen werden
muf®.

Im Bereich der Multimedia- und Video-Server wird tUberwiegend das grobe Striping-Schema verwendet.
Dies liegt vor allem daran, daf3 in der Regel die Bandbreite einer einzelnen Festplatte fiir die Bedienung
eines Datenstroms ausreichend ist und das Hauptaugenmerk daher mehr auf der gleichzeitigen Lieferung

1Der Begriff Striping wird teilweise mit verschiedenen Bedeutungen verwendet. Im weiteren werden damit Systeme bezeichnet,
die die Daten ohne die Verwendung von Redundanz Uber mehrere Festplatten verteilen.

2Der Video-Server war dabei so konfiguriert, daR bei einer gegebenen Anzahl an Festplatten und einer gegebenen SpeichergroRe
die maximale Anzahl an Videostromen bedient werden konnte

10 KAPITEL 2. STAND DER TECHNIK

mehrerer Datenstrome liegt. Bei einem derartigen System kommt es vor allem auf eine gleichmafiige Ver-
teilung der Daten Uber alle verfligbaren Festplatten an, welches durch ein geeignetes Layout der Daten
erreicht werden kann. Bei der Entwicklung eines solchen Systems sind vor allem zwei Fragen zu beant-
worten: wie ist die BlockgréRe zu wéhlen, mit der die Allokation des Festplattenplatzes erfolgt und mit
welchem Layout werden die Daten lber die Festplatten verteilt.

Zu der ersten Fragestellung wurden in [SV97] umfangreiche theoretische Untersuchungen durchgefiihrt.
Ziel dieser Untersuchungen war die Bestimmung der Blockgréi3e, bei der die Bedienursgszae(time

eines Auftrags am geringsten ist. Als wichtige Faktoren, die durch die Wahl einer bestimmtem Blockgrof3e
beeinflult werden, werden fir diese Arbeit die Lastverteilload balancg und die Verzdgerung durch

die Positionierung des Lesekopfegk and rotational latengywerwendet. Durch die Wahl einer kleinen
BlockgroRe wird eine gute Lastverteilung erreicht, was sich in einer geringen Anfangsverzégerung wider-
spiegelt, es ist jedoch ein erhdhter Positionierungsaufwand notwendig. Demgegeniiber ist bei der Verwen-
dung groler Blocke der Positionierungsaufwand gering, wahrend durch eine schlechtere Lastverteilung
mit einer héheren Anfangsverzdgerung zu rechnen ist. In Abbildung 2.1 ist dieser Sachverhalt graphisch
dargestellt.

RAID-0, 16 disks, 60 clients
0.8 T T .

\ Load imbalan;:e ——

0.7 | 3 Latency overhead -+ 1
0.6
05
04 r

03 r

Normalized metric

0.2 r

0.1 r

0 50 100 150 200 250 300
Block size (kB)

Abbildung 2.1: Lastverteilung und Latenz in Abhangig-
keit der BlockgréRRe [SV9I7].

Der Wert fur die optimale BlockgroR3e liegt am Schnittpunkt der beiden Kurven. Dieser ist von einer Reihe
Systemparameter abhéangig, dazu gehdéren u.a. die Anzahl der Festplatten und Klienten. So wird z.B. bei
einer hohen Anzahl Klienten eine so groRe Datenmenge gelesen, da auch mit groRBeren Blocken eine
ausreichende Lastverteilung erreicht wird (siehe Abb. 2.2). Die bei diesen Untersuchungen ermittelten
BlockgroRRen liegen fur die verschiedenen Systeme im Bereich von 50 KByte bis 200 KByte.

Bei der Verteilung der Daten auf die Festplatten werden in der Regel Techniken angewendet, bei denen
die Daten nacheinander tiber die zur Verfiigung stehenden Festplatten verteilt werden (Block 1 auf Platte
1, Block 2 auf Platte 2,.., Block n auf Platte n, Block n + 1 auf Platte 1, bei n Festplatten). Durch

die dadurch entstehende zyklische Anordnung der Datérd eine gleichmaRige Verteilung der Daten
erreicht, jede Festplatte speichert annahernd ein n-tel des Datenstroms. In [BGMJ94] ist ein derartiges
Verfahren Gtaggeredbstriping) beschrieben. Es erméglicht sowohl das Lesen von Datenstrdomen mit hohen
Bandbreitenanforderungen (durch das gleichzeitige Verwenden von mehreren Festplatten) als auch von
Datenstromen mit geringen Anforderungen, diese werden durch das Auslassen von Lesezyklen und Puf-
ferung realisiert. Abbildung 2.3 stellt das Datenlayout bei Verwendung von Staggered Striping dar. Das
System speichert drei DatenstrotiieY” und Z, wobei X die dreifache Bandbreite einer Festplaitedie
vierfache undZ die doppelte Bandbreite beansprucht.

3im folgenden wird diese Art des Stripings mibund-Robin Stripingezeichnet.

2.1. DATEISYSTEM-MECHANISMEN 11

(a) RAID-0, 16 disks

0.9 T T T T
. Load imbalance, 20 clients ——
0.8 Latency overhead, 20 clients --+--
X Load imbalance, 100 clients -&--
07 | % Latency overhead, 100 cli o
o \
E 0.6 R
[.o
£
- 05 R
[
N
| 0.4 1
£
‘ZJ 03 9
0.2 |
01} & |
O A L L L L L
0 50 100 150 200 250 300

Block size (kB)

Abbildung 2.2: Optimale BlockgréRRe bei verschiedene
Anzahl Klienten [SV97].

Subobject0 | Y0.0 Y0.1 YO0.2
Y10 YLl Y12
Y20 Y21

Y3.0

0 NG AWN R
N
13
o
N
o
N

X80 X8.1 X8.2: 780 781 Y80 Y8l Y82 Y83
9 [Y9.3{X9.0 X9.1 X92} 290 Zz9.1 Y9.0 Yol Y9.2
10|Y10.2 Y10.3 X10.0 X10.1 X103 Z10.0 Z10.1 Y100 Y10.1

[
[
<
=
=
N
<
=
=
N
<
=
=

_w
x
o
Ly
=)
x
o
I
N
x
[
=
N
N
[
oy
=]
N
[
I
N

Y11.0

12|Y12.0 Y12.1 Y12.2'Y12.3 X12.0 X12.1 X12.3 712.0 7121

Abbildung 2.3: Datenlayout beiStaggered Striping
[BGMJ94].

2.1.2 Auftragsplanung

Im Bereich der Continuous Media Dateisysteme ist es besonders wichtig, dal3 die Daten zu einem genau
festgelegten Zeitpunkt gelesen oder geschrieben werden. Werden Daten zu spat gelesen, kommt es bei-
spielsweise bei einem Video zu einer ruckhaften Darstellung, werden Daten zu friih gelesen, kann es zu
Pufferiberlaufen kommen. Diese Anforderung macht eine Auftragsplanung in dem Dateisystem notwen-
dig; daflir existieren eine Reihe von Anséatzen.

¢ In [AOG91] wird eine logische Uhr zur Planung der Auftrége verwendet. Diese wird normalerwei-
se anhand der von einer Anwendung geforderten Datenrate vorgestellt, kann aber auch angehalten
werden, falls die Anwendung mit dem Auslesen der Daten aus dem Puffer nicht nachkommt. Das
Dateisystem ist mit dem Lesen immer mindestens um efi@rkaheaeParameter voraus, um evtl.
Schwankungen innerhalb des Datenstroms ausgleichen zu kénnen (siehe Abb. 2.4).

¢ Bei Video-Servern werden die Leseoperationen haufig Runden bzw. Zyklen organisiert. In einer Run-
de wird dabei genau ein Teilstlick (haufig ein Block auf der Festplatte) jedes Videostroms gelesen.

12 KAPITEL 2. STAND DER TECHNIK

(client read) (CMFS write)
C(t) G(t) P()

| ‘ Y Y o

r . —

offset in file

'stop clock ‘
if zero -—————————»

<B

; 2Y
Y: maximum work ahead
P(t): the index of the next byte to be put into the FIFO by CMFS at time t
G(t): the index of the next byte to be removed from the FIFO by the client
attime t
C(t): the value of the logical clock at time t
B: the size of the FIFO buffer

Abbildung 2.4: Die logische Uhr des Berkeley CMFS [AOG91].

Die Dauer einer Runde ist konstant, sie ist abhangig von der Zeit, die zum Lesen aller Blécke ei-
ner Runde bendtigt wird bzw. der Zeit, die zum Anzeigen der Videosequenzen bendtigt wird. Die
Planung erfolgt dann anhand des durch die Rundendauer vorgegebenen Zeitrasters.

¢ In[BFD97] wird ein Verfahren beschrieben, bei dem die Planung anhand eines zentraleséians (
dule) erfolgt. Ein Eintrag in diesem Plaslo) entspricht einem Leseauftrag fir einen Block. Die
Daten sind nach dem Round-Robin Verfahren tber die Festplatten verteilt, so daf3 sich ein periodi-
sches Zugriffsverhalten auf die Festplatten ergibt. Die Lange dieser Periode ist bestimmt durch die
der Anzahl der Festplatten sowie der Zeit, die zum Anzeigen eines Blocks benétigbieich play
time). Wahrend der Anzeige eines Blocks kdnnen bereits weitere Blocke gelesen werden (in der Re-
gel ist die Zeit zum Lesen eines Blockddck service timegeringer als die block play time), so dal3
die Anzahl der Slots in dem Plan dem Produkt aus Anzahl Slots pro block play time und Anzahl der
Festplatten entspricht. Fir die Auftragsplanung wird pro Festplatte ein Zeiger auf diesen zentralen
Plan verwaltet, der in Echtzeit bewegt wird. Beim Erreichen eines Slots der betreffenden Festplatte
wird dieser Block gelesen.

2.2 Bespidefur Dateisysteme

Da, wie bereits erwahnt, das permanente Speichern der Daten zu den wichtigen Aufgaben eines Betriebssy-
stems gehort, existieren eine Vielzahl von Dateisystemen. Im folgenden sollen einige davon exemplarisch
beschrieben werden, geordnet nach dem jeweiligen Einsatzgebiet.

2.2.1 Standard-Dateisysteme

Die Dateisysteme der bekannten Betriebssysteme (UNIX, Microsoft Windows) sind in der Regel fir viele,
kleine Dateien konzipiert. Daraus resultiert u.a. die Verwendung kleiner Blécke (in der Regel 512 Byte bis
4 KByte).

2.2. BEISPIELE FUR DATEISYSTEME 13

Extended Secondary File System

DasExtended Secondary File System (extidtsjas Standard-Dateisystem von Linux [BBD 95], die Struk-
tur des ext2fs ist stark an dBSD Fast File Systemngelehnt [MJLF84]. Eine Festplatte (bzw. eine Parti-
tion) ist in mehrereBlockgrupperaufgeteilt, die je nach verwendeter BlockgréRe 8 MByte bis 32 MByte
grof3 sind (siehe Abb. 2.5).

Boot: Blockgruppe O Blockgruppe 1 X Blockgruppe n
Block
Super- | Gruppen- Block- Inode- Inode- .
Block Deskriptoren |Bitmap | Bitmap | Tabelle Datenblocke

Abbildung 2.5: Aufteillung der Festplatten in Blockgruppen im ext2fs
[BBD 95].

Jede dieser Blockgruppen enthdlt am Anfang neben einer Sicherungskopie des Superblocks die Verwal-
tungsinformationen (Block-Bitmap, Inode-Tabell€) fir diese Gruppe. Ziel dieser Aufteilungist es, die Ver-
waltungsi nformati onen méglichst nahe zu den Dateien zu speichern. Aus diesem Grund wird versucht, bei
der Blockallokation zuerst Blécke zu verwenden, die in der Blockgruppe der Inode der Datei liegen und
die Dateien werden mdglichst in der Nahe ihrer Verzeichnisse gespeichert. Fir die Verwaltung der Dateien
werden im ext2fs Inodes verwendet.

NT File System

Neben dem von MS-DOS bekannten FAT-Datei system unterstiitzt Microsoft Windows NT das NT File Sy-
stem (NTFB[LO6wWI7, Cus94]. NTFS besitzt eine Reihe interessanter Eigenschaften. So werden die Meta-
daten (z.B. die Block-Bitmap) als normale Datei behandelt und nicht, wie z.B. bei ext2fs, statisch beim
Anlegen des Dateisystems erzeugt. Dadurch ist es beispielsweise méglich, ein bestehendes Dateisystem
durch das Hinzufligen einer weiteren Festplatte zu vergréfiern, indem die Bitmapdatel entsprechend erwei-
tert wird (dadurch entstehen sog. Volume SedsEine Datei wird im NTFS durch eine Menge von Attributen
beschrieben, dazu gehdren u.a. der Name und eine Zugriffssteuerliste, und auch die Daten werden als At-
tribut verwaltet. Alle Attribute einer Datel werden zu einem File Recordzusammengefaldt, welcher in einer
spezidllen Datei, der Master File Table gespeichert wird. Weitere Eigenschaften des NTFS sind die Un-
terstiitzung von Software-RAID sowie das transaktionsorientierte Speichern der Metadaten (dadurch wird
eine bessere Wiederherstellung der Konsistenz nach einem Systemausfall gewéahrleistet).

2.2.2 Multimedia-Dateisysteme

Die Speicherung von Continuous Media Daten stellt Anforderungen, die von den Standard-Dateisystemen
nicht erfullt werden. An verschiedenen Stellen wurden daher spezielle Dateisysteme entwickelt. Flr eine
Unterscheidung dieser Systeme sind mehrere Gesi chtspunkte von Bedeutung:

e Datenlayout
Wiewerden die Daten auf den Festplatten gespeichert?

o Akzeptanz-Test (Admission Control)
WEel ches Verfahren wird zur Entscheidung Uber das Zulassen neuer Datenstrome angewendet?

14 KAPITEL 2. STAND DER TECHNIK

e Auftragsplanung
Wiewerden die Auftrége zum Lesen oder Schreiben erzeugt?

Berkeley Continuous M edia File System

Einer der ersten Vertreter der Multimedia-Dateisysteme ist das Berkeley Continuous Media File System
(CMFS)[AOG91]. Das Dateisystem verwendet die bereits erwéahnte logische Uhr (vgl. Abb. 2.4). Fir die
Admission Control bzw. die Planung der Auftrége beim Lesen eines Datenstroms miissen immer folgende
~Axiome* erflllt sein:

Pt)-G(t) < B (2.2)
Pt)—-C(t) > Y (2.2)
G(t) < P(t) (2.3)

Durch diese Bedingungen wird ausgedriickt, dal3 das Dateisystem nie mehr Daten im voraus liest als der
Puffer aufnehmen kann (erste Formel), das Dateisystem immer der logischen Uhr um mindestens den
WorkaheadParameter Y vorausist und daid die Anwendung nie das Dateisystem einholt. Fir die Admis-
sion Control wird versucht, ein operation setp aufzustellen, so dal3 die Axiome noch erfiillt werden. Die
Menge ¢ enthdlt dabei fir jeden Datenstrom die Anzahl Datenbldcke, die fir diesen Strom wéhrend eines
Zeitabschnitts gelesen werden sollen.

Fir das Datenlayout werden durch das Dateisystem keine Vorgaben gemacht. Statt dessen verwenden die
Algorithmen zur Admission Control und zur Auftragsplanung al's Eingangsgrofien Funktionen, anhand de-
rer die Worst-Case L esezeiten fiir eine bestimmte Anzahl Datenbl 6cke von der Festplatte bestimmt werden.
Dies erméglicht die Verwendung verschiedener Datenlayouts.

Mitra

Der in[GZS96] vorgestellte Continuous Media Server Mitra verwendet eine Hierarchie von verschiedenen
Speichersystemen zur Verwaltung der Datenstrome. Diese Hierarchie besteht aus einem grof3en, langsamen
Hintergrundspeicher (im Beispiel eine Jukebox von MO-Wechselplatten) und einem Festplatten-Array,
welches zum Zwischenspeichern der aktiven Datenstrome verwendet wird. Die Verwendung einer derarti-
gen Hierarchie ist sinnvoll, da MO-Wechselplatten oder auch Bandlaufwerke im Vergleich zu Festplatten
fur die Speicherung grof3er Datenmengen deutlich kostengiinstiger sind, aber zum direkten Lesen der Daten
nicht geeignet sind.

Fir die Verwaltung des Festplatten-Arrays wird ein Dateisystem Namens EVERES verwendet. Zum Ab-
speichern der Datenstrome werden diese in kleinere Teilstiicke aufgeteilt. Diese Aufteillung wird so vorge-
nommen, dal3 die Dauer zum Anzeigen der Teilstiicke fir die verschiedenen Datenstrome gleich ist. Durch
EVEREST wird versucht, diese Teilstlicke moglichst kontinuierlich auf den Festplatten zu speichern. Um
dabei Fragmentierungsprobleme zu vermeiden, werden die Daten nicht vollsténdig kontinuierlich gespei-
chert, sondern in méglichst groRen Stiicken. Dazu wird der zur Verfligung stehende Festplattenplatz an-
hand des aus der Hauptspeicherverwaltung bekannten Buddy-Algorithmus [WJINB95] verwaltet. Der zur
Speicherung der Teilstlicke benttigte Festplattenplatz wird dann aus moglichst grof3en Bl6cken zusammen-
gesetzt (sowird z.B. bel der Verwendung eines bindren Buddy-Systems ein 169 KByte grofies Teilstiick in
einem 128 KByte, einem 32 KByte, einem 8 KByte und einem 1 KByte Block gespeichert). Um die Frag-
mentierung innerhal b des Buddy-Systems zu minimieren, wird nach jedem L 6schen eines Datenstroms ggf.
ein Umspeichern und Zusammenfassen der Bldcke vorgenommen, so dal3 der freie Speicherplatz immer
in grofmoglichen Bldcken vorliegt®. Werden durch EVEREST mehrere Festplatten verwaltet, werden die
Datenbl 6cke mittels Staggeredtriping[BGM J94] (ber die Festplatten verteilt.

“4eswird argumentiert, dai? der dadurch entstehende Mehraufwand vernachl &ssigt werden kann, da das L éschen eines Datenstroms
nicht haufig vorkommt

2.2. BEISPIELE FUR DATEISYSTEME 15

Die Planung bzw. das Scheduling der Auftrage erfolgt nach dem Grouped Sweeping Scheme (GER)e
Zeitperiode, deren Lange durch die Abspieldauer eines Teilstlicks des Datenstroms bestimmt ist, wird in
mehrere gleichlange Gruppen aufgeteilt. Jedem Datenstrom wird eine Gruppe zugewiesen, in der des-
sen Datenbldcke gelesen werden. Innerhalb einer Gruppe werden die Datenbldcke nach dem SCAN-
Algorithmus gelesen, die einzelnen Gruppen werden nach Round-Robin abgearbeitet. Fiir die Admission
Control wird flr den neuen Strom zuerst die Zeit zum Lesen eines Tellstlicks (disk service timebestimmt
und dann eine Gruppe gesucht, die noch gentigend L eerlaufzeit hat, um diesen Strom zu bedienen.

Eine weitere Eigenschaft des EVEREST-Dateisystemsist, dal3 Anwendungen Einfluf? auf die Auftragspla-
nung nehmen koénnen. Ist das System nicht vollstandig ausgel astet, kdnnen durch das Dateisystem in den
entstehenden L eerlauf-Pausen bereits Blécke im voraus gelesen werden. Um einen Puffertiberlauf in den
Anwendungen zu verhindern, wird der , Fillstand“ des Puffers tiberwacht, beim Erreichen einer gewissen
Marke sendet die Anwendung eine Stop-Nachricht an den Scheduler des Dateisystems, der daraufhin das
L esen neuer Bocke flir einen angegebenen Zeitraum unterbricht.

Video Server auf RT-Mach

Die Besonderheit des in [NOM 97] beschriebenen Video-Serversist, da die Datenstréme nicht durch ei-
ne Blockliste (z.B. in einer Inode) beschrieben werden, sondern die Position der Datenblcke berechnet
werden kann. Dies wird durch ein fest vorgegebenes Datenlayout erreicht, so dal3 zur Beschreibung einer
Datei nur die Kenntnis der Position des ersten Blocks sowie die Parameter des Layouts erforderlich sind.
Der grof3e Nachteil dieser Systemeist allerdings, dald durch das fest vorgegebene Layout sehr schnell Frag-
menti erungsprobl eme entstehen, besonders wenn haufig Datenstrome gel 6scht und andere neu geschrieben
werden. Aus diesem Grund eignen sich diese Systeme nur fir relativ statische Umgebungen, z.B. Video-
Server bei denen nur selten neue Datenstréme geschrieben werden.

Symphony

Ziel von Symphony war es, ein Dateisystem zu entwickeln, das sowohl Continuous Media Daten als auch
»hormale" Daten (z.B. Text) speichern kann [SGRV97]. Dabei werden die Daten auf ein und demselben
Dateisystem gespeichert und nicht auf getrennten Dateisystemen, die zu einem logischen System zusam-
mengefaldt werden. Durch diesen Ansatz kann eine bessere Leistung erzielt werden, da fur jeden Datentyp
das vollstandige System zur Verfligung steht; der Ansatz erfordert jedoch eine aufwendige, sehr flexible
Implementierung.

File Server Interface
Video Audio Text Dsa;)tgct%f/i%e
module module module Layer
| Resour ce M anager | Disk Data type
Buffer Subsystem Independent
Subsystem | | R4 Layer

S oog-

Abbildung 2.6: Systemstruktur des Symphony Multime-
diaFile System [SGRV97].

Symphony verwendet einen zwei schichtigen Aufbau (siehe Abbildung 2.6). Die untere Schicht ist unab-
hangig von dem verwendeten Datentyp und stellt grundlegende Datei systemfunktionen zur Verfligung:

16 KAPITEL 2. STAND DER TECHNIK

¢ Pufferverwaltung
Die Pufferverwaltungist in der Lage, verschiedene Cache-Strategien gleichzeitig zu verwenden. Da-
zu werden fUr jede Strategie getrennte Pufferbereiche verwaltet.

¢ Ressourcenverwaltung
Durch die Ressourcenverwaltung wird im wesentlichen die Admission Control durchgefihrt.

o Festplatten-Verwaltung
In diesem Teil der unteren Schicht werden die Auftragsplanung und Blockverwaltung realisiert. Fir
die Auftragsplanung werden die Datenstrome in 3 Kategorien eingetelilt:

1. Periodische Echtzeitauftrage
2. Nicht-periodische Echtzeitauftrége
3. Nicht-Echtzeitauftrége

Die Auftrégefir jede Kategorie werden in getrennten Warteschlangen verwaltet. Fiir die Generierung
der Festplattenauftrége wird eine gemeinsame Warteschlange benutzt, dabei werden die Auftrége fir
die Echtzeit-Datenstrome (periodisch und nicht-periodisch) nach SCAN-EDF in diese Warteschlan-
ge eingeflgt, die Nicht-Echtzeitauftrdge nach Best-Effort. Um zu gewéhrleisten, daid die Auftrége
gleichberechtigt ausgefiihrt werden, wird jeder Kategorie ein Zeitantell garantiert. Auftrége werden
nur dann in die globale Warteschlange aufgenommen, falls fir die entsprechende Auftragskategorie
noch gentigend Zeit zur Verfiigung steht bzw. keine Auftrdge anderer Kategorien vorhanden sind.
Durch die Vorgehensweise soll erreicht werden, daf3 Echtzeitauftrége entsprechend ihrer Zeitschran-
ken ausgefihrt werden und auf der anderen Seite die Antwortzeiten fur Nicht-Echtzeitauftrége so
gering wie moglich gehalten wird.

Die Blockverwaltung soll die Moglichkeit bieten, verschiedene Layouts gleichzeitig zu verwenden.
Dazu kann einer Allokationsanforderung ein ,Hinweis* gegeben werden, auf welcher Festplatte und
an welcher Stelle der Festplatte ein Block reserviert werden soll. AufRerdem kdnnen Bldcke unter-
schiedlicher Grofe angelegt werden. Das Dateisystem versucht dann, den Block an der angegebenen
Position oder in deren Nahe zu allokieren.

DieMetadaten werden dhnlich zu den UNIX-Inodesverwaltet, eswird alerdings zusétzlich ein Index
gespeichert, der die logische Struktur eines Datenstromes (z.B. die einzelnen Bilder eines Videos)
auf Bytepositionen in der Datei abbildet.

In der oberen, vom jeweiligen Datentyp abhangigen Schicht werden die eigentlichen Strategien zur Spei-
cherung der Datenstrome implementiert. Fir jeden Datentyp existiert dafiir ein separates Modul. Das Mo-
dul zur Speicherung von Videostrémen verwendet z.B. grolie Bldcke und verteilt diese nach einem ge-
eigneten Striping-Schema tiber die Festplatten, wahrend das Text-Modul mit kleinen Blécken arbeitet und
diese strikt nach Round-Robin verteilt.

2.2.3 Echtzeit-Datenbanken

Im wesentlichen haben Datenbanksysteme zur Verwaltung von Echtzeit- oder Multimedia-Daten die glei-
chen Probleme zu I6sen wie die Dateisysteme: Admission Control, Auftragsplanung und Datenlayout
[RzS97, KGM93]. Hinzu kommt das Problem einer geeigneten Indexstruktur. Die bis jetzt beschriebenen
Verfahren (Blocklisten oder spezielle Layoutvarianten) sind vor allem dann ungeeignet, wenn das System
Operationen wie das Einfligen oder L éschen von Teilen des Datenstroms (z.B. einiger Bilder eines Videos)
unterstiitzen soll. In [Bil92] wird fur dieses Problem eine L&sung beschrieben. Dort werden B-Baume fir
die Verwaltung der Dateien verwendet (siehe Abb. 2.7). Diese erméglichen das Einfiigen oder Léschen von
Teilen innerhalb der Datei, erfordern alerdings einen erhthten Aufwand fur die Implementierung.

2.2. BEISPIELE FUR DATEISYSTEME

E full page

E partialy full page

Abbildung 2.7: B-Baume zur Blockverwaltung in EOS [Bil92].

17

18

KAPITEL 2. STAND DER TECHNIK

Kapitel 3

Entwurf

3.1 Grundlagen

Bevor die verschiedenen Entwurfsmdglichkeiten beschrieben werden, sollen an dieser Stelle zunéchst die
wichtigsten Grundlagen und Rahmenbedingungen erlautert werden.

3.1.1 SCSI-Auftragsplanung

Das Dateisystem soll zum Zugriff auf die Festplatten den im Rahmen des DROPS-Projekts von Frank
Mehnert entwickelten SCSI-Treiber verwenden [Meh98]. Dieser Treiber ist in der Lage, Zusagen Uber die
Abarbeitungsdauer der Auftrdge zu geben. Dazu werden die Auftrage in Slotsabgearbeitet (siehe Abb.
3.1). Diese Slots haben eine feste Lange, die durch die Worst-Case Bedienungszeit® bestimmt ist.

Il Lesekommando [Datentibertragung — seek
Platte 1 :F — — Sot
CoIIIIIIIIIITIIIIIIIIIIIIIIIRIIIIC
,, ‘
0 5 110 15 20 125 30 Zeit [ms]
(-
Periode

Abbildung 3.1: Auftragsbearbeitung des SCSI-Treibers [Meh98g].

Wéhrend der Kopfpositionierung einer Festplatte, bei der der SCSI-Bus durch diese nicht belegt ist, kbnnen
Auftrége an andere Festplatten Ubertragen werden. Die maximale Anzahl der Auftrége, diein einer solchen
Periodebearbeitet werden kdnnen, kann aus dem Verhaltnis der Ubertragungsdauer des Kommandos und
der Daten sowie der Positionierungszeit berechnet werden. Die maximale Grole eines Datenblocks, der
innerhalb eines Slots gelesen werden kann, wird durch das SCSI-System anhand der Eigenschaften der
verwendeten Hardware bestimmt, Ubliche Werte sind 64 KByte oder 128 KByte. Das Dateisystem sollte
maoglichst auch mit dieser Grole arbeiten, da bei kleineren Bldcken nicht die volle Leistungsféhigkeit
erreicht werden kann.

Fir die Ubertragung der Auftrage an den SCSI-Treiber existieren zwei verschiedene Varianten:

1Die Bedienungszeit setzt sich aus der Zeit diefiir die Ubertragung des L esekommandos und der Daten sowie der Positionierungs-
zeit des Festplattenkopfes zusammen.

19

20 KAPITEL 3. ENTWURF

struct request {
unsi gned int period,
/ * diskrete Zeitangabe, in welcher Periode der Auftrag auszufiihréd isf
unsi gned int slot;
/ * welcher Slot soll belegt werdeér
scsi _block_t bl k;
/ * Angaben Uber Partitionsnummer, Blocknummer und -1&rige
byte t *map_address;
/ * Adresse des Schreib-/Lesepuffefs
word t status;
/ * Status Bitg/
word_t reserved;

Abbildung 3.2: Auftragsstruktur fir Echtzeit-Auftrage [Meh98]

o Die Auftrége fir Echtzeitdatenstrome werden in Form von Auftragsfeldern an den SCSI-Treiber ge-
sendet. Jeder einzelne Auftrag wird durch eine Request-Struktur (siehe Abb. 3.2) beschrieben. Der
SCSI-Treiber sortiert die Auftrége in einen Plan ein, der durch die Verwendung der Perioden und
Slotsentsteht. Zu beachtenist, daf? die angegebene Adresse des Puffers die physische Speicheradres-
seist, da der SCSI-Treiber die Daten direkt durch DMA (Direct Memory Accegsn den Speicher
Ubertrégt.

¢ Nicht-Echtzeitauftrége werden einzeln an den Treiber gesendet. Dieser versucht sie so schnell wie
madglich zu bearbeiten.

3.1.2 DROPS/ L!Linux

Am Lehrstuhl fir Betriebssysteme der Technischen Universitdt Dresden wird derzeit an der Entwicklung
eines Echtzeitbetriebssystems, dem Dresden Realtime Operating Systegearbeitet. Dieses System soll
durch die Verwendung spezieller Algorithmen zur Verwaltung der Systemressourcen (CPU-Scheduling,
Speicherverwaltung, . ..) die Abarbeitung von Echtzeitanwendungen parallel zu UNIX-Anwendungen un-
terstiitzen (siehe Abb. 3.3).

Echtzeit-Anwendungen
|

Linux

Ressourcen-Verwaltung (CPU, Speicher, ...)

L4 p-Kern

Abbildung 3.3: Struktur des Dresden Realtime Operating
System (DROPS)

3.1. GRUNDLAGEN 21

Als Grundlage fir dieses System wird der Mikrokern L4 verwendet [Lie96], fir die Unterstiitzung der
Nicht-Echtzeit Anwendungen wurde der Linux-Kern auf L4 portiert [Hoh96]. Als Hauptanwendungsge-
biete werden Multimedia-Systeme betrachtet, z.B. die Verarbeitung von Audio- oder Videostromen.

3.1.3 QoS-Parameter

Die Anforderungen eines Datenstroms miissen dem Dateisystem auf eine geeignete Weise tibergeben wer-
den. Fir konstante Datenstrome, z.B. unkomprimierte Videostrome, ist das recht einfach, die Angabe der
geforderten Datenrate ist fur das Dateisystem ausreichend, um die Einplanung vorzunehmen. Andere Da
ten, z.B. komprimierte Videos, weisen jedoch keine konstante Datenrate auf, die Datenmengen, die pro
Zeiteinheit gelesen werden miissen, schwanken. In [MHN95] wird eine M dglichkeit beschrieben, derartige
Datenstrome zu charakterisieren. Dabel wird der Datenstrom in sehr kleine Abschnitte zerlegt (die Dauer
eines Abschnitts kann z.B. 0,5 s betragen) und fir jeden dieser Abschnitte die Datenmenge bestimmt. Die
so entstehende Zahlenfolge wird als Grundlage fur die Einplanung verwendet. Diese Vorgehenswei se er-
maoglicht eine sehr genaue Planung, erfordert jedoch aufgrund der groRen Menge an Beschreibungsdaten
einen sehr hohen Aufwand.

Um diese grof3en Datenmengen zu vermeiden, werden fiir die Beschreibung der Datenstréme nicht die pro
Zeiteinheit gel esenen Datenmengen betrachtet sondern ein Datenstrom wird durch die Angabe einer mittle-
ren Datenrate sowie eines Parameters beschrieben, der die Schwankung der tatséchlichen um diese mittlere
Datenrate widerspiegelt. In [Ham97] ist das dieser Beschreibung zugrunde liegende Modell erlautert. Da
durch die Verwendung einer mittleren Datenrate die genaue Position der einzelnen Schwankungen nicht
mehr bekannt ist, kann die Planung nicht mehr so genau vorgenommen werden wie bei der Verwendung
der zuerst erlauterten Beschreibung, die entstehende Abweichung kann jedoch begrenzt werden, indem ein
Strom in wenige grof3e Abschnitte aufgeteilt wird, fir die ein separater Parametersatz verwendet wird.

3.1.4 Admission Control

Aufgabe der Admission Control ist die Entscheidung Uber die Zulassung neuer Auftrége. Dazu werden die
Anforderungen eines Auftrags anhand der tibergebenen Beschreibung berechnet und mit den zur Verfligung
stehende Ressourcen sowie der aktuellen Systemlast verglichen [Rud974]. Fir das Dateisystem sind im
Moment zwel Ressourcen von Bedeutung: der bendtigte Pufferplatz und die Festplattenbandbreite. Der
benétigte Pufferplatz |aM sich aus der geforderten Datenrate und der Dauer berechnen, die der Puffer von
der Anwendung bendtigt wird.

Die Planung der verfiigbaren Festplattenbandbreite ist sehr stark durch die beschriebene Auftragsplanung
des SCSI-Treibers beeinflufdt. Die maximale Bandbreite wird erreicht, indem alle verfiigbaren Slots ei-
ner Periode belegt werden?. Kleinere Bandbreiten kénnen zunéchst erreicht werden, indem nicht alle Slots
einer Periode belegt werden. Die kleinste Bandbreite entspricht dann der Bandbreite, die durch das Verwen-
den eines einzelnen Slots erzielt wird. Fir reale Werte (Periodendauer 40 ms, 128 KByte Daten pro Slot)
ergibt sich dadurch eine Bandbreite von 3,125 M Byte/s. Die Bandbreitenanforderungenreal er Datenstrome
liegen jedoch deutlich darunter (ein MPEG-2 Strom hat z.B. eine maximale Datenrate von 500 KByte/s).
Diese kdnnen unterstiitzt werden, indem nicht alle aufeinanderfol genden Perioden fir den Datenstrom ver-
wendet werden. Je kleiner die geforderten Bandbreiten sind, um so mehr Perioden miissen ausgelassen
werden. Eine derartige Abfolge von verwendeten Perioden wird im weiteren ein Zyklusgenannt, die Lange
des Zyklus wird durch die minimal e unterstiitzte Bandbreite bestimmt.

3.1.5 Begriffsbestimmung

Im folgenden werden die Zugriffe auf die Dateien in drei Kategorien unterteilt:

2Dabei ist zu beriicksichtigen, da fiir eine Festplatte in einer Periode nur maximal ein Auftrag bearbeitet werden kann. Um die
maximale Bandbreite des SCSI-Buses ausnutzen zu kénnen, mussen die Daten geeignet Uber alle Festplatten verteilt werden.

22 KAPITEL 3. ENTWURF

Kontinuierlicher Echtzeitzugriff Diese Zugriffsart entspricht dem Vorgehen bei der Bedienung von Con-
tinuousMediaDaten. Die Datel wird linear bearbeitet, fir ein Video werden z.B. die einzelnen Bilder
der Reihe nach gelesen. Die Teilobjekte der Datei miissen dabei zu einem durch die verwendete Da-
tenrate bestimmten Zeitpunkt bearbeitet werden.

Nicht-kontinuierlicher Echtzeitzugriff Bel dieser Kategorie wird auf die Datel wahlfrel zugegriffen, die
Position der einzelnen Zugriffeist im voraus nicht bekannt. Das Datei system muf3 hier gewdahrleisten,
daid die Auftrége innerhalb eines angeforderten Zeitberei chs abgearbeitet werden.

Nicht-Echtzeitzugriff Bei dieser Zugriffsart missen durch das Dateisystem keine Zusagen hinsichtlich
der Bearbeitungsdauer eines Auftrags eingehalten werden.

3.2 Entwurfsziele

Ziel dieser Arbeit ist die Entwicklung eines echtzeitfdhigen Dateisystems unter Verwendung des in Ab-
schnitt 3.1.1 beschriebenen SCSI-Treibers. Das Dateisystem stellt dabei eine Echtzeitkomponente des
DROPS dar. Der Entwurf soll folgende Bedingungen berticksichtigen:

¢ Das Dateisystem soll verschiedene Datentypen gleichzeitig unterstiitzen kénnen. Dazu gehdren die
klassischen Continuous Media Daten wie zum Beispiel Video- oder Audiostrome, aber auch nicht-
kontinuierliche Echtzeitdaten und Nicht-Echtzeitdaten wie etwa Texte oder Bilder.

o Der Zugriff auf die Daten soll sowohl von Echtzeitanwendungen al's auch von L*Linux-Anwendungen
maoglich sein.

e Fir die Ubertragung der Daten an die Echtzeitanwendungen soll ein geeignetes Puffersystem ent-
wickelt werden.

Als mogliche Anwendungsgebiete fir das Dateisystem sind kleinere bis mittlere Informationsysteme, z.B.
auf Messesténden oder Flugh&fen oder auch kleinere Video-Server denkbar.

3.3 Systemstruktur

Abbildung 3.4 gibt einen groben Uberblick iber die Struktur des Gesamtsystems. Der SCSI-Treiber ist
eine eigenstandige DROPS-Komponente, das Dateisystem enthélt al's eine Teilkomponente die Admission
Control. Im folgenden sollen das Zusammenwirken dieser einzelnen Komponenten sowie die sich daraus
ergebenden Schnittstellen zwischen den einzelnen Komponenten beschrieben werden.

3.3.1 Zusammenwirken Admission Control — Dateisystem — SCSI Treiber

Durch die Admission Control wird Uberprift, ob anhand der augenblicklichen Systemlast ein neuer Da-
tenstrom akzeptiert werden kann oder nicht. Stehen noch gentigend Ressourcen zur Bearbeitung der An-
forderung zur Verfiigung, wird eine entsprechende Zusage an die Anwendung gegeben. Die Aufgabe des
Dateisystems und des SCSI-Treibers ist, die Einhaltung dieser Zusage zu garantieren. Fir einige Res-
sourcen (z.B. den bendtigten Pufferspeicher) kann das durch eine statische Reservierung erfolgen. Fiir die
Garantierung der zugesagten Bandbreite sind mehrere M odelle denkbar:

3.3. SYSTEMSTRUKTUR 23

Anwendung

Admission Control

Dateisystem

L“Linux SCSI-Treiber

Ressourcen - Manager

L4

Abbildung 3.4: Struktur des Gesamtsystems

Getrennte Admission Control und Auftragsplanung

Der Test in der Admission Control erfolgt auf Basis der verfligbaren Gesamtbandbreite, die sich durch die
Anzahl der Slots pro Periode sowie die Lange und gelesene Datenmenge eines Slots ergibt. Es wird tiber-
priift, ob die geforderte Bandbreite (aufgerundet auf ein Vielfaches der Minimalbandbreite) noch verfligbar
ist. Das Dateisystem erzeugt dann in gewissen Abstanden eine Liste von Auftrégen und tibergibt diese dem
SCSI-Treiber.

Damit die durch die Admission Control gemachte Zusage garantiert werden kann, sind durch das Dateisy-
stem einige Bedingungen einzuhalten. Die wichtigste Bedingung ist, dal? die Auftrége eines Zyklus gesam-
melt werden und bereits eine Zyklusdauer im voraus bekannt sein miissen. Dies ist erforderlich, da durch
die Admission Control lediglich gewahrleistet wird, daid innerhalb eines Zyklus ausreichend Slots zur Ver-
flgung stehen, deren Position jedoch nicht festgelegt wird. Diese wird erst im SCSI-Treiber bestimmt.
Aus dieser Bedingung folgt, dal3 immer mindestens ein vollstéandiger Zyklus gepuffert werden muf3, um
die Zusagen einzuhalten. In Abhéngigkeit von der Zyklusdauer entsteht dadurch ein sehr grof3er Puffer-
bedarf (siehe Tabelle 3.1 auf Seite 26), wodurch diese Vorgehenswei se besonders fir Stréme mit kleinen
Bandbreitenanforderungen (und damit grof3en Zykluslangen) nicht praktikabel ist.

Gekoppelte Admission Control und Auftragsplanung

Der bendétigte Pufferbedarf kann verringert werden, indem bereits durch die Admission Control die genauen
Positionen bestimmt werden, an denen die A uftrége eines einzel nen Datenstroms gel esen werden [H&r97b,
Rud974] (siehe Abb. 3.5).

Die Kenntnis der genauen Positionen kann durch das Dateisystem fir eine genauere Planung verwendet
werden. Die Auftrége eines Datenstroms werden immer nur in den dafir vorgesehenen Slots abgearbei-
tet. Dies kann erreicht werden, indem entweder die Slot-Nummern direkt an den SCSI-Treiber Ubergeben
werden oder indem die einzelnen Auftrdge durch das Dateisystem eine ihrer Slot-Position entsprechende
Deadline zugewiesen bekommen.

3.3.2 Schnittstellen

Das Dateisystem soll zwel Zugriffsvarianten unterstiitzen:

24 KAPITEL 3. ENTWURF

Admission Control i Zyklus

>

i

i

i

i .
__E.

i

Auftragsausfuihrung

SCSI-Treiber

Abbildung 3.5: Zuordnung der SCSI-Slots durch die Admission Control

1. Echtzeitanwendungen sollen auf die Daten in Echtzeit und in Nicht-Echtzeit zugreifen kénnen

2. L*Linux-Anwendungen sollen auf die Daten in Nicht-Echtzeit zugreifen kénnen.

Die Schnittstellen fur den Zugriff einer Echtzeitanwendung sind fur die drei Zugriffsarten unterschiedlich
redisiert:

¢ Kontinuierliche Echtzeitdaten

Diese Daten sind durch ein vorhersagbares Zugriffsverhalten gekennzeichnet, da die Dateien line-
ar und mit einer festgelegten Datenrate bearbeitet werden. Die Kenntnis dieser Eigenschaft kann
sich das Dateisystem zu Nutze machen, indem es selbststdndig die Auftrége generiert und die Daten
an die Anwendung weiterleitet (so kénnen die Daten durch das Dateisystem in einen mit der An-
wendung gemeinsam genutzten Spel cherberei ch geschrieben werden). Durch dieses aktive Vorgehen
des Dateisystems kann der Kommunikationsaufwand mit der Anwendung auf wenige Nachrichten
zum Starten der Ubertragung reduziert werden, und dies erméglicht eine bessere Kontrolle tiber die
Auftragsplanung. Sollen allerdings solche Operationen wie das schnelle Vor- oder Ruckspulen bei
Videos unterstiitzt werden, sind zusétzliche Nachrichten zu definieren.

Auch beim Schreiben der Echtzeitdaten soll das Dateisystem aktiv die Auftrége zum Schreiben der
Daten erzeugen. Dies ist erforderlich, um eine Einhaltung des vorgegebenen Datenlayouts zu errei-
chen (siehe dazu Abschnitt 3.4.2).

¢ Nicht-kontinuierliche Echtzeitdaten
Bei nicht-kontinuierlichen Datenstrémen sind die Zugriffe auf die Daten nicht vorhersagbar, es fehlt
dem Dateisystem die Grundlagefir ein aktives Senden der Daten. Es muf3 al so auf konkrete Auftrage
warten, die von der Anwendung erzeugt werden. Dieses Verfahren entspricht der Zugriffsart bei

34. BLOCK-VERWALTUNG 25

klassischen Datei systemen, es wird jedoch zusétzlich zu jedem Auftrag ein Zeitpunkt angegeben, bis
wann dieser zu bearbeiten ist.

¢ Nicht-Echtzeitdaten
Auf die Nicht-Echtzeitdaten wird anal og zu den klassi schen Datei systemen zugegriffen. Die Anwen-
dung erzeugt fir jeden Zugriff einen Auftrag, den das Dateisystem bearbeitet.

Um eine moglichst einheitliche Schnittstelle fiir L*Linux-Anwendungen zu bieten, soll das Dateisystem
in das Mrtual File System (VFS) [BBD 95] integriert werden. Dadurch kann das Dateisystem in einen
bestehenden Verzei chnisbaum eingebunden werden, und der Zugriff auf die Dateien erfolgt Gber L*Linux-
Systemrufe.

3.4 Block-Verwaltung

Durch das Block-Subsystem werden die physischen Blocke auf den Festplatten verwaltet und es stellt
Mechanismen zu Allokation und Freigabe dieser Bldcke zur Verfligung.

3.4.1 Freispeicherverwaltung

Die Fragestellungen beim Entwurf der Freispeicherverwaltung sind wieviele Blockgrolien unterstiitzt wer-
den sollen (eine feste oder mehrere) und wie grof3 diese sind.

Standard-Datei systemeverwendenin der Regel einefeste BlockgrofZe, die beim Erzeugen des Dateisystems
festgelegt wird. Fir das hier betrachtete Dateisystem kénnte die Grofie entsprechend der Datenmenge ge-
wahlt werden, die pro Slot gelesen werden kann (z.B. 128 KByte). Die Verwendung so grofer Blocke
fuhrt allerdingsbel Nicht-Echtzeitdaten zu einem sehr grof3en Verschnitt, da Dateien nur in Vielfachen von
dieser Blockgrofe angelegt werden kdnnen. Eine Losung besteht in der Verwendung von verschiedenen
Blockgrofen fur Echtzeit- und Nicht-Echtzeitdaten wie z.B. in [K1i97]. Dort werden zwei verschiedene,
feste Blockgroffen unterstiitzt.

Bei der Bestimmung der verwendeten Blockgrofie ist auch zu berlicksichtigen, dald die in einem Slot ge-
lesene Datenmenge dg;.¢ Einflul auf die Lange des in Abschnitt 3.1.4 beschriebenen Zyklus hat. Die
Langet zyk1us Und damit auch die Anzahl n z,..,s der Perioden in einem Zyklus ergibt sich bei gegebener
Periodendaver ¢ p...-i0q. Und geforderter Minimaldatenrate b,,,;,, durch:

d
tzykius = —stot (31)

bmin

_ dsiot
NZyklus = b tpeions 3.2
Bel sehr kleinen Minimaldatenraten kann die Zyklusange sehr grold werden, fir reale Werte kann sie
mehrere Sekunden betragen (siehe Tabelle 3.1).

Durch grof3e Zyklusldngen kénnen zwei Probleme entstehen:

e Soll das Dateisystem viele Datenstréme mit der minimalen Datenrate bearbeiten, entsteht ein sehr
hoher Pufferbedarf. Dieser resultiert daraus, daf? fir jeden Datenstrom mindestens ein Puffer mit der
Grofe von dg;,; Uber die komplette Dauer des Zyklus benétigt wird. Die Daten werden in einem
Slot des Zyklusin diesen Puffer gelesen, die Anwendung liest diese Uber die Dauer des Zyklus aus
diesem Puffer. In Tabelle 3.1 ist fur den Extremfall, dai3 das Dateisystem die maximale Anzahl an
Datenstromen mit der minimalen Datenrate liefert, der benétigte Puffer aufgefhrt. In diesem Fall
wird dann durch jeden Slot des Zyklus ein anderer Datenstrom bearbeitet.

Fir die Begrenzung des benttigten Puffers gibt es zwei Mdglichkeiten, zum einen kann die Anzahl
der Datenstrome in Abhangigkeit des zur Verfiigung stehenden Pufferspei chers eingeschrénkt wer-
den, zum anderen kann die Zykluslénge verkirzt werden, indem pro Slot weniger Daten gelesen

26

KAPITEL 3. ENTWURF

min. Bandbreite | Zyklusldnge | Anzahl Perioden | Pufferbedarf
bmin [KBYte/s] tzykius |3 | Pro Zyklusn zykiys [MByte]

3200 0,04 1 0,625

1067 0,12 3 1,875

128 1,00 25 15,625

64 2,00 50 31,250

8 16,00 400 250,000

1 128,00 3200 2000,000

Tabelle 3.1: Zykluslange und Pufferbedarf (bei voller Auslastung) in Abhan-
gigkeit der minimalen Bandbreite (¢ perioqe = 40ms, ds;o: = 128 K Byte, 5
Slots pro Periode).

werden. Die erste Variante hat den Vortell, dal3 in den freien Slots, die durch die Begrenzung der
Anzahl der Datenstrome entstehen, Nicht-Echtzeitdaten gel esen werden kdnnen.

e Daszweite Problemist die hohe Latenz beim Starten bzw. beim Wiederaufnehmen einer Datentiber-
tragung. Eine Anwendung muf3 dabei solange warten, bis innerhalb des Zyklus der Slot erreicht ist,
der der Anwendung durch die Admission Control zugewiesen wurde. Eine Verringerung dieser Zeit
kann nur erreicht werden, indem die Zykluslénge durch einen kleineren Wert fiir d s;,; begrenzt wird.

Die Frage ist nun, ob die verschiedenen Werte fiir dg;,; auch bei der Blockallokation berticksichtigt oder
ob die Dateien generell mit der maximalen Gréfe von dg;,; angelegt werden. Durch die Verwendung
kleinerer Blockgrofen konnen mehr Anwendungen gleichzeitig auf die Datei zugreifen, bei der Allokation
mit der festen Blockgrofeist die maximale Datentrate hoher, mit der eine Datei theoretisch gelesen werden
kénnte. FUr das Dateisystem ist eher die gleichzeitige Bedienung mehrerer Datenstréme von Bedeutung,
S0 dai3 auch variable BlockgroRen fiir die Allokation verwendet werden®.

Fir die Behandlung variabler Blockgrofien existieren verschiedene Ansétze. Ein einfacher Weg ist die Re-
servierung separater Bereiche auf der Festplatte fur jede Blockgrofie. Diese Aufteilung ist jedoch nicht
flexibel, was besonders bei im voraus nicht bekannten Datenstrémen zu Problemen fiihrt, da Bereiche oft
bendtigter BlockgréRen bereits aufgebraucht sind, wahrend andere noch ausrei chend Speicherplatz enthal -
ten, der jedoch nicht benutzt werden kann.

Flexibler kann der Speicherplatz durch die Verwendung des aus der Hauptspeicherverwaltung bekannten
Buddy-Algorithmusverwaltet werden. Ausgehend von der kleinsten Blockgrée B g, i, die z.B. durch die
Hardware oder den SCSI-Treiber vorgegeben wird, werden benachbarte Bldcke zu einem groferem Block
zusammengefaldt (siehe Abb. 3.6)%.

Die Anzahl S der verfiigbaren Blockgréfen B; ist abhéngig von der Kapazitét der Festplatte und Bpis:

Pd QC%TI m (33)

Bi = BBasis * 22 (0 S i< S) (34)

S

Die Initialisierung wird so vorgenommen, dal3 der Speicherplatz in die gro@maglichen Bldcke aufgeteilt
ist. Bei der Allokation wird zundchst versucht, einen Block auf der entsprechenden Ebene zu finden. Ist
dort kein Block verfiigbar, wird ein Block einer hdheren Ebene geteilt. Beim Freigeben wird Gberpriift, ob
der Block mit dem benachbarten zu einem grof3eren Block zusammengefaldt werden kann.

3Diese Entscheidung sollte nach der Implementierung noch einmal tiberpriift werden, da die Verwendung kleiner BlockgroRen bei
der Allokation einen grofen EinfluRR auf die Gesamtleistung des Systems hat.

4Hier wird der bindre Buddy-Algorithmus verwendet, d.h. es werden immer zwei benachbarte Blécke zusammengefaldt. Es sind
auch Systeme mit einer gréferen Anzahl an zusammenzufassenden Bldcken denkbar, bei diesen ist der Abstand zwischen den ver-
fugbaren Blockgrofen jedoch grofer.

34. BLOCK-VERWALTUNG 27

Blockgrofe Ebene
[Byte]
1024
2048
4096
8192
16484

L]

AWNPEFRO
)
.

Abbildung 3.6: Blockverwaltung mittels Buddy-Algorithmus

3.4.2 Datenlayout

Bei der Einteilung der Perioden durch den SCSI-Treiber werden die Worst-Case-Zeiten fir die Positionie-
rung des Festplattenkopfes verwendet. Es ist daher nicht sinnvall, im Datenlayout Riicksicht auf die Lage
der einzelnen Blocke auf einer Festplatte zu nehmen. Vielmehr muR3 durch das Datenlayout gewéhrleistet
werden, dal? in einer Periode nicht mehrere Auftrage fr eine Festplatte vorliegen. Weiterhin soll durch das
Layout eine moglichst hohe Datenrate unterstiitzt werden. Daraus resultiert zunéchst, daf? die Blockgrofie,
die zum Speichern der Dateien verwendet werden, in der Regel anhand der Datenmengen, die pro Slot ge-
lesen werden, gewahit wird. Kleinere Blockgroen werden nur dann verwendet, wenn dies aufgrund einer
zu grof3en Zykluslange erforderlich wird (siehe letzter Abschnitt).

Um zu verhindern, da3 in einer Periode mehrere Auftrage fir eine Festplatte vorliegen, muR3 durch das
Layout gewahrleistet werden, dald aufeinanderfolgende Datenblécke einer Datei nicht auf der gleichen
Festplatte liegen. Fur wieviele aufeinanderfol gende Datenbl6cke das gilt, hangt von der Anzahl der Slots
ab, die ein Datenstrom pro Periode bendtigt. Belegt ein Datenstrom maximal einen Slot, so kann dieser
theoretisch vollsténdig auf einer Festplatte gespeichert werden. Bendtigt der Datenstrom jedoch mehrere
Slots, so miissen entsprechend viele Datenbldcke auf unterschiedlichen Festplatten verteilt sein (bei zwei
verwendeten Slots pro Periode miissen jeweils benachbarte Bl 6cke auf unterschiedlichen Festplatten liegen,
bei drei Slots jewells drei aufeinanderfolgende Blocke usw.). Auch wenn eine Datei nur einen Slot pro
Periode benttigt, ist es jedoch auch dort nicht sinnvoll, diese auf einer einzelnen Festplatte zu speichern.
Dies hat vor allem zwel Griinde:

e Soll der Datenstrom durch verschiedene Anwendungen gleichzeitig an unterschiedliche Positionen
gelesen werden kénnen, so missen die Daten Giber moglichst viele Festplatten verteilt sein. Wird die
Datei nur auf einer Festplatte gespeichert und wird pro Periode ein Slot zum Lesen bendtigt, kann
nur eine Anwendung diesen Datenstrom lesen. Wird dieselbe Datei jedoch z.B. Uber zwei Festplatten
zyklisch verteilt, kdnnen auch zwel Anwendungen die Datei lesen, indem die Auftrdge ineinander
geschachtelt werden (in der ersten Periode liest die erste Anwendung von der ersten Festplatte, die
zweite von der zweiten, in der darauf folgenden liest die erste Anwendung von der zweiten und die
zweite Anwendung von der ersten Festplatte).

e Wird das Dateisystem zum Speichern und Abspielen von Videos verwendet und soll ein schneller
Vorlauf erméglicht werden, ist ebenfalls eine Verteilung Uber viele Festplatten notwendig. Durch
den schnellen Vorlauf wird der Abarbeitungsplan zusammengestaucht, d.h. bei eéinem Vorlauf mit
vierfacher Geschwindigkeit benétigt ein Datenstrom auch die vierfache Anzahl an Slots pro Periode.
Ein Datenstrom, der normalerweise genau einen Slot pro Periode bendtigt, benétigt dann vier Slots
innerhalb einer Periode. Dies erfordert, dal’ vier aufeinanderfolgende Blécke der Datel auf jewells
unterschiedlichen Festplatten gespeichert sind.

Diese Anforderungen werden durch eine Round-Robin-Verteilung der Daten iber die Festplatten dhnlich
dem Staggered Sriping [BGMJ94] erreicht. Die Blocke einer Datei werden der Reihe nach tber die zur

28 KAPITEL 3. ENTWURF

Verfligung stehenden Festplatten verteilt, beim Erreichen der letzten Festplatte wird wieder mit der ersten
Festplatte begonnen.

Durch eine geeignete Abwandlung dieses Datenlayouts kann noch ein weiteres Problem geldst werden.
Durch die Admission Control werden die geforderten Bandbreiten der Datenstrome auf Vielfache der mi-
nimalen Bandbreite aufgerundet und die Festlegung der Slots anhand dieser gerundeten Bandbreite vorge-
nommen. Dadurch werden die Daten mit einer groferen Bandbreite gel esen al's die Anwendung angefordert
hat, das Dateisystem liest also mehr Daten a's die Anwendung verarbeitet. Um ein zu starkes Auseinan-
derlaufen der Anwendung und des Dateisystems zu verhindern, werden, sobald der Vorlauf grof3 genug ist,
Datenbl écke bei der Allokation ausgelassen [Rud97b].

Festplatte

4 4 112 7 %

3 9 52

2 2 %6 5 40 N

1)1 28 8_ 124 .

Zeit
X ... Nummer des Datenblocks
y ... durch gerundete Bandbreite entstandener Vorlauf i . ausgelassener Block

Abbildung 3.7: Anpassung der Lese- und Verarbeitungsbandbreiten durch Auslassen von Daten-
blocken

Abbildung 3.7 verdeutlicht dies an einem Beispiel. Das Dateisystem liefert pro Periode einen 128 KByte-
Datenblock, wahrend die Anwendung im selben Zeitraum nur 100 KByte verarbeitet. Nach dem vierten
Block ist der dadurch entstehende Vorlauf so grof, dai3 der néchste Block Uibersprungen werden kann und
statt dessen die Anwendung die Daten aus dem Puffer bearbeitet.

Fir die ausgelassenen Datenblcke werden durch das Dateisystem keine Auftrége fur den SCSI-Treiber
erzeugt, d.h. dieser kann die eigentlich daf ir vorgesehenen Slots fiir die Bedienung anderer Auftrége ver-
wenden.

Anlegen der Dateien

Fir das Anlegen der Dateien und damit die Erzeugung des entsprechenden Datenlayouts sind zwei Verfah-
ren zu unterscheiden:

e Nicht-Echtzeitschreiben einer Datei
Beim Schreiben einer Echtzeit-Datei in Nicht-Echtzeit, z.B. von L*Linux aus, kann diese bevor sie
geschrieben wird analysiert und anhand der bestimmten realen und gerundeten Bandbreite das L ay-
out berechnet werden.

e Echtzeitschreiben einer Datei

Soll eine Echtzeit-Datei auch in Echtzeit geschrieben werden, so besteht das Problem, dai die tat-
séchlichen Bandbreitenanforderungen der Datei im voraus nicht bekannt sind, es kénnen meistens
nur obere Grenzwerte fur die zu erwartenden Anforderungen angegeben werden. Somit fehlen fir
€ine genaue Bestimmung des Datenlayouts die erforderlichen Eingangsdaten. Ein erster Ansatz, die
Bestimmung des Layouts anhand der oberen Grenzwerte vorzunehmen und die Daten auch konti-
nuierlich entsprechend diesen Layouts zu speichern, ist nicht anwendbar, da der real e Schreibabl auf
und der durch die Admission Control vorbestimmte Verlauf in der Regel voneinander abweichen und
somit die Gefahr besteht, dal3 Schreiboperationen aufgrund anderer Anforderungenim SCSI-Treiber
nicht ausgef tihrt werden kdnnen.

3.5. DATEIEN 29

Um ein Auseinanderlaufen des realen mit dem eingeplanten Schreibablauf zu verhindern, muf3 das
Datei system den geplanten Ablauf durchsetzen, auch wenn dadurch Liicken innerhalb der Datei ent-
stehen. Um das Echtzeit-Schreiben garantieren zu kénnen, wird die Einplanung durch die Admission
Control und auch das Datenlayout anhand der oberen Grenzwerte fir den Datenstrom durchgefihrt
und auch ausgefuihrt. Nachdem die Datei so geschrieben wurde, muf3 eine Reorganisation erfolgen,
die den tatséchlichen Bandbreitenbedarf der Datel ermittelt und die Daten dann entsprechend dieser
Anforderung neu auf die Festplatten schreibt.

3.5 Dateien

Die zwei wesentlichen Mdglichkeiten zur Verwaltung der Dateien bestehen in einer blocklisten-orientierten
Verwaltung wie bei den bekannten Standard-Dateisystemen oder einer Verwaltung, die die Datei anhand
eines speziellen Layouts beschreibt (wie z.B. in [NOM 97]). Aufgrund der bisher vorgestellten VVorgehens-
weise beim Datenlayout ist die zweite Variante nicht anwendbar, da durch das Layout nur die Festplatte,
aber nicht die Position auf dieser bestimmt wird.

Fir die Verwaltung der Blockliste wird eine Struktur verwendet, die den UNIX-Inodes dhnlich ist. Inodes
sind im allgemeinen als gut geeignet fur die Verwaltung kleiner Dateien bekannt. Bei grof3en Dateien
besteht jedoch das Problem, dal? durch die indirekte Speicherung der Blocknummern mehrere Plattenzu-
griffe notwendig sind, um auf die Blockliste der Datel zuzugreifen. Um dieses Problem zu umgehen, ist
der Bereich fir die Speicherung der direkten Blocknummern innerhalb der Inode gegentiber UNIX-Inodes
deutlich gréfer. Der Bereich wird so grof3 gewahlt, daf? die gesamte Blockliste der Datei mit einem Zugriff
gelesen werden kann, d.h. dai diese Liste maximal mit einer einfachen Indirektion gespeichert ist. Die
dadurch entstehenden Inode-Grofen liegen im Bereich der verwendeten Datenblock-Grofen (die Blockli-
ste einer 2 GByte grof3en Datei ist bei der Verwendung von 128 KByte-Blécken und einer 4 Byte grof3en
Blocknummer 64 KByte grof3), aus diesem Grund werden die Inodes auch nicht in einer separaten Inode-
Tabelle gespeichert, sondern als normale Datenbl dcke.

Das Echtzeitdatei system unterstiitzt auch Verzeichnisse. Diese werden analog zu den Verzeichnissen im
ext2fs durch eine einfach verkettete Liste verwaltet. Ein Eintrag in dieser Liste ordnet dem Dateinamen
eine Inode zu, die Inode wird durch die Nummer des Blocks, in dem sie gespeichert ist, bezeichnet.

3.6 Puffersystem

Der Entwurf des Puffersystemsist sehr stark mit dem Verarbeitungsmodell in DROPS verbunden, so dai3
dieses hier kurz erlautert werden soll. Bel diesem Verarbeitungsmodell wird davon ausgegangen, dai3 ein
Datenstrom durch eine Kette von nacheinanderfol genden Anwendungen bearbeitet wird. Eine solche Kette
konnte beispiel sweise aus dem Dateisystem, welches ein MPEG-Video liefert, einem Dekoder, der dieses
Video dekodiert und einem Grafikkartentreiber, der dieses Video dann anzeigt, bestehen. Die Daten werden
zwischen diesen Anwendungen ber gemeinsam genutzten Speicher ausgetauscht, um méglichst selten
Daten zu kopieren.

Fir die Verwaltung des gemeinsam genutzten Speichers gibt es zwel verschiedene Varianten. Der Speicher
kann permanent in alen Anwendungen verfligbar sein (dies entspricht dem klassischen shared memory).
Um eine Konsistenz des Puffers zu gewahrleisten, miissen Zugriffe auf den Puffer synchronisiert werden.
Diese Synchronisation wird besonders dann aufwendig, wenn innerhalb einer Kette mehr als zwei Anwen-
dungen auf diesen Speicher zugreifen.

Die zweite Variante zur Verwaltung des Puffers besteht darin, den verfligbaren Pufferbereich in mehrere
einzelne gleichgrofle Teile aufzuteilen. Jeder dieser kleineren Puffer gehdrt zu jedem Zeitpunkt maximal
einer Anwendung, und nur diese kann auf den Puffer zugreifen. Ist eine Anwendung mit der Bearbeitung
der Daten eines Puffersfertig, wird der Puffer an die nachste Anwendung der Kette weitergegeben. Durch
diese Vorgehensweise ist keine Synchronisation der Zugriffe auf die Puffer notwendig, die Anwendungen

30 KAPITEL 3. ENTWURF

arbeiten unabhangig voneinander, wodurch ein Blockieren einer Anwendung durch eine andere verhindert
werden kann.

Fir die Umsetzung der zweiten Variante muf? die Pufferverwaltung also eine Menge getrennter Puffer
verwalten. Die Anzahl und Grof%e dieser Puffer wird durch die Admission Control in Abhéngigkeit der
geforderten Bandbreite und Verweildauer des Puffers bei der Anwendung bestimmt. Durch die Angabe
der Verweildauer kdnnen auch Anwendungsketten beschrieben werden, die die Puffer Giber mehr als zwei
Elemente weitergeben; aus Sicht des Dateisystemsist dann die Dauer, diedie Puffer in der zum Dateisystem
nachsten Anwendung benétigt werden, entsprechend grofer.

Puffer 1 Puffer 2

- Pufferbeschreibung
- Auftragsliste:
Puffer 5 Puffer 2 Auftrag 1
- Beginn
- Ende
- Verweis auf SCSI-Auftrage
Auftrag 2:

Puffer 4 Puffer 3

Abbildung 3.8: Ringliste zur Verwaltung der Ubertragungspuffer

Die Puffer werden in einer Ringliste organisiert (siehe Abb. 3.8), jedes Element dieser Liste enthalt neben
einer Beschreibung des Puffers eine Liste mit den Auftragen, die fur diesen Puffer noch ausstehen. Ein
Auftrag ist dabel durch einen Zeitraum (Beginn, Ende) beschrieben, indem dieser Puffer der Anwendung
zur Verfuigung stehen mul3. Anhand des Verweises auf die SCSI-Auftrage kann Uberpriift werden, ob die
Auftrdge zum Lesen/Schreiben der Daten des Puffers auch korrekt ausgefuhrt wurden.

Die Verwendung einer derartigen Auftrags-Warteschlangeauch fur die Puffer ermdéglicht eine flexible Auf-
tragsplanung, da die SCSI-Auftrége unabhéngig davon erzeugt werden kénnen, ob der Puffer nochin Be-
nutzung ist.

3.7 Auftragsplanung

Aufgrund der Aufteilung der SCSI-Slots durch die Admission Control ist die grundlegende Vorgehensweise
bei der Auftragsplanung bereits vorgegeben. Das Dateisystem verwaltet einen Plan, in dem jedem Slot des
Zyklus ein Datenstrom zugeordnet ist (siehe Abbildung 3.9). Fir die Erzeugung der konkreten Auftrége
werden in festgel egten Zeitabstanden die Auftrage fir einen Ausschnitt aus diesem Plan erzeugt, indem fir
die jeweiligen Datenstréme die néchsten Bldcke geliefert werden. Die Lange dieses Ausschnitts und der
Abstand zwischen der Generierung dieser Auftragsgruppen ist von der Anzahl an Auftragen abhangig, die
der SCSI-Treiber auf einmal verwalten kann.

Des weiteren muf3 auch die Planung der Puffertibertragung erfolgen. Dazu miissen die entsprechenden
Eintrage in den Auftragswarteschlangen der Puffer erzeugt werden. Da die Puffer in der Regel groler
als ein einzelner Datenblock sind, werden mehrere SCSI-Auftrage zum Lesen eines Puffers benétigt. Der
frihestmogliche Zeitpunkt, an dem der Puffer an die Anwendung geliefert werden kann liegt demzufolge
nach dem AbschluR® des letzten L eseauftrags. Der Zeitpunkt, an dem der Puffer fir andere Auftrége wieder
verflgbar ist, wird durch die Verweildauer des Puffers bei der Anwendung bestimmt. Beim Schreiben
eines Datenstroms wird anders verfahren. Der Zeitraum, in dem der Puffer der Anwendung zur Verfiigung

3.8. SCHWANKUNGSBESCHRANKTE DATENSTROME 31

Planungsausschnitt

/
N

R

Zyklus

(=L L]

=

(=il
[~]le][]
\ =

Abbildung 3.9: Plan zur Auftrags-
generierung

steht, wird durch das festgelegte Datenlayout bestimmt. Die Einhaltung dieses Zeitraums wird durch das
Dateisystem durchgesetzt, d.h. die Puffer sind meistens nicht vollsténdig gefullt. Fir das Schreiben der
Daten aus dem Puffer werden dann die Slots verwendet, die fUr diesen Datenstrom nach dem Zeitpunkt des
Zuriickholens des Puffers reserviert sind.

3.8 Schwankungsbeschrénkte Datenstrme

Durch die beschriebene Vorgehensweise beim Lesen der Datenstréme werden diese mit einer konstanten
Bandbreite geliefert. Reale Datenstrome weisen jedoch haufig Schwankungen der Datenrate auf, z.B. durch
Kompressionsverfahren wie MPEG. Diese Schwankungen kénnen bis zu eilnem gewissen Punkt durch eine
Pufferung ausgeglichen werden. Datenstréme, bei denen ein derartiger Ausgleich maglichist, kénnen auch
al's schwankungsbeschrénkte Datenstr dme bezei chnet werden.

Fur den Ausgleich der Schwankungen ist die Verwendung von zusétzlichem Pufferspeicher notwendig.
Durch die Admission Control wird eine Datenmenge bestimmt, die bereits vor dem Start der eigentlichen
Bearbeitung des Datenstroms gelesen werden mul3. Die Bedienung des Datenstroms erfolgt durch das
Dateisystem anhand der mittleren Bandbreite des Datenstroms. Durch die Schwankungen beim Lesen des
Datenstroms seitens der Anwendung wird der Vorlauf, der durch das Voraus-Lesen der Daten entstanden
ist, nach und nach aufgebraucht.

Da das Lesen der Daten von der Festplatte auch bel schwankungsbeschrankten Strémen mit einer kon-
stanten Bandbreite erfolgt, kdnnen die bisher vorgestellten Verfahren fir die Planung der SCSI-Auftrage
weiterhin verwendet werden. Firr die Ubertragung der Puffer an die Anwendung miissen die Schwankun-
gen der Datenrate jedoch berlicksichtigt werden. Abbildung 3.10 stellt die entsprechende Situation dar.
Aufgrund der Abweichung von der mittleren Bandbreite beim Lesen der Daten ergibt sich ein Bereich,
in dem sich der Lesezeiger der Anwendung befinden kann. Durch die verwendete Strombeschreibung ist
jedoch nicht bekannt, an welcher Stelle sich die Anwendung genau befindet, so daf3 die obere und untere
Grenze dieses Bereichs Uber den kompletten Zeitraum berlicksichtigt werden muf3. Das Intervall, fir das
ein Puffer der Anwendung zur Verfligung stehen muf3, ergibt sich dann aus der Betrachtung der méglichen
Grenzfélle. Diesist fUr den Beginn des Intervalls wenn die Anwendung mit dem Lesen um den maximal
erlaubten Wert vorausist, fir das Ende des Intervallsfalls die Anwendung um den erlaubten Wert hinterher
ist. Das Intervall ist dann durch diese beiden Werte sowie die Verweildauer des Puffersbel der Anwendung
bestimmt.

32 KAPITEL 3. ENTWURF

Daten-
menge obere Grenze fur
Schwankungen
mittlere
Datenrate
untere Grenze fur
Schwankungen
Verweildauer
bei Anwendung
Puffer-
grole
Vorlauf
Intervall, in dem Puffer fiir Zeit
Anwendung verfiigbar sein muf
Abbildung 3.10: Planung bei schwankungsbeschrénkten Datenstrémen

3.9 Zusammenfassung

Abbildung 3.11 stellt noch einmal einen Uberblick tiber die wichtigsten Komponenten des Echtzeit-Datei -
systems sowi e die verwendeten M echanismen dar. Damit das Dateisystem Zusagen Uber Datenraten geben
kann, arbeiten die Admission Control, die Auftragsplanung und der SCSI-Treiber eng zusammen. Durch
die Admission Control wird bereits festgelegt, zu welchen Zeitpunkten die einzelnen Auftrage der Daten-
strome bearbeitet werden.

3.9. ZUSAMMENFASSUNG

“Linux

Anwendung
Auftragsgenerierung
Admission Control
- Generierung der Auftrége
anhand der Slot-Einteilung
- Datentibertragung von/zu
der Anwendung
Echtzeit-
dateisystem Pufferverwaltung
- Verwaltung der Puffer
alseinzelne Ringliste
fur jeden Datenstrom
Datei- und
Blockverwaltung
- unterstiitzt variable
Blockgrofen
- Inodes zur Dateiverwaltung,
werden in Datenblécken
gespeichert
- Datenlayout Round-Robin,
Auslassen von Datenbl 6cken
zur Bandbreitenanpassung
SCSI-Treiber

Ressour cen-Verwaltung

L4

Abbildung 3.11: Gesamtstruktur des Echtzeitdatei systems

33

KAPITEL 3. ENTWURF

Kapite 4
| mplementierung

Im vorangegangenen K apitel wurden die Konzepte vorgestellt, die das Dateisystem zur Verwaltung der Da-
ten verwendet. Daran anschlief3end soll jetzt auf einige Aspekte der Implementierung eingegangen werden.

Als Grundlage fir die Implementierung dient der Mikrokern L4 [Lie96] und der von Frank Mehnert por-
tierte Treiber fir die NCR53c8xx SCSI-Hostadapter Familie [Meh9§].

4.1 Threadstruktur

Durch die Verwendung von Threads kann der Eigenschaft vieler Anwendungen Rechnung getragen wer-
den, dai3 diese mehrere nebenldufige Abarbeitungspfade besitzen. Diese Abarbeitungspfade kénnen dann
auch auf Programmebene entkoppelt werden, was zu einer geringeren Beeinflussung dieser Pfade unterein-
ander fihrt.

Da man auch die Bearbeitung eines einzelnen Datenstroms durch das Dateisystem al's separaten Abarbei-
tungspfad ansehen kann, wére als Struktur flr das Dateisystem die Verwendung eines Threads fur jeden
Datenstrom denkbar, um eine Beeinflussung der Datenstréme untereinander zu vermeiden. Gegen eine
derartige Struktur spricht allerdings der Umstand, dal3 L4 nur 128 Threads innerhalb eines Adrefraums
unterstiitzt. Fir einige Anwendungen, etwa einen Video-Server, ist dasbei der verwendeten Hardware aus-
reichend, fir andere Anwendungen stellt es jedoch eine Limitation dar, da die Hardware dann theoretisch
mehr Datenstrome liefern kénnte, als das Dateisystem verarbeiten kann, z.B. bei einer Musik-Datenbank.

Diein Abbildung 4.1 dargestellte Threadstruktur nutzt die Eigenschaft des Dateisystementwurfs aus, dal3
flr kontinuierliche Datenstrome das Dateisystem von sich aus die Auftragsgenerierung und Datentiber-
tragung steuert. Diese beiden Aufgaben werden in getrennten Threads abgearbeitet. Der Thread zur Auf-
tragsplanung erzeugt anhand des in Abschnitt 3.7 vorgestellten Plans die SCSI-Auftrége, der Thread der
Pufferplanung ist firr die Ubertragung der Puffer an die Anwendung entsprechend der festgelegten Zeitin-
tervalle verantwortlich.

Da die Auftrége nicht-kontinuierlicher Datenstrome fir das Datei system nicht vorhersagbar sind, werden
diese durch getrennte Threads bearbeitet, um ein gegenseitiges Blockieren der Datenstrome zu vermeiden.

4.2 Auftragsbearbeitung

Ausgehend von der beschriebenen Threadstruktur erfolgt die Bearbeitung der Auftrage unterschiedlich fir
die einzelnen Zugriffsarten, diesist in Abbildung 4.2 schematisch dargestellt.

35

36

KAPITEL 4. IMPLEMENTIERUNG

_______________ | mmmmmmmm—— = o — -
: Puffer- Lesender : : : :
| planung Blocklisten I Lo |
| (- I Auftrags- Lo Auftrags- |
| Auftrags- Auftrags- 1]:I: behandlung Lo behandlung |
| planung annahme || Lol |
I o ol |
| kontinuierliche ' 1 nicht-kontinuierliche | 1 |
Lo Echtzeitstrome | | Echtzeitstrome 1| Nicht-Echtzeitstrome |
Auftragsgenerierung

Bitmap-
Pager
I Synchronisation
Datei- und
Blockverwaltung
SCSI-Treiber Dateisystem

Abbildung 4.1: Threadstruktur des Dateisystems

e Kontinuierliche Echtzeitdaten

Fir die Bearbeitung eines kontinuierlichen Datenstroms wendet sich eine Anwendung zunéchst an
die Admission Control mit einer Anforderung zum Offnen der entsprechenden Datei. Als Argument
werden dabei die bendtigte Datenrate und Verweildauer der Puffer Ubergeben. Bei erfolgreicher Ad-
mission wird der Auftrag an den Thread zur Auftragsbehandlung weitergegeben. Fir die Erzeugung
der SCSI-Auftrége werden in dem im Abschnitt 3.7 beschriebenen Plan die entsprechenden Felder
belegt und es wird die Ringliste der Ubertragungspuffer erzeugt. Die Blocklisten der einzelnen Da-
teien kdnnen nicht permanent im Speicher gehalten werden, durch einen separaten Thread werden
die im Moment benétigten Ausschnitte der Blocklisten gelesen. Die Ubertragung der Daten erfolgt
durch das Einblenden der Puffer in den Adrefdraum der Anwendung.

Nichtkontinuierliche Echtzeitdaten

Die Bearbeitung eines nicht-kontinuierlichen Datenstroms erfolgt durch einen separaten Thread pro
Datei. Die Anwendung wendet sich ebenfalls zuerst an die Admission Control. Diese startet bei
erfolgreicher Admission einen neuen Thread zur Behandlung der Auftrége fur diese Datei. Die An-
wendung kommuniziert dann mit diesem Thread fur das Lesen oder Schreiben der Daten.

Nicht-Echtzeitdaten
Alle Auftréage fir Nicht-Echtzeitdateien werden durch einen einzigen Thread bearbeitet, der beim
Hochfahren des Systems gestartet wird.

Zeitsteuerung

Die Bearbeitung der kontinuierlichen Datenstrome erfordert eine periodische Abarbeitung der Threads
zur SCSI- und Pufferplanung sowie des Threads zum Lesen der Blocklistenabschnitte. Ziel des DROPS-
Projektsist es, derartige peri odische Threads durch ein geei gnetes CPU-Scheduling zu unterstiitzen [Wol 97].
Bedingung dafiir ist, dal3 neben der Periodenlange auch die maximale Bearbeitungsdauer innerhalb einer

4.3. SPEICHERVERWALTUNG 37

Anwendung
: ‘ 1
| : I
@ | i@ @
e I et i I A R et
| kontinuierliche : | . ! :
| Echtzeitstréme v | | v
| o1 @ ERVA |
1| Puffer- Auftrags- Admission | ==------- ' [Auftrags- | Namens-
: planung annahme | Control *—i:f 3 [Auttrags- : : behandlung , dienst
|)@/ + : | behandlung o :
| | [
o | © o @
! plantng Lessnder | | nicht-kontinuierliche | ! Nicht- |
| ! Echtzeitstrome) Echtzeitstrome |
R B e A---! - i OF | I ey ! Dateisystem
] [
Y ® Y Y
SCSI-Treiber
<:> Datenflul @ ... (® Reihenfolge der Bearbeitung
SteuerfluR kontinuierlicher
> Echtzeitstrome
SteuerfluB nicht-
””” > kontinuierlicher Echtzeitstrome
Steuerflul
7T Nicht-Echtzeitstrome
rrrrrrrrrrrr > SCSl-Auftrége
Abbildung 4.2: Bearbeitungsabl auf

Periode bekannt ist. Fir den Thread zur Erzeugung der SCSI-Auftrégeist die Periodenlénge durch die Gro-
[3e des Planungsausschnitts (vgl. Abschnitt 3.7), die Bearbeitungsdauer durch die Anzahl der Auftrége pro
Planungsausschnitt bestimmt®. Die Ubertragung der Puffer erfolgt durch das vorgestellte Modell ebenfalls
periodisch, die Periodenldngeist abhéngig von der verwendeten Datenrate?.

4.3 Speicherverwaltung

Die Speicherverwaltung |a sich in zwei Teile untergliedern: Verwaltung der Adref3r&ume des Dateisy-
stems und des SCSI-Treibers sowie die Bereitstellung der zur Ubertragung der Daten bendtigten Puffer.

431 Pager

Die Ressourcenverwaltung von DROPS stellt derzeit nur Speicher zur Verfligung, der eins zu eins zu dem
physischen Speicher in einen Adref3raum eingeblendet ist. Eine Anwendung muf? davon ausgehend fir
die Verwaltung ihrer virtuellen Adrefrdume sorgen. Der fiir das Datei system verwendete Pager basiert auf
einer Arbeit von Torsten Paul [Pau97]. Dieser verwendet eineinvertierte Seitentabelle, um die Adref3raume
mehrerer Anwendungen verwalten zu konnen. Der Pager wird beim Hochfahren des Systems geladen und
startet seinerseits dann das Dateisystem bzw. den SCSI-Treiber. Abbildung 4.3 stellt die so entstehende
Adrel3raumstruktur dar.

Eine weitere Aufgabe der Speicherverwaltung ist die Bereitstellung dynamisch allokierbaren Speichers
fur die Anwendungen. Dies ist besonders fir das Dateisystem wichtig, um eine effiziente Verwaltung der

1Damit die Bearbeitungsdauer fiir einen Planungsabschnitt méglichst genau bestimmt werden kann, sollte die Aufteilung des
Zyklusin einzelne Abschnitte so erfolgen, dal? pro Abschnitt moglichst die gleiche Anzahl an Auftrégen erzeugt werden mul3.

2Bel der Verwendung unterschiedlicher Datenraten kann die Bestimmung der Periodenlénge durch die Berechnung des gréften
gemeinsamen Teilers der Periodenléngen der einzelnen Datenstrome erfolgen.

38 KAPITEL 4. IMPLEMENTIERUNG

Adrefraum Adreflraum
SCSI-Treiber Dateisystem

0 0,25 GB 0,5GB 1GB 15GB

O IR B I =3 = ZI

0 16 MB 18MB

Adref3raum

Pager
[Programmtext/-daten

EZ3 Ubertragungspuffer
[dynamischer Speicher

Abbildung 4.3: Adre3raumstruktur

diversen Listen und Warteschlangen zu erleichtern. Um dies zu erméglichen, wurde der Pager so erwei-
tert, dal3 er pro Anwendung einen Speicherbereich verwaltet, dessen Grole dynamisch veréndert werden
kann. Dieser Bereich wird von einem Speicherverwaltungsal gorithmusverwendet, um der Anwendung dy-
namischen Speicher zur Verfligung zu stellen [Lea96]. Die Verwendung dieses Speichers erfolgt Uber die
Ublichen mal | oc-, f r ee-undr eal | oc-Funktionen.

4.3.2 Pufferverwaltung

Die zweite Aufgabe der Speicherverwaltung bestent in der Bereitstellung der fir die Ubertragung der Da-
ten an die Anwendung erforderlichen Puffer. Die Verwaltungskomponente mui3 dabei zwei Bedingungen
erfllen:

e Diephysische Adresse der Pufferbereichemuf bekannt sein. Diesist erforderlich, dadie Daten durch
den SCSI-Treiber mittels DMA direkt in den Speicher geschrieben werden.

¢ DiePuffer sollten aus mdglichst groRen zusammenhangenden Spei cherberei chen bestehen. Der SCSI-
Treiber ist zwar durch Scattered Gathering in der Lage, Daten in verstreut liegende Speicherberei-
che zu schreiben, die Verwaltung dieser Bereiche ist jedoch nur fur eine kleine Anzahl einzelner
Speicherabschnitte ausgelegt, so dal3 fur die Puffer moglichst wenige getrennte Speicherbereiche
verwendet werden sollten.

Die Verwaltung der Puffer erfolgt in zwei Stufen. In der ersten Stufe wird durch einen separaten Thread im
Pageradreffraum ein zusammenhangender Speicherbereich verwendet, der am Anfang in den Adref3raum
so eingeblendet wird, dal? die physischen und virtuellen Adressen Ubereinstimmen. Fir die Organisation
dieses Bereichswird die in Abbildung 4.4 gezeigte Struktur verwendet.

Fur ein schnelles Allokieren der Speicherbereiche werden dynamisch erzeugte Frei speicherlisten verwen-
det. Zu Beginn exigtiert nur eine Liste mit einem Element, durch das der gesamte Speicherplatz beschrie-
ben wird. Zur Allokation eines Speicherbereichswerden dann bei Bedarf gréfere Bereiche geteilt. Um ein
schnelles Zusammenfassen der Speicherbereiche beim Freigeben zu gewéhrleisten und somit eine Frag-
mentierung des Speicherplatzes zu verhindern, werden die Speicherbereiche noch durch eine doppelt ver-
kettete Liste verbunden, so daf3 die angrenzenden Spei cherbereiche einfach zu ermitteln sind.

Ausgehend von dieser Listenstruktur werden dann Anwendungen (in diesem Fall dem Dateisystem) Puffer
zur Verfligung gestellt. Bei der Anforderung eines Puffers wird zunéchst versucht, einen einzigen zusam-
menhangenden Spei cherbereich fiir den Puffer zu verwenden, gelingt dies nicht, werden mehrere Bereiche

4.4. FESTPLATTENVERWALTUNG 39

| 4kB —— 64KB |——{ 128KB | 3768 KB | Freispeicherlisten
freie
LT -) .~ ’ I___, Speicherbereiche

D D D D D gffé.”éﬁt;bereache

Abbildung 4.4: Pufferverwaltung durch Freispeicher- und Bereichdiste

'
'
'
'
1

verwendet. Fir die Beschreibung des Puffers wird der Anwendung eine Liste aller verwendeten Speicher-
bereiche Uibergeben, ein Speicherbereichist in dieser Liste durch seine physische Adresse und Lange defi-
niert.

Die zweite Stufe der Verwaltung wird durch das Dateisystem redlisiert. Die Puffer werden durch die be-
reits im Entwurf beschriebene Ringliste verwaltet, dafiir werden sie in den Adrefraum des Dateisystems
eingeblendet. Bel diesem Einblenden sind einige Eigenschaften des L4 Mikrokerns zu beachten. In L4
werden Speicherbereiche durch die Verwendung von Flexpages zwischen Adreffrdumen tbergeben. Eine
Flexpage beschreibt einen Ausschnitt aus dem Adref3raum einer Anwendung durch die Angabe der Start-
adresse und der Grofe. Die Grofe muld dabei eine Zweierpotenz sein, die kleinstmdgliche Grole ist die
einer physischen Speicherseite (bei x86-Systemen sind das 4 KByte). Ein Speicherbereich, dessen Gréle
keine Zweierpotenz ist, muf3 durch mehrere Flexpages beschrieben werden. Eine weitere Bedingung ist,
daid die Flexpage entsprechend ihrer Grofe ausgerichtet sein muf3 und zwar sowohl im Quell- als auch im
Zieladref3raum. Aus diesem Grund Ubergibt das Dateisystem bei der Anforderung zum Einblenden eines
Puffersdie Ausrichtung der Zieladresse, die Pufferverwaltungim Pageradref3raum erzeugt dann die Flexpa-
ges entsprechend dieser und der Ausrichtung der Speicherbereiche in ihrem Adref3raum. Damit von Seiten
des Dateisystems immer eine optimale Ausrichtung der Zieladresse gewahrleistet werden kann, wird der
flr das Einblenden der Puffer vorgesehene Adref3berei ch durch einen bindren Buddy-Algorithmus verwal -
tet. Dadurch kann erreicht werden, dal? Puffer der Groi%e einer Zweierpotenz immer an einer nach dieser
Groe ausgerichteten Adresse eingeblendet werden, firr andere Puffer wird ein Adref3bereich mit der Grole
der néchst hoheren Zwel erpotenz verwendet.

4.4 Festplattenverwaltung

Fir die Implementierung der Festplattenverwaltung stellt sich zuerst die Frage, ob alle verfligbaren Fest-
platten a's eine logische Platte oder voneinander getrennt behandelt werden. Da durch das Datenlayout
zwischen einzelnen Festplatten unterschieden wird, wird eine getrennte Verwaltung verwendet, die Orga-
nisation als eine logische Platte wére bei der Blockallokation eher hinderlich.

Die einzelnen Festplatten werden in der Form von Partitionen verwaltet. Dies ermdglicht es, dal? auf ei-
ner Festplatte theoretisch mehrere Dateisysteme angelegt werden®. Fiir den Eintrag der Partitionen in die
Partitiontabelle der Festplatten wird die bisher noch ungenutzte Datei system-1d 0x86 verwendet.

Abbildung 4.5 stellt den Aufbau einer Partition dar. Am Anfang jeder Partition steht ein Superblock, der
die Partition beschreibt (siehe Abb. 4.6). Er enthdlt neben den Parametern des Buddy-Algorithmus eine
Partition-1d sowie eine Liste aller zu dem Dateisystem gehdrenden Partitionen. Die Partition-Id wird fir

3Eine denkbare Anwendung dafir wére, die langsameren inneren Bereiche einer Festplatte fiir ein Linux-Dateisystem zu ver-
wenden, wahrend die duRReren, schnellen Bereiche fir das Echtzeitdateisystem genutzt werden. Voraussetzung dafir ist, daf3 der
SCSI-Treiber auch direkt von Linux aus angesprochen werden kann und er diese Auftrége in freie Slots einordnen kann.

40 KAPITEL 4. IMPLEMENTIERUNG

Super- Bitmap-

Block Blécke Datenbldcke

Abbildung 4.5: Aufbau einer Partition

die eindeutige | dentifikation der Partition innerhalb des Dateisystems verwendet, sie entspricht im Moment
der SCSI-Device-Nummer der Partition. Letztendlich wird die Partition-1d jedoch unabhangig vom SCSI-
System sein, die Auflosung der Partition-Id in die SCSI-Device-Nummer soll dann erst durch den SCSI-
Treiber erfolgen. Dadurch soll z.B. das Verschieben einer Partition auf eine andere Festplatte auf eine
einfache Art ermdglicht werden. Die neue Zuordnung mul3 nur im SCSI-Treiber berticksichtigt werden,
alle weiter oben liegenden Verwal tungsstrukturen bleiben von der Anderung unberiihrt.

struct rtfs_superbl ock
{
unsi gned partition_id: 16; [* partitionid*/
unsi gned buddy_om 16; / * buddy basis*/
unsi gned b_basi s: 16; / * smallest blocksize * /
unsi gned b_bi t map: 16; / * bitmap blocksize * /
dword_t data_ bl ocks; / * number of data blocks * /
dword_t bitmap_bl ocks; / * number of bitmap blocks*/
rtfs_blockid_t root; / * location of the root directory * /
dword_t free_count[NO BLOCKSI ZES] ;
[* counter for free blocks per size*/
byte t reserved[492 - 4 * NO BLOCKSI ZES] ;
word t partitions[256]; / * other rtfs partitions * /
s
Abbildung 4.6: Superblock

Die néchste Fragestellung lautet, wie die Verwaltungsstrukturen des Buddy-Algorithmus gespei chert wer-
den. Die Standardimplementierung des Buddy-Algorithmusfir die Hauptspei cherverwal tung besteht in der
Verwendung je einer Freispeicherliste pro verfiigbarer Blockgrofe. Diese Struktur besitzt fir den Einsatz
fur die Verwaltung des Festplattenplatzes zwei Nachteile:

o Ein eher kleineres Problem ist, dal3 die Listen keine konstante L dnge haben.

e Das Hauptproblem besteht darin, dal3 aufgrund des Zusammenfassens benachbarter Datenbl écke
beim Freigeben auch Liicken innerhalb der Listen entstehen. Fir eine dynamisch erzeugte Liste im
Hauptspeicher ist das kein Problem, fir eine Liste, die statisch durch die Verwendung von Daten-
blocken auf der Festplatte realisiert ist, bedeutet das jedoch ein Umkopieren aller Daten hinter dem
freigegebenen Listenelement. Die Ldsungsvariante, die Freispeicherlisten wahrend der Bearbeitung
im Hauptspeicher zu halten und nur gelegentlich auf die Festplatte zu schreiben, ist aufgrund des
hohen Speicherbedarfs nicht realisierbar.

4.4. FESTPLATTENVERWALTUNG 41

Fir das Dateisystem wurde daher eine andere Darstellungsart gewahlt. Fir jede Blockgrofe wird eine
Bitmap mit je einem Bit pro verfugbaren Block verwaltet. Die Bitmap fur die maximale Blockgrole enthélt
damit ein Bit, die der Basisblockgrolie die maximale Anzahl an Bits. Ein gesetztes Bit in der Bitmap einer
Blockgrofe bedeutet, dal3 der entsprechende Block dieser Grofie verfiigbar ist. Da kleinere Bldcke durch
die Aufteilung gréRRerer Bldcke entstehen, bezieht sich ein Bit in der Bitmap einer BlockgrdRe auch auf die
Bldcke kleinerer Blockgrofen, die durch eine Teilung dieses Blocks entstehen. Ist ein Block als verfiigbar
gekennzeichnet, sind die zu diesem Block gehtrenden Blocke kleinerer Grofen zunédchst nicht verfigbar
(die Bits in den entsprechenden Bitmaps sind nicht gesetzt), erst durch eine Teilung des groferen Blocks
konnen die kleineren verfigbar gemacht werden (siehe Abb. 4.7). Durch diesen Umstand werden fur die
Verwaltung eines Blocks der Basisblockgrofe effektiv zwei Bits verwendet.

@ belegter Datenblock (Bit nicht gesetzt)
verfligbarer Datenblock (Bit gesetzt)

0 nicht belegter Datenblock innerhalb eines groferen freien Blocks

Abbildung 4.7: Implementierung des Buddy-Algorithmus mit-
tels Bitmap

Der fir die Speicherung der Bitmaps bendtigte Speicherplatz ist konstant, er wird durch die Gréfe der
Partition bestimmt. Die Bitmap einer 2 GByte Partition bei einer minimalen Blockgrofie von 4 KByte ist
128 KByte grof3. Fur grofere Datei systeme kénnen die Bitmaps also durchaus einige MByte grol sein, so
dai’ diese nicht vollstandig permanent im Hauptspeicher gehalten werden kdnnen, sie miissen bel Bedarf
von Festplatte geladen werden. Um dies transparent zu gestalten, verwendet das Dateisystem einen Pager.
Die Bitmaps werden in den Adref3raum des Dateisystems eingeblendet. Bei Bedarf |adt der Pager einen
Bitmapbl ock an die entsprechende Adresse, dazu werden eine feste Anzahl an Speicherseiten verwendet. I st
keinefreie Speicherseite verfligbar, wird ein anderer Bitmapbl ock auf die Festplatte zurtickgeschriebenund
diese Speicherseite verwendet*. Um zu vermeiden, dal3 durch den Zugriff auf eine benachbarte Blockebene
beim Aufteilen oder Zusammenfassen eines Blocks auch auf einen anderen Bitmapblock zugegriffen wird,
werden die Bitmaps durch dasin Abbildung 4.8 dargestellte Schema auf die Festplatten-Blécke verteilt.

Durch die Verwendung von 4 KByte Festplatten-Blécken fur die Speicherung der Bitmaps kdnnen bei
einer minimalen Blockgrofe von 4 KByte durch einen Bitmapblock 64 MByte Festplattenplatz verwaltet
werden, durch die in Abbildung 4.8 dargestellte zweistufige Hierarchie 2 TByte.

Fir die Synchronisation der in den Speicher geladenen Bitmapbl 6cke mit den Bldcken auf den Festplatten
wird ein separater Synchronisations-Thread verwendet, der in regelméfigen Absténden alle Bitmaps auf
die Festplatten zurtickschreibt.

“4Fiir die Auswahl der zu verdrangenden Speicherseite wird im Moment kein spezieller Algorithmus verwendet. Die zur Verfiigung
stehenden Speicherseiten werden durch eine Ringliste verwaltet und entsprechend der Reihe nach verwendet.

42 KAPITEL 4. IMPLEMENTIERUNG

' _, Bitmapblock

Abbildung 4.8: Zuordnung der Bitmaps zu Bitmapbl 6cken

45 Dateen

Eine Datei wird durch die in Abbildung 4.10 dargestellte Inode-Struktur beschrieben. Diese Struktur ist in
zwei Teile untergliedert, den Inode-Kopf und den direkt in der Inode gespeicherten Abschnitt der Blockli-
ste.

Neben den Gblichen Angaben enthalt der Inode-Kopf die fur die Datel verwendete Datenblockgréfie sowie
die Grole des Inode-Blocks. Der restliche Speicherplatz im Inode-Block wird fir die Speicherung des
ersten Teils der Blockliste der Datei verwendet.

|Partition-|d | Blocknummer
31 24 23 0

Abbildung 4.9: Block-Id

Ein Block der Datel wird durch die Angabe einer Block-1d (siehe Abb. 4.9) beschrieben. Diese enthdlt die
Id der Partition, auf der der Block gespeichert ist, sowie die Nummer des Blocks innerhalb dieser Partition.

Die Benennung der Dateien erfolgt analog zu ext2fs, die Zuordnung eines Namens zu einer Inode erfolgt
durch den Eintrag in dem Elternverzeichnisder Datei. Die Verzeichnisse werden ebenfalls durch eine Inode
beschrieben, die Organisation erfolgt durch eine einfach verkettete Liste, Abbildung 4.11 stellt einen Ein-
trag in dieser Liste dar.

Ausgehend vom Wurzelverzeichnis, dessen Inode-Block-Id im Superblock der Partition gespeichert ist,
wird die Verzei chnisstruktur anal og zu ext2fs aufgebaut.

4.5. DATEIEN 43

/ * Inode header * /
typedef struct rtfs_inode_header

{
wor d_t i _type; [* filetype*/
wor d_t i _uid; /* owner */
word t i _gid; /* owner */
word _t i _unusedl;
rtfs tine t i _tinme_create; [* creationtime*/
rtfs tine_t i _tinme_access; [* last access* /
retfs_tine_t i _time_nodify; [* last modification * /
wor d_t i _blk_size; / * log2 blocksize, blk_size= 2" * By */
word t i _striping_unit; /* sripingunit->size=n* blk size*/
dword _t i _inode_size; / * log2inodesize, size= 2" */
dwor d_t i _blk_count; [* number of blocks* /
dwor d_t i _unused2;
gwor d_t i _size; [* filesize*/
dword _t i _unused3[7];
rtfs _blockid t i _indirectl; / * singleindirect blocks* /
rtfs _blockid t i _indirect2; / * doubleindirect blocks* /
rtfs_blockid_t i_indirects3; [* tripleindirect blocks* /

} rtfs_inode_header t;

/* Inode*/

typedef struct rtfs_inode

{
rtfs_i node_header _t i_header; / * Inode header * /
rtfs_blockid_t i _direct[1]; [/* directblocks*/

} rtfs_inode_ t;

Abbildung 4.10: Aufbau der Inode

45.1 Anlegen der Dateien

Die Allokation neuer Datenblocke fir eine Datei erfolgt dann, wenn auf eine Position nach dem Ende der
Datei geschriebenwird. Es werden dabei immer fir den kompletten Bereich zwischen dem aktuellen Ende
der Datei und der Schreibposition Blécke allokiert, so dafl? keine Liicken innerhalb der Datei entstehen®.
Die Suche nach einem freien Block erfolgt in zwei Schritten. Zuerst wird die Festplatte bestimmt, auf der
der Block gespeichert werden soll, im Moment wird daf Ur eine strikte Round-Robin-Verteilung verwendet.
Im zweiten Schritt wird auf dieser Festplatte ein Datenblock der entsprechenden Gréf%e reserviert.

Wie in Abschnitt 3.4.2 beschrieben, soll beim Speichern einer Datei in Echtzeit das Datenlayout bereits
im voraus bestimmt werden. Dies kann beim gegenwértigen Entwicklungsstand erfolgen, indem die Grole
der Datei durch eine seek- und wr i t e-Operation auf das Ende der Datel festgelegt wird; da wie oben
beschrieben dadurch alle Blocke der Datei reserviert werden, stehen beim Schreiben der Daten die Blécke
bereits zur Verfligung.

5In UNIX-Dateisystemen wird die Allokation eines Blocks meistens erst dann vorgenommen, falls auf diesen konkreten Block
zugegriffen wird. Dadurch kénnen innerhalb einer Datei Bereiche existieren, fur die keine Blocke allokiert sind.

44 KAPITEL 4. IMPLEMENTIERUNG

/ * directory entry */

struct rtfs _dir_entry

{
rtfs_blockid t inode; / * inode block number * /
unsi gned short rec_| en; [* entry length * /
unsi gned short nane_| en; / * namelength */
char nane[RTFS_FI LENAME_LENGTH] ; /* filename*/
1

Abbildung 4.11: Eintrag in Verzeichnis-Liste

45.2 Speicherung der Strombeschreibungen

Die Speicherung der fur die Beschreibung der Echtzeitdateien verwendeten Daten erfolgt in separaten Da-
teien; dadurch wird ein einfacher Zugriff auf diese Daten auch durch L*Linux-Anwendungen méglich. Die
Zuordnung der Dateien erfolgt durch spezielle Dateinamenserweiterungen, die in Tabelle 4.1 aufgefiihrt
sind.

Neben den in Abschnitt 3.1.3 beschriebenen Parametersdtzen werden in einer weiteren Datei datentyp-
spezifische |nformationen gespeichert, wie z.B. die Auflsung und das verwendete Kompressionsverfahren
bei einem Video.

Dateiname Inhalt

nane. dat a | Daten

nane. par a | Parametersitze der Strombeschreibung
nane. desc | Beschreibung des Dateityps

Tabelle 4.1: Verwendete Dateinamenserweiterungen

4.6 Stand der Implementierung

Die derzeitige Implementierung umfafdt die Speicher-, Festplatten- und Dateiverwal tung sowie die Behand-
lung der Nicht-Echtzeitdateien. Fiir die Steuerung und das Testen des Dateisystems wurde zusétzlich eine
serielle Konsole implementiert, diese besteht aus einem Server, der die Kommunikation mit der seriellen
Schnittstelle durchfiihrt sowie einem separaten Thread des Dateisystems, der die Darstellung der Konsole
Ubernimmt.

Der Zugriff auf die Dateien erfolgt Uber eine UNIX-ahnliche Schnittstelle. Diese umfaldt die open-,
create-, cl ose-, read-, wite-und seek- sowie spezielle f cnt | - und f st at -Funktionen und
ist auf eine IPC-Kommunikation mit dem Behandlungs-Thread im Dateisystem abgebildet. Uber diese
Schnittstelle wird im Moment auch von L*Linux-Anwendungen aus auf das Dateisystem zugegriffen; eine
Bibliothek mit den entsprechenden Funktionen wurde dazu entwickelt.

Die Implementierung umfaldt ca. 12500 Zeilen C-Quelltext fir das Dateisystem (inklusive Pager und se-
rielle Konsole) sowie weitere 1500 Zeilen fir die L*Linux-Bibliothek und darauf basierende Programme
zum Zugriff auf die Dateien von L*Linux aus.

Kapitel 5

L elstungsbewertung

Bei dem derzeitigen Stand der |mplementierung konnen noch keine umfangreichen Tests zur Leistungsfa-
higkeit des Datei systems vorgenommenwerden. Es kann jedoch bereits tiberprift werden, wel chen Einflu
die Wahl der Blockgrole auf die Datenrate beim Lesen und Schreiben von Dateien hat.

5.1 Testumgebung

Die Messungen wurden auf einem PC mit einem 100 MHz Intel Pentium Prozessor, 32 MByte Haupt-
speicher, Asus SC200 SCSI-Controller (NCR53¢810) und einer 2,1 GByte Quantum VP32210 Festplatte
durchgefuhrt. Fir die Ermittlung von Vergleichswerten wurde das Programm h2bench verwendet, wel-
ches die Eigenschaften der Festplatte (Zoneneinteilung, Datenraten bei verschiedenen Blockgréen und
Zugriffszeiten) durch direkten Zugriff tber BIOS-Funktionen bestimmt [B6g96].

Fir die Bestimmung der Datenraten wurde eine 64 MByte grof3e Datel auf der schnellsten Zone der Fest-
platte! geschrieben bzw. gelesen. Die Blocke der Datei lagen linear hintereinander, eine zuféllige Verteilung
der Daten ist im Moment nicht méglich, dadie Blockallokation innerhalb einer Platte nicht beeinfluf3t wer-
den kann. Fur die Vergleichswerte wurden daher die Ergebnisse des Test beim linearen Lesen und Schrei-
ben von h2bench verwendet. Die Datei wurde von L*Linux aus uber die IPC-Schnittstelle geschrieben
bzw. gelesen. Bei den einzelnen Auftrégen wurde dabei generell auf 128 KByte der Datel zugegriffen. Die
Blockliste wurde permanent im Speicher gehalten, da auch bei der Bearbeitung der Echtzeit-Datenstrome
so vorgegengen werden soll. Fir die Messung der Dauer der Auftragsbearbeitung wurde der Time Stamp
Counters des Pentium Prozessors verwendet.

5.2 Meldergebnisse

In Tabelle 5.1 sind die Ergebnisse der Messungen aufgefihrt, in den Abbildungen 5.1 und 5.2 werden diese
mit den durch h2bench ermittelten Maximalwerten verglichen?. Die in der Tabelle angegebenen Zeiten
beziehen sich auf die Bearbeitung eines einzelnen Schreib-/L eseauftrags, die Datenraten wurden aus diesen
Werten berechnet.

Bei einer Blockgrofe von 64 KByte erreicht das Dateisystem beim Schreiben 38% und beim Lesen 51%
der maximalen Datenrate. Der grof3e Unterschied 113 sich zum Teil damit erkl&ren, dafd die Daten zwischen
dem Dateisystem und der LLinux-Anwendung durch eine L4 String-M essage ibertragen werden, bei der
die Daten durch den L4 Kern kopiert werden miissen. Um den dadurch entstehenden Aufwand zu bestim-
men, wurde zusétzlich die Zeit bestimmt, die durch das Dateisystem fir die Bearbeitung eines Auftrags

1Die schnellste Zone wurde durch h2bench ermittelt, bei der Quantum VP32210 liegt diese bei Block 0.
2Die Messungen von h2bench werden nur bis zu einer Blockgrofe von 64 K Byte durchgefiihrt.

45

46

KAPITEL 5. LEISTUNGSBEWERTUNG

Schreiben Lesen
Blockgrofe | Bearbeitungsdauer | Datenrate | Bearbeitungsdauer | Datenrate
[KByte] [ms] [KByte/s| [ms] [KByte/s|
4 103,67 1234 62,01 2064
8 88,80 1441 49,32 2595
16 69,47 1842 45,39 2820
32 57,86 2212 44,18 2897
64 56,63 2260 44,08 2903
128 53,02 2414 43,13 2967

Tabelle 5.1: Mef3ergebnisse

intern benétigt wird. Die Differenz der Gesamtbearbeitungszeit und dieser Zeit ist der Kommunikations-
aufwand zwischen Dateisystem und der Anwendung. Fur die bei der Messung verwendete Datengréfe
von 128 KByte wurde daf Urr eine Zeit von ca. 20 ms gemessen. Berlicksichtigt man diese Zeit bel der Be-
rechnung der Datenrate, wird durch das Dateisystem beim Lesen annéhernd die Maximal datenrate, beim
Schreiben ca. 60% der maximalen Datenrate erreicht.

Besonders beim Lesen sind die Datenraten Uber einen gréferen Bereich relativ konstant. Aufgrund der
Mefergebnisse von h2bench Iaf sich dies jedoch auf die kontinuierliche Allokation der Datei zurlick-
fuhren, fur eine zuféllige Anordnung der Bldcke ergeben sich deutliche Unterschiede in den erreichten

Datenraten.
6000 7 T T T h2bench T
encl <
Datelsystem —H&—
5000 e
4000 %
w
jo!
>
o
£ 3000 = —a
g
9]
B
O 2000 .
1000 i
0 | |
64 128

Abbildung 5.1: Datenraten beim Lesen

Blockgrofe [KByte]

5.2. MESSERGEBNISSE

6000

5000

4000

3000

Datenrate [KByte/s]

2000

1000

1 1 1 1

[
048 16 32 64 128
Blockgrofe [KByte]

Abbildung 5.2: Datenraten beim Schreiben

48

KAPITEL 5. LEISTUNGSBEWERTUNG

Kapitel 6

Zusammenfassung und Ausblick

In dieser Arbeit wurden der Entwurf und Teile der Implementierung eines echtzeitfahigen Dateisystems
beschrieben. Das Dateisystem verwendet zum Speichern der Daten mehrere Festplatten, um den hohen
Bedarf an Speicherplatz und Bandbreite der betrachteten Datenstréme erfllen zu kénnen. Um den spezi-
ellen Eigenschaften der unterschiedlichen Datentypen Rechnung zu tragen, kénnen bei der Allokation des
Speicherplatzes unterschiedliche BlockgréRen verwendet werden.

Fir den Zugriff auf die Daten verwendet das Dateisystem einen zusagefahigen SCSI-Treiber, der in der
Diplomarbeit von Frank Mehnert beschrieben ist [Meh98]. Die fir den Entwurf verwendeten Ideen zur
Admission Control beruhen auf einer Arbeit von Sven Rudolph [Rud974].

Fir weitere Arbeiten an dem Dateisystem in der néchsten Zeit gibt es folgende Problemstellungen:

e Abschlul3 der Implementation, dies umfalét die Behandlungsroutinen fur kontinuierliche und nicht-
kontinuierliche Datenstrome.

¢ Ausgehend von dieser Implementierung eine Uberpriifung der getroffenen Entwurfsentschei dungen.
Insbesondere gilt das fur die Verwendung variabler Blockgrofien, es ist zu Uberpriifen, ob bei den
letztendlich zur Admission Control und Planung verwendeten Verfahren dies noch sinnvoll ist.

e Die derzeitige Organisation der Dateien ist stark durch die Vorgehensweise bei der Bearbeitung
kontinuierlicher Datenstrome beeinfluf3t. Esist zu untersuchen, inwieweit fur die Behandlung nicht-
kontinuierlicher Daten geeignetere Organi sationsstrukturen verwendet werden miissen.

¢ Eine Aufgabenstellung fir einen spéteren Zeitpunkt ist die Entwicklung eines grof3en Speichersy-
stems auf Basis mehrerer miteinander verbundener Dateisysteme.

Die bei ersten Messungen erreichten Leistungen liegen noch deutlich unter den theoretisch mdglichen

Werten. Die Griinde daf ir sind jedoch zum Teil bekannt, so dal3 bei einer entsprechenden Implementierung
deutlich bessere Ergebnisse erwartet werden kdnnen.

49

50

KAPITEL 6. ZUSAMMENFASSUNG UND AUSBLICK

Anhang A

Glossar

Block Einheit, in der Speicherplatz auf der Festplatte reserviert werden kann. Die minimale Blockgréfeist
durch die Festplatten-Hardware bestimmt, das Dateisystem kann darauf aufbauend gréRere logische
Bldcke definieren.

Continuous Media Data Bezeichnung fur Datentypen, auf die in der Regel kontinuierlich zugegriffen
wird, d.h. die einzelnen Teilobjekte werden der Reihe nach bearbeitet. Beispiele dafur sind Video-
und Audiostréme, die einzelnen Teile (Bilder bzw. Samples) werden zum Abspielen der Reihe nach
gelesen. Der zeitliche Abstand zwischen den Teilobjekten wird durch die Datenrate bei der Bearbei-
tung bestimmt.

DMA Direct Memory Access, direkter Zugriff auf den Hauptspeicher ohne Mitwirkung der CPU.

Fragmentierung Aufteilung des Speicherplatzes in benutzte und unbenutzte Teilbereiche, die durch das
L 6schen von einzelnen Dateien entsteht.

Hamming-Code Verfahren zur Priifsummenberechnung, bei dem auch Mehrfachfehler erkannt und korri-
giert werden kénnen.

Metadaten Verwaltungsdaten einer Datei, die zusétzlich zu den Nutzdaten gespeichert werden miissen.
MPEG Moving Pictures Experts Group
Pager Komponente zur Verwaltung eines virtuellen Adref3raums.

Positionierungszeit Zeit, die durch die Festplatte zur Positionierung des Schreib-/Lesekopfs Uber den
angeforderten Block benétigt wird.

SCAN Algorithmus zur Planung von Festplatten-Auftréagen. Die Auftrdge werden der Reihe nach bear-
beitet, kann wahrend der Positionierung jedoch bereits ein anderer Auftrag bearbeitet werden, wird
dieser bereitsim voraus bearbeitet.

SCAN-EDF Wie SCAN, die Reihenfolge der Auftrdge wird jedoch durch den Zeitpunkt bestimmt, an dem
ein Auftrag ausgefuhrt sein muf3.

SCSI Small Computer Systems I nterface, Standard zum Anschlu® vom Peripheriegeréten

Verschnitt Differenz zwischen dem reservierten Speicherplatz und der tatséchlichen Gréfe der Datei.
Diese entsteht, da die Reservierung nur in Vielfachen der verwendeten Blockgrofie erfolgen kann.

Wor st-Case ungiinstigster anzunehmender Anwendungsfall

VFS Virtual File System, einheitliche Schnittstelle des Linux-Kerns zum Zugriff auf verschiedene Datei-
systeme.

51

52

ANHANGA. GLOSSAR

Literaturverzeichnis

[AOGO1]

[BBD 95]

[BFD97]

[B6g96]

ANDERSON, David P. ; OsAwA, Yoshitomo ; GOVINDAN, Ramesh: Real-Time Disk Storage
and Retrieval of Digital Audio/Video Data / CS Division, EECS Department, University of
Cdliforniaat Berkeley. 1991 (CSD-91-646). — Forschungsbericht

BEck, Michadl ; BOHME, Harald ; DzIADZKA, Mirko ; KuNiTZz, Ulrich ; MAGNUS, Robert ;
V ERWORNER, Dirk: Linux-Kernel-Programmierung - Algorithmen und Strukturen der Viersion
1.2. Addison-Wesley, 1995

BoLosky, William J. ; FITZGERALD, Robert P. ; DOUCEUR, John R.: Distributed Schedule
Management in the Tiger Video Fileserver. In: Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997

BOGEHOL z, Harald. H2bench. zu finden unter ftp:/ftp.heise.de/pub/ct/pci/h2bench.zip. 1996

[BGMJ94] BERSON, Steven ; GHANDEHARIZADEH, Shahram ; MuNTZ, Richard ; Ju, Xiangyu: Stagge-

[Bil92]

[Cus94]

red Striping in Multimedia Information Systems. In: Proceedings of ACM SSGMOD, 1994

BiLIRIS, Alexandros: An Efficien Database Storage Structure for Large Dynamic Objects. In:
Proceeding of the |EEE Data Engineering Conference, Phoenix, 1992

CUSTER, Helen: Inside the Windows NT File System. Microsoft Press, 1994

[GVKR95] GEMMELL, D. J.; VIN, Harrick M. ; KANDLUR, Dilip D. ; RANGAN, P. V.. Multimedia

[GZS96]

[Ham97]

[Hohos]
[H&r974]
[H&r97h]

[KGMO3]

[K1i97]

[Leag6]

Storage Servers. A Tutoria and Survey. In: |[EEE Computer (1995)

GHANDEHARIZADEH, Sharam ; ZIMMERMANN, Roger ; SHI, Weifeng ; REJAIE, Reza; |IERA-
DI, Doug ; L1, TaeWei: Mitra: A Scalable Continuous Media Server / University of Southern
Cadlifornia. 1996. — Forschungsbericht

HAMANN, Claude-Joachim: On the Quantitative Specification of Jitter Constrained Periodic
Streams. I n: Proceedings of MASCOTS, 1997

HOHMUTH, Michadl: Linux-Emulation auf eéinem Mikrokern, TU Dresden, Diplomarbeit, 1996
HARTIG, Hermann. Betriebssysteme. Vorlesungsskript TU Dresden. 1997

HARTIG, Hermann. Ein Planungsmodell fir das Echtzeitdateisystem. mindliche Mitteilung.
1997

KAO, Ben ; GARCIA-MOLINA, Hector: An Overview of Real-Time Database Systems. In:
Proceedings of NATO Advanced Sudy I nstitute on Real-Time Computing, 1993

KLi1x, Thomas: Multimedia-Dateisystem auf L4, Technische Universitét Dresden, Diplomar-
beit, 1997

LEA, Doug. A Memory Allocator. zu finden unter http://g.oswego.edu/dl/html/malloc.html.
1996

53

54

[Lie96]

[LE6w97]
[Meh9sg]

[MHNO5]

[MJILF84]

[NOM 97]

[Pau97]
[PGK 88]

[Rei97]

[RO92]

[Rud974]
[Rud97b)]
[RzS96]

[RzS97]

LITERATURVERZEICHNIS

LIEDTKE, Jochen. L4 Reference Manual for 486, Pentium and Pentium Pro. zu finden auf
http.//os.inf.tu-dresden.de/L 4/14refx86.ps.gz: IBM Watson Technical Report. 1996

Lowis, Martin: Im verborgenen: Microsofts NT Filesystem. In: iX (1997), 4, S. 136 — 139

MEHNERT, Frank: Ein zusagenfahiges SCS-Subsystem fir DROPS, Technische Universitéat
Dresden, Diplomarbeit, 1998

MAKAROFF, Dwight J. ; HUTCHINSON, Norman C. ; NEUFELD, Gerald W.: The UBC Dis
tributed Continuous Media File System: Internal Design of Server / Department of Computer
Science at University of British Columbia, Canada. 1995. — Forschungsbericht

McKusick, Marshal K. ; Joy, William N. ; LEFFLER, Samuel J. ; FABRY, Robert S.: A Fast
File System for UNIX. In: ACM Transactions on Computer Systems (TOCS) 2 (1984), Nr. 3

NISHIKAWA, Junji ; OKABAYASHI, Ichirou ; MORI, Yasuhiro ; SASAKI, Shinji ; MIGITA,
Manabu ; OBAYASHI, Yoshimasa ; FURUYA, Shinji ; KANEKO, Katsuyuki: Design and Im-
plementation of Video Server for Mixed-rate Streams. In: Proceedings of the 7th Interna-
tional Woerkshop on Network and Operating Systems Support for Digital Audio and Video
(NOSDAVY), 1997

PauL, Torsten. Videoprasentationen mit Echtzeitsystemen. GrolRer Beleg, TU Dresden. 1997

PATTERSON, David A. ; GIBSON, Garth ; KATZ, Randy H.: A Case for Redundant Arrays of
Inexpensive Disks (RAID). In: Proceedings of the SGMOD Conference, 1988

REISER, Hans. Trees Are Fast. zu finden unter http://ideom.com/~beverly/reierfs.html. 1997

RoOsSENBLUM, Mendel ; OUSTERHOUT, John K.: The Design and Implementation of a Log-
Structured File System. In: Proceedings of the 13th ACM Symposium on Operating Systems
Principles, 1992

RuDOLPH, Sven. Admission Control im RTFS. mindliche Mitteilung. 1997
RuDOLPH, Sven. Bandbreitenanpassung durch Datenlayout. miindliche Mitteilung. 1997

RASTOGI, Rajeev ; OZDEN, Banu ; SILBERSCHATZ, Avi: Disk Striping in Video Server En-
vironments. In: Proceedings of the |EEE International Conference on Multimedia Computing
and Systems, 1996

RASTOGI, Rajeev ; OzDEN, Banu ; SILBERSCHATZ, Avi: Multimedia Support for Databases.
In: Proceedings of the ACM SIGACT-S GMOD Symposiumon Principles of Database Systems,
1997

[SGRV97] SHENOY, Prashant J. ; GOYAL, Pawan ; RAO, Sriram S. ; VIN, Harrick M.: Symphony: An

[Svo7]

[Tan94]

Integrated Multimedia File System / Department of Computer Sciences, Univ. of Texas at
Austin. 1997 (TR-97-09). — Forschungsbericht

SHENOY, Prashant J. ; VIN, Harrick M.: Efficient Striping Techniques for Multimedia File
Servers. I n: Proceedingsof the 7th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 97), 1997

TANENBAUM, Andrew S.: Moderne Betriebssysteme. Carl Hanser Verlag / Prentice Hall, 1994

[WINB95] WILSON, Paul R. ; JOHNSTONE, Mark S. ; NEELY, Michael ; BOLES, David: Dynamic Storage

[Wol97]

Allocation: A Survey and Critical Review. In: Proceedings of the International Workshop on
Memory Management, 1995

WOLTER, Jean. Erste Ideen zum Scheduling im DROPS-Projekt. Vortrag Echtzeit-AG, TU
Dresden. November 1997

