
Diplomarbeit

zum Thema

Entwicklung eines echtzeitfähigen Dateisystems

an der

Technischen Universität Dresden

Fakultät Informatik

Institut für Betriebssysteme, Datenbanken und Rechnernetze

Lehrstuhl für Betriebssysteme

Eingereicht von: Lars Reuther

Eingereicht am: 15. Januar 1998

Verantwortlicher Hochschullehrer:

Prof. Dr. H. Härtig

Betreuer:

Dr. Claude-Joachim Hamann
Dipl.-Inf. Sebastian Schönberg

2

Inhaltsverzeichnis

1 Einleitung 5

2 Stand der Technik 7

2.1 Dateisystem-Mechanismen . .. 7

2.1.1 Verwendung mehrerer Festplatten – Striping 8

2.1.2 Auftragsplanung 11

2.2 Beispiele für Dateisysteme . .. 12

2.2.1 Standard-Dateisysteme. 12

2.2.2 Multimedia-Dateisysteme . .. 13

2.2.3 Echtzeit-Datenbanken. 16

3 Entwurf 19

3.1 Grundlagen 19

3.1.1 SCSI-Auftragsplanung. 19

3.1.2 DROPS / L4Linux . 20

3.1.3 QoS-Parameter. 21

3.1.4 Admission Control . .. 21

3.1.5 Begriffsbestimmung .. 21

3.2 Entwurfsziele 22

3.3 Systemstruktur 22

3.3.1 Zusammenwirken Admission Control – Dateisystem – SCSI Treiber 22

3.3.2 Schnittstellen .. 23

3.4 Block-Verwaltung 25

3.4.1 Freispeicherverwaltung. 25

3.4.2 Datenlayout . .. 27

3.5 Dateien .. 29

3.6 Puffersystem 29

3.7 Auftragsplanung 30

3.8 Schwankungsbeschränkte Datenströme. 31

3.9 Zusammenfassung . .. 32

3

4 INHALTSVERZEICHNIS

4 Implementierung 35

4.1 Threadstruktur 35

4.2 Auftragsbearbeitung .. 35

4.3 Speicherverwaltung . .. 37

4.3.1 Pager 37

4.3.2 Pufferverwaltung 38

4.4 Festplattenverwaltung .. 39

4.5 Dateien .. 42

4.5.1 Anlegen der Dateien .. 43

4.5.2 Speicherung der Strombeschreibungen 44

4.6 Stand der Implementierung . .. 44

5 Leistungsbewertung 45

5.1 Testumgebung 45

5.2 Meßergebnisse 45

6 Zusammenfassung und Ausblick 49

A Glossar 51

Kapitel 1

Einleitung

Für den Begriff Echtzeit existieren eine Reihe von Definitionen. Ursprünglich wurden Echtzeitsysteme
zur Steuerung von Maschinen oder Industrieanlagen eingesetzt. Diese Systeme mußten Zusagen über
Reaktions- und Antwortzeiten auf z.B. Sensorensignale einhalten können um eine korrekte Funktionsweise
der entsprechenden Anlage zu gewährleisten. Die Zeitauflösungen gehen dabei bis in den Mikrosekunden-
bereich und die Systeme müssen garantieren, daß die Zusagen generell eingehalten werden. Eine derar-
tige Charakterisierung wird auch mitharter Echtzeitbezeichnet. Diese Systeme sollen hier jedoch nicht
betrachtet werden. Der Begriff Echtzeit wird in letzter Zeit auch immer häufiger in Verbindung mit Mul-
timediasystemen gebraucht. Damit sind Systeme gemeint, die verschiedene Medientypen wie Video, Ton
oder Text gleichzeitig verwenden. Die Bezeichnung als Echtzeitsystem beruht auf den Eigenschaften ei-
niger dieser Medientypen. Beispielsweise erfordert die Verwendung von Videosequenzen, daß das System
ebenfalls Zusagen über die Geschwindigkeit machen kann, mit der diese Daten gelesen werden können,
um eine störungsfreie Anzeige dieser Videos zu ermöglichen. Allerdings sind diese Zusagen weit weniger
streng zu sehen als bei einer Anlagensteuerung, weshalb diese Form auch alsweiche Echtzeitbezeichnet
wird.

Im Rahmen des ProjektsDresden Real Time Operating System (DROPS)am Lehrstuhl für Betriebssysteme
der Technischen Universität Dresden wird gegenwärtig untersucht, wie derartige Zusagen durch die Ver-
wendung vonQuality of Service (QoS)Parametern unterstützt werden können. Ein Teilprojekt beschäftigt
sich dabei mit der Entwicklung eines zusagefähigen Speichersystems. Dieses besteht aus einem zusagefä-
higen SCSI-Treiber zum Zugriff auf die Festplatten sowie einem Dateisystem zur Verwaltung des Speicher-
platzes und der Dateien. Ein separater Teil des Dateisystems beschäftigt sich mit der Admission Control,
der Entscheidung über das Akzeptieren neuer Anforderungen basierend auf deren QoS-Beschreibungen.
Die vorliegende Arbeit beschreibt den Entwurf und die Implementierung des Dateisystems; der SCSI-
Treiber und die Admission Control sind Gegenstand anderer Arbeiten.

Warum ist nun aber die Entwicklung neuer Speichersysteme für diese Daten notwendig? Video- und Audio-
daten unterscheiden sich von den herkömmlichen Datentypen wie etwa Text im wesentlichen durch zwei
Eigenschaften:

� Kontinuierliches Abspielen
Die Daten bestehen meistens aus einer Menge von Teilobjekten (Bildern oder Samples), die für eine
korrekte Wiedergabe mit einer bestimmten Geschwindigkeit abgespielt werden müssen. Aufgrund
dieser Eigenschaft werden Video- und Audioströme auch alsContinuous Media Databezeichnet.

� Datenvolumen
Im Vergleich zu Textdokumenten müssen vor allem bei Videoströmen sehr große Datenmengen ver-
waltet werden. Ein einzelnes Video kann durchaus mehrere GByte an Speicherplatz erfordern.

Diesen Anforderungen sind herkömmliche Dateisysteme nicht gewachsen. An der Entwicklung von Datei-
systemen für die Verwaltung von Continuous Media Daten wurde bereits an verschiedenen Stellen gearbei-

5

6 KAPITEL 1. EINLEITUNG

tet, und für einige Spezialanwendungen existieren auch eine Reihe von Lösungen, z.B. für Video-Server.
Es besteht allerdings nach wie vor noch der Bedarf nach universellen Systemen, die neben Continuous
Media Daten sowohl andere Daten mit Echtzeitanforderungen als auch Nicht-Echtzeitdaten gleichermaßen
speichern können.

Gliederung

Das folgende Kapitel enthält einen Überblick über die wichtigsten Mechanismen zur Dateiverwaltung so-
wie eine genauere Beschreibung der für den Entwurf des Dateisystems besonders bedeutsamen Verfahren.
Anschließend daran werden beispielhaft einige bekannte Dateisysteme kurz erläutert. In Kapitel 3 wird
ausgehend von diesen Grundlagen der Entwurf des Echtzeitdateisystems für DROPS beschrieben. Über
einige Details der Implementierung wird im darauf folgenden Kapitel eingegangen. Die Arbeit wird mit
einer zusammenfassenden Bewertung sowie einem Ausblick auf weitere Arbeiten beschlossen.

Kapitel 2

Stand der Technik

Das permanente Speichern von Daten gehört neben der Verwaltung des Hauptspeichers und von Prozessen
zu einer der wichtigsten Aufgaben eines Betriebssystems. Mit der fortschreitenden Entwicklung der Be-
triebssysteme wurden daher auch auf dem Gebiet der Dateisysteme verschiedene Verfahren zur Verwaltung
persistenter Daten entwickelt. Im folgenden sollen einige der grundlegenden Mechanismen erläutert sowie
verschiedene Dateisysteme beispielhaft beschrieben werden.

2.1 Dateisystem-Mechanismen

Jedes Dateisystem muß unabhängig von seinem Einsatzgebiet eine Reihe grundlegenderAufgaben erfüllen:
es muß den Speicherplatz des Hintergrundspeichers (z.B. der Festplatte) verwalten, für die Daten muß
Speicherplatz reserviert werden und die Dateien müssen in einer geeigneten Form nach außen repräsentiert
werden. Für jede dieser Aufgaben existieren eine Reihe verschiedener Lösungen [Tan94]:

� Freispeicherverwaltung
Für die Verwaltung des freien Speichers werden hauptsächlich zwei verschiedene Techniken ange-
wendet: Freispeicherlisten und Bitmaps. Bei der ersten Variante werden die freien Bereiche in Form
einer verketteten Liste verwaltet, wobei jedes Element dieser Liste den Verweis auf einen freien
Block enthält. Demgegenüber wird bei der Verwendung einer Bitmap jeder Block durch ein Bit in
diesem Bitfeld repräsentiert und durch die Belegung dieses Bits der Block als frei bzw. belegt ge-
kennzeichnet.

Die Verwendung einer Bitmap erfordert in der Regel weniger Speicherplatz als eine Freispeicherliste,
für die Suche eines freien Blocks in einer Bitmap wird allerdings mehr Zeit benötigt. Ein Vorteil
einer Bitmap ist die konstante Größe, wodurch deren Verwaltung wesentlich einfacher als die einer
Freispeicherliste ist.

� Block-Allokation und Verwaltung
In einem ersten Schritt lassen sich die Verfahren zur Block-Allokation in kontinuierliche und nicht-
kontinuierliche Allokation unterteilen. Bei einer kontinuierlichen Reservierung werden für eine Da-
tei aufeinanderfolgende Blöcke verwendet, für die Beschreibung dieser Datei ist nur die Kenntnis
des ersten Blocks und der Dateigröße notwendig. Dieses Verfahren hat den Vorteil, daß sequentielle
Lese- oder Schreiboperationen ohne Neupositionierungen des Festplatten-Kopfes auskommen. Al-
lerdings führt es sehr schnell zu einer starken Fragmentierung der Festplatte, so daß für das Speichern
von Dateien kein genügend großer kontinuierlicher Speicherbereich zur Verfügung steht. Durch ei-
ne nicht-kontinuierliche Allokation der Blöcke kann dieses Problem gelöst werden, allerdings muß
dann für jede Datei eine Liste mit den zu der Datei gehörenden Festplattenblöcken verwaltet werden.
Dies kann auf verschiedene Weise erfolgen:

7

8 KAPITEL 2. STAND DER TECHNIK

– Jeder Block enthält einen Verweis auf den nächsten Block, zum Zugriff auf die Datei ist nur
das Speichern der Adresse des ersten Blocks notwendig. Ein großer Nachteil dieser Variante ist,
daß beim zufälligen Zugriff auf die Datei alle Blöcke bis zu dem angeforderten Block gelesen
werden müssen, um dessen Adresse zu ermitteln.

– Der Verweis auf den nächsten Block wird nicht in dem Datenblock selbst, sondern in einer dafür
vorgesehenen Tabelle gespeichert. Der Index dieser Tabelle ist die Nummer des Plattenblocks,
der Inhalt der Verweis auf den nächsten Block der Datei. Bei einem zufälligen Zugriff auf
eine Datei muß zwar nach wie vor die gesamte Liste durchsucht werden, da diese jetzt jedoch
separat verwaltet wird kann dies deutlich schneller erfolgen.

– Die zu einer Datei gehörenden Blöcke werden in einem Index-Knoten (Inode) gespeichert.
Die Adressen der ersten Blöcke werden direkt in dieser Inode gespeichert, für größere Dateien
werden Datenblöcke zum Speichern der Adressen verwendet, diese werden durch eine Baum-
struktur verwaltet. Bei sehr großen Dateien kann diese Struktur bis zu drei Ebenen enthalten,
die für die Knoten des Baums verwendeten Datenblöcke enthalten dann wiederum Verweise
auf die Datenblöcke, in denen die Blockliste gespeichert ist.

– In [RO92] wird ein Verfahren beschrieben, bei dem zumindestens beim Schreiben die Vorteile
der kontinuierlichen Allokation genutzt werden sollen. Dazu werden mehrere Schreiboperatio-
nen zu einer einzelnen großen zusammengefaßt, dieserLog wird dann kontinuierlich auf die
Platte geschrieben, zusätzlich werden für das Lesen Indexstrukturen erzeugt.

– Gelegentlich (z.B. in [Rei97]) werden Baumstrukturen zur Verwaltung der Dateiinformationen
benutzt. Durch die Verwendung derartiger Strukturen wird besonders der wahlfreie Zugriff auf
Dateien beschleunigt, sie haben allerdings den Nachteil einer sehr aufwendigen Implementie-
rung im Gegensatz zu den anderen erwähnten Verfahren.

� Repräsentation der Daten
Bei der Repräsentation der Daten kann man im wesentlichen zwischen einer „flachen“ und einer
strukturierten Darstellung unterscheiden. Bei der flachen Darstellung besteht die Datei aus einer Fol-
ge von Bytes, die durch das Dateisystem nicht weiter interpretiert werden. Diese Art der Darstellung
wird von den meisten Standard-Dateisystemen verwendet. Von Datenbanksystemen wird vorzugs-
weise eine strukturierte Darstellung verwendet, bei der die Daten z.B. als Felder (Records) verwaltet
werden.

2.1.1 Verwendung mehrerer Festplatten – Striping

Dateisysteme, die zum Lesen oder Schreiben mit hohen Datenraten bzw. zur Verwaltung von großen Da-
tenmengen verwendet werden, benutzen häufig mehrere Festplatten gleichzeitig, um die gestellten An-
forderungen zu erfüllen. Da die beiden genannten Anforderungen, hohe Datenraten und Datenmengen,
insbesondere auch für Multimediadaten gelten, sollen die Techniken zur Verwaltung mehrerer Festplatten
an dieser Stelle etwas genauer beschrieben werden.

RAID

Ursprünglich wurden mehrere Festplatten gleichzeitig eingesetzt, um den Leistungsnachteil (was sowohl
die Speicherkapazität als auch die Übertragungsraten betrifft) kostengünstiger Festplatten gegenüber teuren
Hochleistungsplatten zu kompensieren. In [PGK88] werden eine Reihe von Techniken vorgestellt, die mit
RAID (Redundant Arrays of Inexpensive Disks) bezeichnet werden. Dabei soll vor allem durch Redundanz
die hohe Fehleranfälligkeit, die durch den gleichzeitigen Einsatz mehrerer Festplatten entsteht, reduziert
werden. Tabelle 2.1 gibt einen Überblick über die RAID-Hierarchie.

Bei einer bitweisen Verteilung der Daten befinden sich alle Schreib-/Leseköpfe der einzelnen Festplatten
immer an der gleichen Position, weshalb dieses Verfahren auch als„spindelsynchron“bezeichnet wird.
Durch dieses synchrone Verhalten der Festplatten kann das Array auch als eine große Festplatte mit einer
Datenrate angesehen werden, die der Summe der Datenraten der einzelnen Festplatten entspricht.

2.1. DATEISYSTEM-MECHANISMEN 9

RAID-Stufe Beschreibung
1 Daten werden auf einer zweiten Festplatte gespiegelt
2 Verwendung eines Hamming-Codes, Daten werden bitweise

über die Festplatten verteilt
3 Benutzung eines Paritätsbits, Daten werden bitweise verteilt
4 wie 3, Daten werden jedoch blockweise über die Festplatten

verteilt
5 wie 4, Paritätsblöcke werden jedoch zyklisch über alle

Festplatten verteilt

Tabelle 2.1: RAID-Hierarchie

Striping

Neben den RAID-Systemen existieren eine Reihe von Systemen, die ohne Redundanz arbeiten (gelegent-
lich werden derartige Systeme in die RAID-Hierarchie auf der Stufe 0 eingeordnet). Diese Verfahren wer-
den meistens mitStriping1 bezeichnet. Für den gleichzeitigen Einsatz mehrerer Festplatten gibt es haupt-
sächlich drei Gründe:

� die Speicherkapazität einer einzelnen Festplatte ist für das Speichern der Daten nicht ausreichend;

� die geforderten Datenraten sind höher als die der Festplatten;

� eine Verteilung der Aufträge in einem Mehrbenutzer-System.

Die Klassifizierung der Verfahren kann anhand von zwei Kriterien vorgenommen werden:

1. Granularität der Verteilung der Daten

2. Anzahl der pro Zugriff verwendeten Festplatten.

Anhand der Granularität werden Verfahren mit einer feinen Aufteilung der Daten (bit-, byte- oder sektor-
weise) und mit einer groben Aufteilung (bis zu mehreren 100 KByte) unterschieden. Wie bereits weiter
oben erwähnt, führt eine sehr feine Aufteilung der Daten zu einem synchronen Betrieb der Festplatten, so
daß pro Zugriff in der Regel alle Festplatten gleichzeitig verwendet werden. Bei einer groben Verteilung
der Daten wird in der Regel nur eine Festplatte pro Zugriff verwendet, es sei denn die Bandbreite einer
einzelnen Festplatte ist nicht ausreichend, so daß zwei oder mehr Festplatten verwendet werden müssen.

In [RzS96] werden diese beiden Vorgehensweisen (dort mitfine-grained stripingundcoarse-grained stri-
ping bezeichnet) miteinander verglichen. Als Grundlage für diesen Vergleich dient ein Video-Server, der
mehrere Videoströme gleichzeitig liefern soll. Die Videoströme werden in kleine Teilstücke zerlegt. In einer
Rundewird dann jeweils genau ein Teilstück jedes Videostroms gelesen. Das Ergebnis dieses Vergleichs ist,
daß aufgrund der nicht vorhandenen Nebenläufigkeit beim Lesen der Ströme die Latenz bei fine-grained
Striping höher ist als bei coarse-grained Striping, die durch einen größeren Puffer ausgeglichen werden
muß2.

Im Bereich der Multimedia- und Video-Server wird überwiegend das grobe Striping-Schema verwendet.
Dies liegt vor allem daran, daß in der Regel die Bandbreite einer einzelnen Festplatte für die Bedienung
eines Datenstroms ausreichend ist und das Hauptaugenmerk daher mehr auf der gleichzeitigen Lieferung

1Der Begriff Striping wird teilweise mit verschiedenen Bedeutungen verwendet. Im weiteren werden damit Systeme bezeichnet,
die die Daten ohne die Verwendung von Redundanz über mehrere Festplatten verteilen.

2Der Video-Server war dabei so konfiguriert, daß bei einer gegebenen Anzahl an Festplatten und einer gegebenen Speichergröße
die maximale Anzahl an Videoströmen bedient werden konnte

10 KAPITEL 2. STAND DER TECHNIK

mehrerer Datenströme liegt. Bei einem derartigen System kommt es vor allem auf eine gleichmäßige Ver-
teilung der Daten über alle verfügbaren Festplatten an, welches durch ein geeignetes Layout der Daten
erreicht werden kann. Bei der Entwicklung eines solchen Systems sind vor allem zwei Fragen zu beant-
worten: wie ist die Blockgröße zu wählen, mit der die Allokation des Festplattenplatzes erfolgt und mit
welchem Layout werden die Daten über die Festplatten verteilt.

Zu der ersten Fragestellung wurden in [SV97] umfangreiche theoretische Untersuchungen durchgeführt.
Ziel dieser Untersuchungen war die Bestimmung der Blockgröße, bei der die Bedienungszeit (service time)
eines Auftrags am geringsten ist. Als wichtige Faktoren, die durch die Wahl einer bestimmtem Blockgröße
beeinflußt werden, werden für diese Arbeit die Lastverteilung (load balance) und die Verzögerung durch
die Positionierung des Lesekopfs (seek and rotational latency) verwendet. Durch die Wahl einer kleinen
Blockgröße wird eine gute Lastverteilung erreicht, was sich in einer geringen Anfangsverzögerung wider-
spiegelt, es ist jedoch ein erhöhter Positionierungsaufwand notwendig. Demgegenüber ist bei der Verwen-
dung großer Blöcke der Positionierungsaufwand gering, während durch eine schlechtere Lastverteilung
mit einer höheren Anfangsverzögerung zu rechnen ist. In Abbildung 2.1 ist dieser Sachverhalt graphisch
dargestellt.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 m
et

ric

Block size (kB)

 RAID-0, 16 disks, 60 clients

Load imbalance
Latency overhead

Abbildung 2.1: Lastverteilung und Latenz in Abhängig-
keit der Blockgröße [SV97].

Der Wert für die optimale Blockgröße liegt am Schnittpunkt der beiden Kurven. Dieser ist von einer Reihe
Systemparameter abhängig, dazu gehören u.a. die Anzahl der Festplatten und Klienten. So wird z.B. bei
einer hohen Anzahl Klienten eine so große Datenmenge gelesen, daß auch mit größeren Blöcken eine
ausreichende Lastverteilung erreicht wird (siehe Abb. 2.2). Die bei diesen Untersuchungen ermittelten
Blockgrößen liegen für die verschiedenen Systeme im Bereich von 50 KByte bis 200 KByte.

Bei der Verteilung der Daten auf die Festplatten werden in der Regel Techniken angewendet, bei denen
die Daten nacheinander über die zur Verfügung stehenden Festplatten verteilt werden (Block 1 auf Platte
1, Block 2 auf Platte 2,. . . , Block n auf Platte n, Block n + 1 auf Platte 1,. . . bei n Festplatten). Durch
die dadurch entstehende zyklische Anordnung der Daten3 wird eine gleichmäßige Verteilung der Daten
erreicht, jede Festplatte speichert annähernd ein n-tel des Datenstroms. In [BGMJ94] ist ein derartiges
Verfahren (StaggeredStriping) beschrieben. Es ermöglicht sowohl das Lesen von Datenströmen mit hohen
Bandbreitenanforderungen (durch das gleichzeitige Verwenden von mehreren Festplatten) als auch von
Datenströmen mit geringen Anforderungen, diese werden durch das Auslassen von Lesezyklen und Puf-
ferung realisiert. Abbildung 2.3 stellt das Datenlayout bei Verwendung von Staggered Striping dar. Das
System speichert drei DatenströmeX , Y undZ, wobeiX die dreifache Bandbreite einer Festplatte,Y die
vierfache undZ die doppelte Bandbreite beansprucht.

3im folgenden wird diese Art des Stripings mitRound-Robin Stripingbezeichnet.

2.1. DATEISYSTEM-MECHANISMEN 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300
N

or
m

al
iz

ed
 m

et
ric

Block size (kB)

 (a) RAID-0, 16 disks

Load imbalance, 20 clients
Latency overhead, 20 clients
Load imbalance, 100 clients

Latency overhead, 100 clients

Abbildung 2.2: Optimale Blockgröße bei verschiedener
Anzahl Klienten [SV97].

Y12.3 X12.2

Y0.0 Y0.1 Y0.2 X0.0 X0.1 X0.2 Z0.0 Z0.1

Disk
0

Disk
11

1

2

3

4

5

6

7

8
9

10

11

12 X12.1X12.0 Z12.0 Z12.1Y12.1Y12.0 Y12.2

Y0.30

Y1.0 Y1.1 Y1.2 X1.0 X1.1 X1.2 Z1.0 Z1.1Y1.3

Y2.0 Y2.1 Y2.2 X2.0 X2.1 X2.2 Z2.0 Z2.1Y2.3

Y3.0 Y3.1 Y3.2 X3.0 X3.1 X3.2 Z3.0 Z3.1Y3.3

Y4.0 Y4.1 Y4.2 X4.0 X4.1 X4.2 Z4.0Z4.1 Y4.3

Y5.0 Y5.1 Y5.2 X5.0 X5.1 X5.2Z5.0 Z5.1 Y5.3

Y6.0 Y6.1 Y6.2 X6.0 X6.1X6.2 Z6.0 Z6.1 Y6.3

Y7.0 Y7.1 Y7.2 X7.0X7.1 X7.2 Z7.0 Z7.1 Y7.3

Y8.0 Y8.1 Y8.2X8.0 X8.1 X8.2 Z8.0 Z8.1 Y8.3
Y9.0 Y9.1 Y9.2X9.0 X9.1 X9.2 Z9.0 Z9.1Y9.3

Y11.3 X11.2X11.1X11.0 Z11.0 Z11.1Y11.1 Y11.0Y11.2

Y10.3 X10.2X10.1X10.0 Z10.0 Z10.1 Y10.1Y10.0Y10.2

Subobject

Abbildung 2.3: Datenlayout beiStaggered Striping
[BGMJ94].

2.1.2 Auftragsplanung

Im Bereich der Continuous Media Dateisysteme ist es besonders wichtig, daß die Daten zu einem genau
festgelegten Zeitpunkt gelesen oder geschrieben werden. Werden Daten zu spät gelesen, kommt es bei-
spielsweise bei einem Video zu einer ruckhaften Darstellung, werden Daten zu früh gelesen, kann es zu
Pufferüberläufen kommen. Diese Anforderung macht eine Auftragsplanung in dem Dateisystem notwen-
dig; dafür existieren eine Reihe von Ansätzen.

� In [AOG91] wird eine logische Uhr zur Planung der Aufträge verwendet. Diese wird normalerwei-
se anhand der von einer Anwendung geforderten Datenrate vorgestellt, kann aber auch angehalten
werden, falls die Anwendung mit dem Auslesen der Daten aus dem Puffer nicht nachkommt. Das
Dateisystem ist mit dem Lesen immer mindestens um einenWorkahead-Parameter voraus, um evtl.
Schwankungen innerhalb des Datenstroms ausgleichen zu können (siehe Abb. 2.4).

� Bei Video-Servern werden die Leseoperationen häufig Runden bzw. Zyklen organisiert. In einer Run-
de wird dabei genau ein Teilstück (häufig ein Block auf der Festplatte) jedes Videostroms gelesen.

12 KAPITEL 2. STAND DER TECHNIK

Y: maximum work ahead
the index of the next byte to be put into the FIFO by CMFS at time t

G(t):
P(t):

the index of the next byte to be removed from the FIFO by the client
at time t
the value of the logical clock at time t
the size of the FIFO buffer

C(t):
B:

stop clock
if zero

Y

0

C(t) G(t) P(t)
(client read) (CMFS write)

offset in file

<

>

B

Abbildung 2.4: Die logische Uhr des Berkeley CMFS [AOG91].

Die Dauer einer Runde ist konstant, sie ist abhängig von der Zeit, die zum Lesen aller Blöcke ei-
ner Runde benötigt wird bzw. der Zeit, die zum Anzeigen der Videosequenzen benötigt wird. Die
Planung erfolgt dann anhand des durch die Rundendauer vorgegebenen Zeitrasters.

� In [BFD97] wird ein Verfahren beschrieben, bei dem die Planung anhand eines zentralen Plans (sche-
dule) erfolgt. Ein Eintrag in diesem Plan (Slot) entspricht einem Leseauftrag für einen Block. Die
Daten sind nach dem Round-Robin Verfahren über die Festplatten verteilt, so daß sich ein periodi-
sches Zugriffsverhalten auf die Festplatten ergibt. Die Länge dieser Periode ist bestimmt durch die
der Anzahl der Festplatten sowie der Zeit, die zum Anzeigen eines Blocks benötigt wird (block play
time). Während der Anzeige eines Blocks können bereits weitere Blöcke gelesen werden (in der Re-
gel ist die Zeit zum Lesen eines Blocks (block service time) geringer als die block play time), so daß
die Anzahl der Slots in dem Plan dem Produkt aus Anzahl Slots pro block play time und Anzahl der
Festplatten entspricht. Für die Auftragsplanung wird pro Festplatte ein Zeiger auf diesen zentralen
Plan verwaltet, der in Echtzeit bewegt wird. Beim Erreichen eines Slots der betreffenden Festplatte
wird dieser Block gelesen.

2.2 Beispiele für Dateisysteme

Da, wie bereits erwähnt, das permanente Speichern der Daten zu den wichtigen Aufgaben eines Betriebssy-
stems gehört, existieren eine Vielzahl von Dateisystemen. Im folgenden sollen einige davon exemplarisch
beschrieben werden, geordnet nach dem jeweiligen Einsatzgebiet.

2.2.1 Standard-Dateisysteme

Die Dateisysteme der bekannten Betriebssysteme (UNIX, Microsoft Windows) sind in der Regel für viele,
kleine Dateien konzipiert. Daraus resultiert u.a. die Verwendung kleiner Blöcke (in der Regel 512 Byte bis
4 KByte).

2.2. BEISPIELE FÜR DATEISYSTEME 13

Extended Secondary File System

DasExtended Secondary File System (ext2fs)ist das Standard-Dateisystem von Linux [BBD 95], die Struk-
tur des ext2fs ist stark an dasBSD Fast File Systemangelehnt [MJLF84]. Eine Festplatte (bzw. eine Parti-
tion) ist in mehrereBlockgruppenaufgeteilt, die je nach verwendeter Blockgröße 8 MByte bis 32 MByte
groß sind (siehe Abb. 2.5).

Super-
Block

Inode-
Bitmap

Inode-
Tabelle

Gruppen-
Deskriptoren

Block-
Bitmap

Datenblöcke

Block
Boot-

Blockgruppe 0 Blockgruppe 1 Blockgruppe n

Abbildung 2.5: Aufteilung der Festplatten in Blockgruppen im ext2fs
[BBD 95].

Jede dieser Blockgruppen enthält am Anfang neben einer Sicherungskopie des Superblocks die Verwal-
tungsinformationen (Block-Bitmap, Inode-Tabelle) für diese Gruppe. Ziel dieser Aufteilung ist es, die Ver-
waltungsinformationen möglichst nahe zu den Dateien zu speichern. Aus diesem Grund wird versucht, bei
der Blockallokation zuerst Blöcke zu verwenden, die in der Blockgruppe der Inode der Datei liegen und
die Dateien werden möglichst in der Nähe ihrer Verzeichnisse gespeichert. Für die Verwaltung der Dateien
werden im ext2fs Inodes verwendet.

NT File System

Neben dem von MS-DOS bekannten FAT-Dateisystem unterstützt Microsoft Windows NT das NT File Sy-
stem (NTFS) [Löw97, Cus94]. NTFS besitzt eine Reihe interessanter Eigenschaften. So werden die Meta-
daten (z.B. die Block-Bitmap) als normale Datei behandelt und nicht, wie z.B. bei ext2fs, statisch beim
Anlegen des Dateisystems erzeugt. Dadurch ist es beispielsweise möglich, ein bestehendes Dateisystem
durch das Hinzufügen einer weiteren Festplatte zu vergrößern, indem die Bitmapdatei entsprechend erwei-
tert wird (dadurch entstehen sog. Volume Sets). Eine Datei wird im NTFS durch eine Menge von Attributen
beschrieben, dazu gehören u.a. der Name und eine Zugriffssteuerliste, und auch die Daten werden als At-
tribut verwaltet. Alle Attribute einer Datei werden zu einem File Recordzusammengefaßt, welcher in einer
speziellen Datei, der Master File Table, gespeichert wird. Weitere Eigenschaften des NTFS sind die Un-
terstützung von Software-RAID sowie das transaktionsorientierte Speichern der Metadaten (dadurch wird
eine bessere Wiederherstellung der Konsistenz nach einem Systemausfall gewährleistet).

2.2.2 Multimedia-Dateisysteme

Die Speicherung von Continuous Media Daten stellt Anforderungen, die von den Standard-Dateisystemen
nicht erfüllt werden. An verschiedenen Stellen wurden daher spezielle Dateisysteme entwickelt. Für eine
Unterscheidung dieser Systeme sind mehrere Gesichtspunkte von Bedeutung:

� Datenlayout
Wie werden die Daten auf den Festplatten gespeichert?

� Akzeptanz-Test (Admission Control)
Welches Verfahren wird zur Entscheidung über das Zulassen neuer Datenströme angewendet?

14 KAPITEL 2. STAND DER TECHNIK

� Auftragsplanung
Wie werden die Aufträge zum Lesen oder Schreiben erzeugt?

Berkeley Continuous Media File System

Einer der ersten Vertreter der Multimedia-Dateisysteme ist das Berkeley Continuous Media File System
(CMFS)[AOG91]. Das Dateisystem verwendet die bereits erwähnte logische Uhr (vgl. Abb. 2.4). Für die
Admission Control bzw. die Planung der Aufträge beim Lesen eines Datenstroms müssen immer folgende
„Axiome“ erfüllt sein:

P (t)�G(t) � B (2.1)

P (t)� C(t) � �Y (2.2)

G(t) � P (t) (2.3)

Durch diese Bedingungen wird ausgedrückt, daß das Dateisystem nie mehr Daten im voraus liest als der
Puffer aufnehmen kann (erste Formel), das Dateisystem immer der logischen Uhr um mindestens den
Workahead-Parameter �Y voraus ist und daß die Anwendung nie das Dateisystem einholt. Für die Admis-
sion Control wird versucht, ein operation set� aufzustellen, so daß die Axiome noch erfüllt werden. Die
Menge � enthält dabei für jeden Datenstrom die Anzahl Datenblöcke, die für diesen Strom während eines
Zeitabschnitts gelesen werden sollen.

Für das Datenlayout werden durch das Dateisystem keine Vorgaben gemacht. Statt dessen verwenden die
Algorithmen zur Admission Control und zur Auftragsplanung als Eingangsgrößen Funktionen, anhand de-
rer die Worst-Case Lesezeiten für eine bestimmte Anzahl Datenblöcke von der Festplatte bestimmt werden.
Dies ermöglicht die Verwendung verschiedener Datenlayouts.

Mitra

Der in [GZS 96] vorgestellte Continuous Media Server Mitra verwendet eine Hierarchie von verschiedenen
Speichersystemen zur Verwaltung der Datenströme. Diese Hierarchie besteht aus einem großen, langsamen
Hintergrundspeicher (im Beispiel eine Jukebox von MO-Wechselplatten) und einem Festplatten-Array,
welches zum Zwischenspeichern der aktiven Datenströme verwendet wird. Die Verwendung einer derarti-
gen Hierarchie ist sinnvoll, da MO-Wechselplatten oder auch Bandlaufwerke im Vergleich zu Festplatten
für die Speicherung großer Datenmengen deutlich kostengünstiger sind, aber zum direkten Lesen der Daten
nicht geeignet sind.

Für die Verwaltung des Festplatten-Arrays wird ein Dateisystem Namens EVERESTverwendet. Zum Ab-
speichern der Datenströme werden diese in kleinere Teilstücke aufgeteilt. Diese Aufteilung wird so vorge-
nommen, daßdie Dauer zum Anzeigen der Teilstücke für die verschiedenen Datenströme gleich ist. Durch
EVEREST wird versucht, diese Teilstücke möglichst kontinuierlich auf den Festplatten zu speichern. Um
dabei Fragmentierungsprobleme zu vermeiden, werden die Daten nicht vollständig kontinuierlich gespei-
chert, sondern in möglichst großen Stücken. Dazu wird der zur Verfügung stehende Festplattenplatz an-
hand des aus der Hauptspeicherverwaltung bekannten Buddy-Algorithmus [WJNB95] verwaltet. Der zur
Speicherung der Teilstücke benötigte Festplattenplatz wird dann aus möglichst großen Blöcken zusammen-
gesetzt (so wird z.B. bei der Verwendung eines binären Buddy-Systems ein 169 KByte großes Teilstück in
einem 128 KByte, einem 32 KByte, einem 8 KByte und einem 1 KByte Block gespeichert). Um die Frag-
mentierung innerhalb des Buddy-Systems zu minimieren, wird nach jedem Löschen eines Datenstroms ggf.
ein Umspeichern und Zusammenfassen der Blöcke vorgenommen, so daß der freie Speicherplatz immer
in größtmöglichen Blöcken vorliegt4. Werden durch EVEREST mehrere Festplatten verwaltet, werden die
Datenblöcke mittels StaggeredStriping[BGMJ94] über die Festplatten verteilt.

4es wird argumentiert, daßder dadurch entstehende Mehraufwand vernachlässigt werden kann, da das Löschen eines Datenstroms
nicht häufig vorkommt

2.2. BEISPIELE FÜR DATEISYSTEME 15

Die Planung bzw. das Scheduling der Aufträge erfolgt nach dem Grouped Sweeping Scheme (GSS). Eine
Zeitperiode, deren Länge durch die Abspieldauer eines Teilstücks des Datenstroms bestimmt ist, wird in
mehrere gleichlange Gruppen aufgeteilt. Jedem Datenstrom wird eine Gruppe zugewiesen, in der des-
sen Datenblöcke gelesen werden. Innerhalb einer Gruppe werden die Datenblöcke nach dem SCAN-
Algorithmus gelesen, die einzelnen Gruppen werden nach Round-Robin abgearbeitet. Für die Admission
Control wird für den neuen Strom zuerst die Zeit zum Lesen eines Teilstücks (disk service time) bestimmt
und dann eine Gruppe gesucht, die noch genügend Leerlaufzeit hat, um diesen Strom zu bedienen.

Eine weitere Eigenschaft des EVEREST-Dateisystems ist, daßAnwendungen Einflußauf die Auftragspla-
nung nehmen können. Ist das System nicht vollständig ausgelastet, können durch das Dateisystem in den
entstehenden Leerlauf-Pausen bereits Blöcke im voraus gelesen werden. Um einen Pufferüberlauf in den
Anwendungen zu verhindern, wird der „Füllstand“ des Puffers überwacht, beim Erreichen einer gewissen
Marke sendet die Anwendung eine Stop-Nachricht an den Scheduler des Dateisystems, der daraufhin das
Lesen neuer Böcke für einen angegebenen Zeitraum unterbricht.

Video Server auf RT-Mach

Die Besonderheit des in [NOM 97] beschriebenen Video-Servers ist, daß die Datenströme nicht durch ei-
ne Blockliste (z.B. in einer Inode) beschrieben werden, sondern die Position der Datenblöcke berechnet
werden kann. Dies wird durch ein fest vorgegebenes Datenlayout erreicht, so daß zur Beschreibung einer
Datei nur die Kenntnis der Position des ersten Blocks sowie die Parameter des Layouts erforderlich sind.
Der große Nachteil dieser Systeme ist allerdings, daßdurch das fest vorgegebene Layout sehr schnell Frag-
mentierungsprobleme entstehen, besonders wenn häufig Datenströme gelöscht und andere neu geschrieben
werden. Aus diesem Grund eignen sich diese Systeme nur für relativ statische Umgebungen, z.B. Video-
Server bei denen nur selten neue Datenströme geschrieben werden.

Symphony

Ziel von Symphony war es, ein Dateisystem zu entwickeln, das sowohl Continuous Media Daten als auch
„normale“ Daten (z.B. Text) speichern kann [SGRV97]. Dabei werden die Daten auf ein und demselben
Dateisystem gespeichert und nicht auf getrennten Dateisystemen, die zu einem logischen System zusam-
mengefaßt werden. Durch diesen Ansatz kann eine bessere Leistung erzielt werden, da für jeden Datentyp
das vollständige System zur Verfügung steht; der Ansatz erfordert jedoch eine aufwendige, sehr flexible
Implementierung.

 Buffer
Subsystem

 Disk
Subsystem

Resource Manager

File Server Interface

Data type
 Specific
 Layer

 Data type
Independent
 Layer

Disks

 Video
 module

 Text
 module

 Audio
 module

Abbildung 2.6: Systemstruktur des Symphony Multime-
dia File System [SGRV97].

Symphony verwendet einen zweischichtigen Aufbau (siehe Abbildung 2.6). Die untere Schicht ist unab-
hängig von dem verwendeten Datentyp und stellt grundlegende Dateisystemfunktionen zur Verfügung:

16 KAPITEL 2. STAND DER TECHNIK

� Pufferverwaltung
Die Pufferverwaltung ist in der Lage, verschiedene Cache-Strategien gleichzeitig zu verwenden. Da-
zu werden für jede Strategie getrennte Pufferbereiche verwaltet.

� Ressourcenverwaltung
Durch die Ressourcenverwaltung wird im wesentlichen die Admission Control durchgeführt.

� Festplatten-Verwaltung
In diesem Teil der unteren Schicht werden die Auftragsplanung und Blockverwaltung realisiert. Für
die Auftragsplanung werden die Datenströme in 3 Kategorien eingeteilt:

1. Periodische Echtzeitaufträge

2. Nicht-periodische Echtzeitaufträge

3. Nicht-Echtzeitaufträge

Die Aufträge für jede Kategorie werden in getrennten Warteschlangen verwaltet. Für die Generierung
der Festplattenaufträge wird eine gemeinsame Warteschlange benutzt, dabei werden die Aufträge für
die Echtzeit-Datenströme (periodisch und nicht-periodisch) nach SCAN-EDF in diese Warteschlan-
ge eingefügt, die Nicht-Echtzeitaufträge nach Best-Effort. Um zu gewährleisten, daß die Aufträge
gleichberechtigt ausgeführt werden, wird jeder Kategorie ein Zeitanteil garantiert. Aufträge werden
nur dann in die globale Warteschlange aufgenommen, falls für die entsprechende Auftragskategorie
noch genügend Zeit zur Verfügung steht bzw. keine Aufträge anderer Kategorien vorhanden sind.
Durch die Vorgehensweise soll erreicht werden, daßEchtzeitaufträge entsprechend ihrer Zeitschran-
ken ausgeführt werden und auf der anderen Seite die Antwortzeiten für Nicht-Echtzeitaufträge so
gering wie möglich gehalten wird.

Die Blockverwaltung soll die Möglichkeit bieten, verschiedene Layouts gleichzeitig zu verwenden.
Dazu kann einer Allokationsanforderung ein „Hinweis“ gegeben werden, auf welcher Festplatte und
an welcher Stelle der Festplatte ein Block reserviert werden soll. Außerdem können Blöcke unter-
schiedlicher Größe angelegt werden. Das Dateisystem versucht dann, den Block an der angegebenen
Position oder in deren Nähe zu allokieren.

Die Metadaten werden ähnlich zu den UNIX-Inodes verwaltet, es wird allerdings zusätzlich ein Index
gespeichert, der die logische Struktur eines Datenstromes (z.B. die einzelnen Bilder eines Videos)
auf Bytepositionen in der Datei abbildet.

In der oberen, vom jeweiligen Datentyp abhängigen Schicht werden die eigentlichen Strategien zur Spei-
cherung der Datenströme implementiert. Für jeden Datentyp existiert dafür ein separates Modul. Das Mo-
dul zur Speicherung von Videoströmen verwendet z.B. große Blöcke und verteilt diese nach einem ge-
eigneten Striping-Schema über die Festplatten, während das Text-Modul mit kleinen Blöcken arbeitet und
diese strikt nach Round-Robin verteilt.

2.2.3 Echtzeit-Datenbanken

Im wesentlichen haben Datenbanksysteme zur Verwaltung von Echtzeit- oder Multimedia-Daten die glei-
chen Probleme zu lösen wie die Dateisysteme: Admission Control, Auftragsplanung und Datenlayout
[RzS97, KGM93]. Hinzu kommt das Problem einer geeigneten Indexstruktur. Die bis jetzt beschriebenen
Verfahren (Blocklisten oder spezielle Layoutvarianten) sind vor allem dann ungeeignet, wenn das System
Operationen wie das Einfügen oder Löschen von Teilen des Datenstroms (z.B. einiger Bilder eines Videos)
unterstützen soll. In [Bil92] wird für dieses Problem eine Lösung beschrieben. Dort werden B-Bäume für
die Verwaltung der Dateien verwendet (siehe Abb. 2.7). Diese ermöglichen das Einfügen oder Löschen von
Teilen innerhalb der Datei, erfordern allerdings einen erhöhten Aufwand für die Implementierung.

2.2. BEISPIELE FÜR DATEISYSTEME 17

��
��
��
��

��
��
��
�� partially full pagefull page

1020 1820

1020950 280 710 800

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

Abbildung 2.7: B-Bäume zur Blockverwaltung in EOS [Bil92].

18 KAPITEL 2. STAND DER TECHNIK

Kapitel 3

Entwurf

3.1 Grundlagen

Bevor die verschiedenen Entwurfsmöglichkeiten beschrieben werden, sollen an dieser Stelle zunächst die
wichtigsten Grundlagen und Rahmenbedingungen erläutert werden.

3.1.1 SCSI-Auftragsplanung

Das Dateisystem soll zum Zugriff auf die Festplatten den im Rahmen des DROPS-Projekts von Frank
Mehnert entwickelten SCSI-Treiber verwenden [Meh98]. Dieser Treiber ist in der Lage, Zusagen über die
Abarbeitungsdauer der Aufträge zu geben. Dazu werden die Aufträge in Slotsabgearbeitet (siehe Abb.
3.1). Diese Slots haben eine feste Länge, die durch die Worst-Case Bedienungszeit1 bestimmt ist.

���������
���������
���������

���������
���������
���������

50

Platte 3

Platte 2

Platte 1

Lesekommando Datenübertragung seek

Periode

Slot

Zeit [ms]10 15 20 25 30

Abbildung 3.1: Auftragsbearbeitung des SCSI-Treibers [Meh98].

Während der Kopfpositionierung einer Festplatte, bei der der SCSI-Bus durch diese nicht belegt ist, können
Aufträge an andere Festplatten übertragen werden. Die maximale Anzahl der Aufträge, die in einer solchen
Periodebearbeitet werden können, kann aus dem Verhältnis der Übertragungsdauer des Kommandos und
der Daten sowie der Positionierungszeit berechnet werden. Die maximale Größe eines Datenblocks, der
innerhalb eines Slots gelesen werden kann, wird durch das SCSI-System anhand der Eigenschaften der
verwendeten Hardware bestimmt, übliche Werte sind 64 KByte oder 128 KByte. Das Dateisystem sollte
möglichst auch mit dieser Größe arbeiten, da bei kleineren Blöcken nicht die volle Leistungsfähigkeit
erreicht werden kann.

Für die Übertragung der Aufträge an den SCSI-Treiber existieren zwei verschiedene Varianten:

1Die Bedienungszeit setzt sich aus der Zeit die für die Übertragung des Lesekommandos und der Daten sowie der Positionierungs-
zeit des Festplattenkopfes zusammen.

19

20 KAPITEL 3. ENTWURF

struct request {
unsigned int period;
/* diskrete Zeitangabe, in welcher Periode der Auftrag auszuführen ist*/

unsigned int slot;
/* welcher Slot soll belegt werden*/

scsi_block_t blk;
/* Angaben über Partitionsnummer, Blocknummer und -länge*/

byte_t *map_address;
/* Adresse des Schreib-/Lesepuffers*/

word_t status;
/* Status Bits*/

word_t reserved;
};

Abbildung 3.2: Auftragsstruktur für Echtzeit-Aufträge [Meh98]

� Die Aufträge für Echtzeitdatenströme werden in Form von Auftragsfeldern an den SCSI-Treiber ge-
sendet. Jeder einzelne Auftrag wird durch eine Request-Struktur (siehe Abb. 3.2) beschrieben. Der
SCSI-Treiber sortiert die Aufträge in einen Plan ein, der durch die Verwendung der Perioden und
Slots entsteht. Zu beachten ist, daßdie angegebene Adresse des Puffers die physische Speicheradres-
se ist, da der SCSI-Treiber die Daten direkt durch DMA (Direct Memory Access) in den Speicher
überträgt.

� Nicht-Echtzeitaufträge werden einzeln an den Treiber gesendet. Dieser versucht sie so schnell wie
möglich zu bearbeiten.

3.1.2 DROPS / L4Linux

Am Lehrstuhl für Betriebssysteme der Technischen Universität Dresden wird derzeit an der Entwicklung
eines Echtzeitbetriebssystems, dem Dresden Realtime Operating System, gearbeitet. Dieses System soll
durch die Verwendung spezieller Algorithmen zur Verwaltung der Systemressourcen (CPU-Scheduling,
Speicherverwaltung, . . .) die Abarbeitung von Echtzeitanwendungen parallel zu UNIX-Anwendungen un-
terstützen (siehe Abb. 3.3).

µ -KernL4

Linux

Echtzeit-Anwendungen

Ressourcen-Verwaltung (CPU, Speicher, ...)

Abbildung 3.3: Struktur des Dresden Realtime Operating
System (DROPS)

3.1. GRUNDLAGEN 21

Als Grundlage für dieses System wird der Mikrokern L4 verwendet [Lie96], für die Unterstützung der
Nicht-Echtzeit Anwendungen wurde der Linux-Kern auf L4 portiert [Hoh96]. Als Hauptanwendungsge-
biete werden Multimedia-Systeme betrachtet, z.B. die Verarbeitung von Audio- oder Videoströmen.

3.1.3 QoS-Parameter

Die Anforderungen eines Datenstroms müssen dem Dateisystem auf eine geeignete Weise übergeben wer-
den. Für konstante Datenströme, z.B. unkomprimierte Videoströme, ist das recht einfach, die Angabe der
geforderten Datenrate ist für das Dateisystem ausreichend, um die Einplanung vorzunehmen. Andere Da-
ten, z.B. komprimierte Videos, weisen jedoch keine konstante Datenrate auf, die Datenmengen, die pro
Zeiteinheit gelesen werden müssen, schwanken. In [MHN95] wird eine Möglichkeit beschrieben, derartige
Datenströme zu charakterisieren. Dabei wird der Datenstrom in sehr kleine Abschnitte zerlegt (die Dauer
eines Abschnitts kann z.B. 0,5 s betragen) und für jeden dieser Abschnitte die Datenmenge bestimmt. Die
so entstehende Zahlenfolge wird als Grundlage für die Einplanung verwendet. Diese Vorgehensweise er-
möglicht eine sehr genaue Planung, erfordert jedoch aufgrund der großen Menge an Beschreibungsdaten
einen sehr hohen Aufwand.

Um diese großen Datenmengen zu vermeiden, werden für die Beschreibung der Datenströme nicht die pro
Zeiteinheit gelesenen Datenmengen betrachtet sondern ein Datenstrom wird durch die Angabe einer mittle-
ren Datenrate sowie eines Parameters beschrieben, der die Schwankung der tatsächlichen um diese mittlere
Datenrate widerspiegelt. In [Ham97] ist das dieser Beschreibung zugrunde liegende Modell erläutert. Da
durch die Verwendung einer mittleren Datenrate die genaue Position der einzelnen Schwankungen nicht
mehr bekannt ist, kann die Planung nicht mehr so genau vorgenommen werden wie bei der Verwendung
der zuerst erläuterten Beschreibung, die entstehende Abweichung kann jedoch begrenzt werden, indem ein
Strom in wenige große Abschnitte aufgeteilt wird, für die ein separater Parametersatz verwendet wird.

3.1.4 Admission Control

Aufgabe der Admission Control ist die Entscheidung über die Zulassung neuer Aufträge. Dazu werden die
Anforderungen eines Auftrags anhand der übergebenen Beschreibung berechnet und mit den zur Verfügung
stehende Ressourcen sowie der aktuellen Systemlast verglichen [Rud97a]. Für das Dateisystem sind im
Moment zwei Ressourcen von Bedeutung: der benötigte Pufferplatz und die Festplattenbandbreite. Der
benötigte Pufferplatz läßt sich aus der geforderten Datenrate und der Dauer berechnen, die der Puffer von
der Anwendung benötigt wird.

Die Planung der verfügbaren Festplattenbandbreite ist sehr stark durch die beschriebene Auftragsplanung
des SCSI-Treibers beeinflußt. Die maximale Bandbreite wird erreicht, indem alle verfügbaren Slots ei-
ner Periode belegt werden2. Kleinere Bandbreiten können zunächst erreicht werden, indem nicht alle Slots
einer Periode belegt werden. Die kleinste Bandbreite entspricht dann der Bandbreite, die durch das Verwen-
den eines einzelnen Slots erzielt wird. Für reale Werte (Periodendauer 40 ms, 128 KByte Daten pro Slot)
ergibt sich dadurch eine Bandbreite von 3,125 MByte/s. Die Bandbreitenanforderungen realer Datenströme
liegen jedoch deutlich darunter (ein MPEG-2 Strom hat z.B. eine maximale Datenrate von 500 KByte/s).
Diese können unterstützt werden, indem nicht alle aufeinanderfolgenden Perioden für den Datenstrom ver-
wendet werden. Je kleiner die geforderten Bandbreiten sind, um so mehr Perioden müssen ausgelassen
werden. Eine derartige Abfolge von verwendeten Perioden wird im weiteren ein Zyklusgenannt, die Länge
des Zyklus wird durch die minimale unterstützte Bandbreite bestimmt.

3.1.5 Begriffsbestimmung

Im folgenden werden die Zugriffe auf die Dateien in drei Kategorien unterteilt:

2Dabei ist zu berücksichtigen, daß für eine Festplatte in einer Periode nur maximal ein Auftrag bearbeitet werden kann. Um die
maximale Bandbreite des SCSI-Buses ausnutzen zu können, müssen die Daten geeignet über alle Festplatten verteilt werden.

22 KAPITEL 3. ENTWURF

Kontinuierlicher Echtzeitzugriff Diese Zugriffsart entspricht dem Vorgehen bei der Bedienung von Con-
tinuous Media Daten. Die Datei wird linear bearbeitet, für ein Video werden z.B. die einzelnen Bilder
der Reihe nach gelesen. Die Teilobjekte der Datei müssen dabei zu einem durch die verwendete Da-
tenrate bestimmten Zeitpunkt bearbeitet werden.

Nicht-kontinuierlicher Echtzeitzugriff Bei dieser Kategorie wird auf die Datei wahlfrei zugegriffen, die
Position der einzelnen Zugriffe ist im voraus nicht bekannt. Das Dateisystem mußhier gewährleisten,
daßdie Aufträge innerhalb eines angeforderten Zeitbereichs abgearbeitet werden.

Nicht-Echtzeitzugriff Bei dieser Zugriffsart müssen durch das Dateisystem keine Zusagen hinsichtlich
der Bearbeitungsdauer eines Auftrags eingehalten werden.

3.2 Entwurfsziele

Ziel dieser Arbeit ist die Entwicklung eines echtzeitfähigen Dateisystems unter Verwendung des in Ab-
schnitt 3.1.1 beschriebenen SCSI-Treibers. Das Dateisystem stellt dabei eine Echtzeitkomponente des
DROPS dar. Der Entwurf soll folgende Bedingungen berücksichtigen:

� Das Dateisystem soll verschiedene Datentypen gleichzeitig unterstützen können. Dazu gehören die
klassischen Continuous Media Daten wie zum Beispiel Video- oder Audioströme, aber auch nicht-
kontinuierliche Echtzeitdaten und Nicht-Echtzeitdaten wie etwa Texte oder Bilder.

� Der Zugriff auf die Daten soll sowohl von Echtzeitanwendungen als auch von L4Linux-Anwendungen
möglich sein.

� Für die Übertragung der Daten an die Echtzeitanwendungen soll ein geeignetes Puffersystem ent-
wickelt werden.

Als mögliche Anwendungsgebiete für das Dateisystem sind kleinere bis mittlere Informationsysteme, z.B.
auf Messeständen oder Flughäfen oder auch kleinere Video-Server denkbar.

3.3 Systemstruktur

Abbildung 3.4 gibt einen groben Überblick über die Struktur des Gesamtsystems. Der SCSI-Treiber ist
eine eigenständige DROPS-Komponente, das Dateisystem enthält als eine Teilkomponente die Admission
Control. Im folgenden sollen das Zusammenwirken dieser einzelnen Komponenten sowie die sich daraus
ergebenden Schnittstellen zwischen den einzelnen Komponenten beschrieben werden.

3.3.1 Zusammenwirken Admission Control – Dateisystem – SCSI Treiber

Durch die Admission Control wird überprüft, ob anhand der augenblicklichen Systemlast ein neuer Da-
tenstrom akzeptiert werden kann oder nicht. Stehen noch genügend Ressourcen zur Bearbeitung der An-
forderung zur Verfügung, wird eine entsprechende Zusage an die Anwendung gegeben. Die Aufgabe des
Dateisystems und des SCSI-Treibers ist, die Einhaltung dieser Zusage zu garantieren. Für einige Res-
sourcen (z.B. den benötigten Pufferspeicher) kann das durch eine statische Reservierung erfolgen. Für die
Garantierung der zugesagten Bandbreite sind mehrere Modelle denkbar:

3.3. SYSTEMSTRUKTUR 23

Admission Control

L4Linux

Ressourcen - Manager

L4

SCSI-Treiber

Dateisystem

Anwendung

Abbildung 3.4: Struktur des Gesamtsystems

Getrennte Admission Control und Auftragsplanung

Der Test in der Admission Control erfolgt auf Basis der verfügbaren Gesamtbandbreite, die sich durch die
Anzahl der Slots pro Periode sowie die Länge und gelesene Datenmenge eines Slots ergibt. Es wird über-
prüft, ob die geforderte Bandbreite (aufgerundet auf ein Vielfaches der Minimalbandbreite) noch verfügbar
ist. Das Dateisystem erzeugt dann in gewissen Abständen eine Liste von Aufträgen und übergibt diese dem
SCSI-Treiber.

Damit die durch die Admission Control gemachte Zusage garantiert werden kann, sind durch das Dateisy-
stem einige Bedingungen einzuhalten. Die wichtigste Bedingung ist, daßdie Aufträge eines Zyklus gesam-
melt werden und bereits eine Zyklusdauer im voraus bekannt sein müssen. Dies ist erforderlich, da durch
die Admission Control lediglich gewährleistet wird, daßinnerhalb eines Zyklus ausreichend Slots zur Ver-
fügung stehen, deren Position jedoch nicht festgelegt wird. Diese wird erst im SCSI-Treiber bestimmt.
Aus dieser Bedingung folgt, daß immer mindestens ein vollständiger Zyklus gepuffert werden muß, um
die Zusagen einzuhalten. In Abhängigkeit von der Zyklusdauer entsteht dadurch ein sehr großer Puffer-
bedarf (siehe Tabelle 3.1 auf Seite 26), wodurch diese Vorgehensweise besonders für Ströme mit kleinen
Bandbreitenanforderungen (und damit großen Zykluslängen) nicht praktikabel ist.

Gekoppelte Admission Control und Auftragsplanung

Der benötigte Pufferbedarf kann verringert werden, indem bereits durch die Admission Control die genauen
Positionen bestimmt werden, an denen die Aufträge eines einzelnen Datenstroms gelesen werden [Här97b,
Rud97a] (siehe Abb. 3.5).

Die Kenntnis der genauen Positionen kann durch das Dateisystem für eine genauere Planung verwendet
werden. Die Aufträge eines Datenstroms werden immer nur in den dafür vorgesehenen Slots abgearbei-
tet. Dies kann erreicht werden, indem entweder die Slot-Nummern direkt an den SCSI-Treiber übergeben
werden oder indem die einzelnen Aufträge durch das Dateisystem eine ihrer Slot-Position entsprechende
Deadline zugewiesen bekommen.

3.3.2 Schnittstellen

Das Dateisystem soll zwei Zugriffsvarianten unterstützen:

24 KAPITEL 3. ENTWURF

Zeit

Slot

A

B

C

Periode Zyklus

Strom 1 Strom 2 Strom 3 freier Slot

Admission Control

Auftragserzeugung

Auftragsausführung

Dateisystem

SCSI-Treiber

Abbildung 3.5: Zuordnung der SCSI-Slots durch die Admission Control

1. Echtzeitanwendungen sollen auf die Daten in Echtzeit und in Nicht-Echtzeit zugreifen können

2. L4Linux-Anwendungen sollen auf die Daten in Nicht-Echtzeit zugreifen können.

Die Schnittstellen für den Zugriff einer Echtzeitanwendung sind für die drei Zugriffsarten unterschiedlich
realisiert:

� Kontinuierliche Echtzeitdaten
Diese Daten sind durch ein vorhersagbares Zugriffsverhalten gekennzeichnet, da die Dateien line-
ar und mit einer festgelegten Datenrate bearbeitet werden. Die Kenntnis dieser Eigenschaft kann
sich das Dateisystem zu Nutze machen, indem es selbstständig die Aufträge generiert und die Daten
an die Anwendung weiterleitet (so können die Daten durch das Dateisystem in einen mit der An-
wendung gemeinsam genutzten Speicherbereich geschrieben werden). Durch dieses aktive Vorgehen
des Dateisystems kann der Kommunikationsaufwand mit der Anwendung auf wenige Nachrichten
zum Starten der Übertragung reduziert werden, und dies ermöglicht eine bessere Kontrolle über die
Auftragsplanung. Sollen allerdings solche Operationen wie das schnelle Vor- oder Rückspulen bei
Videos unterstützt werden, sind zusätzliche Nachrichten zu definieren.

Auch beim Schreiben der Echtzeitdaten soll das Dateisystem aktiv die Aufträge zum Schreiben der
Daten erzeugen. Dies ist erforderlich, um eine Einhaltung des vorgegebenen Datenlayouts zu errei-
chen (siehe dazu Abschnitt 3.4.2).

� Nicht-kontinuierliche Echtzeitdaten
Bei nicht-kontinuierlichen Datenströmen sind die Zugriffe auf die Daten nicht vorhersagbar, es fehlt
dem Dateisystem die Grundlage für ein aktives Senden der Daten. Es mußalso auf konkrete Aufträge
warten, die von der Anwendung erzeugt werden. Dieses Verfahren entspricht der Zugriffsart bei

3.4. BLOCK-VERWALTUNG 25

klassischen Dateisystemen, es wird jedoch zusätzlich zu jedem Auftrag ein Zeitpunkt angegeben, bis
wann dieser zu bearbeiten ist.

� Nicht-Echtzeitdaten
Auf die Nicht-Echtzeitdaten wird analog zu den klassischen Dateisystemen zugegriffen. Die Anwen-
dung erzeugt für jeden Zugriff einen Auftrag, den das Dateisystem bearbeitet.

Um eine möglichst einheitliche Schnittstelle für L4Linux-Anwendungen zu bieten, soll das Dateisystem
in das Virtual File System (VFS) [BBD 95] integriert werden. Dadurch kann das Dateisystem in einen
bestehenden Verzeichnisbaum eingebunden werden, und der Zugriff auf die Dateien erfolgt über L4Linux-
Systemrufe.

3.4 Block-Verwaltung

Durch das Block-Subsystem werden die physischen Blöcke auf den Festplatten verwaltet und es stellt
Mechanismen zu Allokation und Freigabe dieser Blöcke zur Verfügung.

3.4.1 Freispeicherverwaltung

Die Fragestellungen beim Entwurf der Freispeicherverwaltung sind wieviele Blockgrößen unterstützt wer-
den sollen (eine feste oder mehrere) und wie großdiese sind.

Standard-Dateisysteme verwenden in der Regel eine feste Blockgröße, die beim Erzeugen des Dateisystems
festgelegt wird. Für das hier betrachtete Dateisystem könnte die Größe entsprechend der Datenmenge ge-
wählt werden, die pro Slot gelesen werden kann (z.B. 128 KByte). Die Verwendung so großer Blöcke
führt allerdings bei Nicht-Echtzeitdaten zu einem sehr großen Verschnitt, da Dateien nur in Vielfachen von
dieser Blockgröße angelegt werden können. Eine Lösung besteht in der Verwendung von verschiedenen
Blockgrößen für Echtzeit- und Nicht-Echtzeitdaten wie z.B. in [Kli97]. Dort werden zwei verschiedene,
feste Blockgrößen unterstützt.

Bei der Bestimmung der verwendeten Blockgröße ist auch zu berücksichtigen, daß die in einem Slot ge-
lesene Datenmenge dSlot Einfluß auf die Länge des in Abschnitt 3.1.4 beschriebenen Zyklus hat. Die
Länge tZyklus und damit auch die Anzahl nZyklus der Perioden in einem Zyklus ergibt sich bei gegebener
Periodendauer tPeriode und geforderter Minimaldatenrate bmin durch:

tZyklus =
dSlot

bmin

(3.1)

nZyklus =
dSlot

bmin � tPeriode
(3.2)

Bei sehr kleinen Minimaldatenraten kann die Zykluslänge sehr groß werden, für reale Werte kann sie
mehrere Sekunden betragen (siehe Tabelle 3.1).

Durch große Zykluslängen können zwei Probleme entstehen:

� Soll das Dateisystem viele Datenströme mit der minimalen Datenrate bearbeiten, entsteht ein sehr
hoher Pufferbedarf. Dieser resultiert daraus, daßfür jeden Datenstrom mindestens ein Puffer mit der
Größe von dSlot über die komplette Dauer des Zyklus benötigt wird. Die Daten werden in einem
Slot des Zyklus in diesen Puffer gelesen, die Anwendung liest diese über die Dauer des Zyklus aus
diesem Puffer. In Tabelle 3.1 ist für den Extremfall, daß das Dateisystem die maximale Anzahl an
Datenströmen mit der minimalen Datenrate liefert, der benötigte Puffer aufgeführt. In diesem Fall
wird dann durch jeden Slot des Zyklus ein anderer Datenstrom bearbeitet.

Für die Begrenzung des benötigten Puffers gibt es zwei Möglichkeiten, zum einen kann die Anzahl
der Datenströme in Abhängigkeit des zur Verfügung stehenden Pufferspeichers eingeschränkt wer-
den, zum anderen kann die Zykluslänge verkürzt werden, indem pro Slot weniger Daten gelesen

26 KAPITEL 3. ENTWURF

min. Bandbreite Zykluslänge Anzahl Perioden Pufferbedarf
bmin [KByte/s] tZyklus [s] pro Zyklus nZyklus [MByte]

3200 0,04 1 0,625
1067 0,12 3 1,875

128 1,00 25 15,625
64 2,00 50 31,250

8 16,00 400 250,000
1 128,00 3200 2000,000

Tabelle 3.1: Zykluslänge und Pufferbedarf (bei voller Auslastung) in Abhän-
gigkeit der minimalen Bandbreite (tPeriode = 40ms; dSlot = 128KByte, 5
Slots pro Periode).

werden. Die erste Variante hat den Vorteil, daß in den freien Slots, die durch die Begrenzung der
Anzahl der Datenströme entstehen, Nicht-Echtzeitdaten gelesen werden können.

� Das zweite Problem ist die hohe Latenz beim Starten bzw. beim Wiederaufnehmen einer Datenüber-
tragung. Eine Anwendung muß dabei solange warten, bis innerhalb des Zyklus der Slot erreicht ist,
der der Anwendung durch die Admission Control zugewiesen wurde. Eine Verringerung dieser Zeit
kann nur erreicht werden, indem die Zykluslänge durch einen kleineren Wert für dSlot begrenzt wird.

Die Frage ist nun, ob die verschiedenen Werte für dSlot auch bei der Blockallokation berücksichtigt oder
ob die Dateien generell mit der maximalen Größe von dSlot angelegt werden. Durch die Verwendung
kleinerer Blockgrößen können mehr Anwendungen gleichzeitig auf die Datei zugreifen, bei der Allokation
mit der festen Blockgröße ist die maximale Datentrate höher, mit der eine Datei theoretisch gelesen werden
könnte. Für das Dateisystem ist eher die gleichzeitige Bedienung mehrerer Datenströme von Bedeutung,
so daßauch variable Blockgrößen für die Allokation verwendet werden3.

Für die Behandlung variabler Blockgrößen existieren verschiedene Ansätze. Ein einfacher Weg ist die Re-
servierung separater Bereiche auf der Festplatte für jede Blockgröße. Diese Aufteilung ist jedoch nicht
flexibel, was besonders bei im voraus nicht bekannten Datenströmen zu Problemen führt, da Bereiche oft
benötigter Blockgrößen bereits aufgebraucht sind, während andere noch ausreichend Speicherplatz enthal-
ten, der jedoch nicht benutzt werden kann.

Flexibler kann der Speicherplatz durch die Verwendung des aus der Hauptspeicherverwaltung bekannten
Buddy-Algorithmus verwaltet werden. Ausgehend von der kleinsten BlockgrößeBBasis, die z.B. durch die
Hardware oder den SCSI-Treiber vorgegeben wird, werden benachbarte Blöcke zu einem größerem Block
zusammengefaßt (siehe Abb. 3.6)4.

Die Anzahl S der verfügbaren Blockgrößen Bi ist abhängig von der Kapazität der Festplatte und BBasis:

S =

�
ld

��
CFestplatte

BBasis

���
(3.3)

Bi = BBasis � 2
i (0 � i < S) (3.4)

Die Initialisierung wird so vorgenommen, daß der Speicherplatz in die größtmöglichen Blöcke aufgeteilt
ist. Bei der Allokation wird zunächst versucht, einen Block auf der entsprechenden Ebene zu finden. Ist
dort kein Block verfügbar, wird ein Block einer höheren Ebene geteilt. Beim Freigeben wird überprüft, ob
der Block mit dem benachbarten zu einem größeren Block zusammengefaßt werden kann.

3Diese Entscheidung sollte nach der Implementierung noch einmal überprüft werden, da die Verwendung kleiner Blockgrößen bei
der Allokation einen großen Einfluß auf die Gesamtleistung des Systems hat.

4Hier wird der binäre Buddy-Algorithmus verwendet, d.h. es werden immer zwei benachbarte Blöcke zusammengefaßt. Es sind
auch Systeme mit einer größeren Anzahl an zusammenzufassenden Blöcken denkbar, bei diesen ist der Abstand zwischen den ver-
fügbaren Blockgrößen jedoch größer.

3.4. BLOCK-VERWALTUNG 27

1
0

2
3
4

Ebene

1024
2048
4096
8192

16484

Blockgröße
[Byte]

Abbildung 3.6: Blockverwaltung mittels Buddy-Algorithmus

3.4.2 Datenlayout

Bei der Einteilung der Perioden durch den SCSI-Treiber werden die Worst-Case-Zeiten für die Positionie-
rung des Festplattenkopfes verwendet. Es ist daher nicht sinnvoll, im Datenlayout Rücksicht auf die Lage
der einzelnen Blöcke auf einer Festplatte zu nehmen. Vielmehr muß durch das Datenlayout gewährleistet
werden, daßin einer Periode nicht mehrere Aufträge für eine Festplatte vorliegen. Weiterhin soll durch das
Layout eine möglichst hohe Datenrate unterstützt werden. Daraus resultiert zunächst, daßdie Blockgröße,
die zum Speichern der Dateien verwendet werden, in der Regel anhand der Datenmengen, die pro Slot ge-
lesen werden, gewählt wird. Kleinere Blockgrößen werden nur dann verwendet, wenn dies aufgrund einer
zu großen Zykluslänge erforderlich wird (siehe letzter Abschnitt).

Um zu verhindern, daß in einer Periode mehrere Aufträge für eine Festplatte vorliegen, muß durch das
Layout gewährleistet werden, daß aufeinanderfolgende Datenblöcke einer Datei nicht auf der gleichen
Festplatte liegen. Für wieviele aufeinanderfolgende Datenblöcke das gilt, hängt von der Anzahl der Slots
ab, die ein Datenstrom pro Periode benötigt. Belegt ein Datenstrom maximal einen Slot, so kann dieser
theoretisch vollständig auf einer Festplatte gespeichert werden. Benötigt der Datenstrom jedoch mehrere
Slots, so müssen entsprechend viele Datenblöcke auf unterschiedlichen Festplatten verteilt sein (bei zwei
verwendeten Slots pro Periode müssen jeweils benachbarte Blöcke auf unterschiedlichen Festplatten liegen,
bei drei Slots jeweils drei aufeinanderfolgende Blöcke usw.). Auch wenn eine Datei nur einen Slot pro
Periode benötigt, ist es jedoch auch dort nicht sinnvoll, diese auf einer einzelnen Festplatte zu speichern.
Dies hat vor allem zwei Gründe:

� Soll der Datenstrom durch verschiedene Anwendungen gleichzeitig an unterschiedliche Positionen
gelesen werden können, so müssen die Daten über möglichst viele Festplatten verteilt sein. Wird die
Datei nur auf einer Festplatte gespeichert und wird pro Periode ein Slot zum Lesen benötigt, kann
nur eine Anwendung diesen Datenstrom lesen. Wird dieselbe Datei jedoch z.B. über zwei Festplatten
zyklisch verteilt, können auch zwei Anwendungen die Datei lesen, indem die Aufträge ineinander
geschachtelt werden (in der ersten Periode liest die erste Anwendung von der ersten Festplatte, die
zweite von der zweiten, in der darauf folgenden liest die erste Anwendung von der zweiten und die
zweite Anwendung von der ersten Festplatte).

� Wird das Dateisystem zum Speichern und Abspielen von Videos verwendet und soll ein schneller
Vorlauf ermöglicht werden, ist ebenfalls eine Verteilung über viele Festplatten notwendig. Durch
den schnellen Vorlauf wird der Abarbeitungsplan zusammengestaucht, d.h. bei einem Vorlauf mit
vierfacher Geschwindigkeit benötigt ein Datenstrom auch die vierfache Anzahl an Slots pro Periode.
Ein Datenstrom, der normalerweise genau einen Slot pro Periode benötigt, benötigt dann vier Slots
innerhalb einer Periode. Dies erfordert, daß vier aufeinanderfolgende Blöcke der Datei auf jeweils
unterschiedlichen Festplatten gespeichert sind.

Diese Anforderungen werden durch eine Round-Robin-Verteilung der Daten über die Festplatten ähnlich
dem Staggered Striping [BGMJ94] erreicht. Die Blöcke einer Datei werden der Reihe nach über die zur

28 KAPITEL 3. ENTWURF

Verfügung stehenden Festplatten verteilt, beim Erreichen der letzten Festplatte wird wieder mit der ersten
Festplatte begonnen.

Durch eine geeignete Abwandlung dieses Datenlayouts kann noch ein weiteres Problem gelöst werden.
Durch die Admission Control werden die geforderten Bandbreiten der Datenströme auf Vielfache der mi-
nimalen Bandbreite aufgerundet und die Festlegung der Slots anhand dieser gerundeten Bandbreite vorge-
nommen. Dadurch werden die Daten mit einer größeren Bandbreite gelesen als die Anwendung angefordert
hat, das Dateisystem liest also mehr Daten als die Anwendung verarbeitet. Um ein zu starkes Auseinan-
derlaufen der Anwendung und des Dateisystems zu verhindern, werden, sobald der Vorlauf großgenug ist,
Datenblöcke bei der Allokation ausgelassen [Rud97b].

ausgelassener Blockx y y ... durch gerundete Bandbreite entstandener Vorlauf
x ... Nummer des Datenblocks

3 84

4 112

9 52

10 807 96

8 1241 28

2 56

6 68

5 40

1

2

3

4

Festplatte

Zeit

Abbildung 3.7: Anpassung der Lese- und Verarbeitungsbandbreiten durch Auslassen von Daten-
blöcken

Abbildung 3.7 verdeutlicht dies an einem Beispiel. Das Dateisystem liefert pro Periode einen 128 KByte-
Datenblock, während die Anwendung im selben Zeitraum nur 100 KByte verarbeitet. Nach dem vierten
Block ist der dadurch entstehende Vorlauf so groß, daß der nächste Block übersprungen werden kann und
statt dessen die Anwendung die Daten aus dem Puffer bearbeitet.

Für die ausgelassenen Datenblöcke werden durch das Dateisystem keine Aufträge für den SCSI-Treiber
erzeugt, d.h. dieser kann die eigentlich dafür vorgesehenen Slots für die Bedienung anderer Aufträge ver-
wenden.

Anlegen der Dateien

Für das Anlegen der Dateien und damit die Erzeugung des entsprechenden Datenlayouts sind zwei Verfah-
ren zu unterscheiden:

� Nicht-Echtzeitschreiben einer Datei
Beim Schreiben einer Echtzeit-Datei in Nicht-Echtzeit, z.B. von L4Linux aus, kann diese bevor sie
geschrieben wird analysiert und anhand der bestimmten realen und gerundeten Bandbreite das Lay-
out berechnet werden.

� Echtzeitschreiben einer Datei
Soll eine Echtzeit-Datei auch in Echtzeit geschrieben werden, so besteht das Problem, daß die tat-
sächlichen Bandbreitenanforderungen der Datei im voraus nicht bekannt sind, es können meistens
nur obere Grenzwerte für die zu erwartenden Anforderungen angegeben werden. Somit fehlen für
eine genaue Bestimmung des Datenlayouts die erforderlichen Eingangsdaten. Ein erster Ansatz, die
Bestimmung des Layouts anhand der oberen Grenzwerte vorzunehmen und die Daten auch konti-
nuierlich entsprechend diesen Layouts zu speichern, ist nicht anwendbar, da der reale Schreibablauf
und der durch die Admission Control vorbestimmte Verlauf in der Regel voneinander abweichen und
somit die Gefahr besteht, daßSchreiboperationen aufgrund anderer Anforderungen im SCSI-Treiber
nicht ausgeführt werden können.

3.5. DATEIEN 29

Um ein Auseinanderlaufen des realen mit dem eingeplanten Schreibablauf zu verhindern, muß das
Dateisystem den geplanten Ablauf durchsetzen, auch wenn dadurch Lücken innerhalb der Datei ent-
stehen. Um das Echtzeit-Schreiben garantieren zu können, wird die Einplanung durch die Admission
Control und auch das Datenlayout anhand der oberen Grenzwerte für den Datenstrom durchgeführt
und auch ausgeführt. Nachdem die Datei so geschrieben wurde, muß eine Reorganisation erfolgen,
die den tatsächlichen Bandbreitenbedarf der Datei ermittelt und die Daten dann entsprechend dieser
Anforderung neu auf die Festplatten schreibt.

3.5 Dateien

Die zwei wesentlichen Möglichkeiten zur Verwaltung der Dateien bestehen in einer blocklisten-orientierten
Verwaltung wie bei den bekannten Standard-Dateisystemen oder einer Verwaltung, die die Datei anhand
eines speziellen Layouts beschreibt (wie z.B. in [NOM 97]). Aufgrund der bisher vorgestellten Vorgehens-
weise beim Datenlayout ist die zweite Variante nicht anwendbar, da durch das Layout nur die Festplatte,
aber nicht die Position auf dieser bestimmt wird.

Für die Verwaltung der Blockliste wird eine Struktur verwendet, die den UNIX-Inodes ähnlich ist. Inodes
sind im allgemeinen als gut geeignet für die Verwaltung kleiner Dateien bekannt. Bei großen Dateien
besteht jedoch das Problem, daß durch die indirekte Speicherung der Blocknummern mehrere Plattenzu-
griffe notwendig sind, um auf die Blockliste der Datei zuzugreifen. Um dieses Problem zu umgehen, ist
der Bereich für die Speicherung der direkten Blocknummern innerhalb der Inode gegenüber UNIX-Inodes
deutlich größer. Der Bereich wird so großgewählt, daßdie gesamte Blockliste der Datei mit einem Zugriff
gelesen werden kann, d.h. daß diese Liste maximal mit einer einfachen Indirektion gespeichert ist. Die
dadurch entstehenden Inode-Größen liegen im Bereich der verwendeten Datenblock-Größen (die Blockli-
ste einer 2 GByte großen Datei ist bei der Verwendung von 128 KByte-Blöcken und einer 4 Byte großen
Blocknummer 64 KByte groß), aus diesem Grund werden die Inodes auch nicht in einer separaten Inode-
Tabelle gespeichert, sondern als normale Datenblöcke.

Das Echtzeitdateisystem unterstützt auch Verzeichnisse. Diese werden analog zu den Verzeichnissen im
ext2fs durch eine einfach verkettete Liste verwaltet. Ein Eintrag in dieser Liste ordnet dem Dateinamen
eine Inode zu, die Inode wird durch die Nummer des Blocks, in dem sie gespeichert ist, bezeichnet.

3.6 Puffersystem

Der Entwurf des Puffersystems ist sehr stark mit dem Verarbeitungsmodell in DROPS verbunden, so daß
dieses hier kurz erläutert werden soll. Bei diesem Verarbeitungsmodell wird davon ausgegangen, daß ein
Datenstrom durch eine Kette von nacheinanderfolgenden Anwendungen bearbeitet wird. Eine solche Kette
könnte beispielsweise aus dem Dateisystem, welches ein MPEG-Video liefert, einem Dekoder, der dieses
Video dekodiert und einem Grafikkartentreiber, der dieses Video dann anzeigt, bestehen. Die Daten werden
zwischen diesen Anwendungen über gemeinsam genutzten Speicher ausgetauscht, um möglichst selten
Daten zu kopieren.

Für die Verwaltung des gemeinsam genutzten Speichers gibt es zwei verschiedene Varianten. Der Speicher
kann permanent in allen Anwendungen verfügbar sein (dies entspricht dem klassischen shared memory).
Um eine Konsistenz des Puffers zu gewährleisten, müssen Zugriffe auf den Puffer synchronisiert werden.
Diese Synchronisation wird besonders dann aufwendig, wenn innerhalb einer Kette mehr als zwei Anwen-
dungen auf diesen Speicher zugreifen.

Die zweite Variante zur Verwaltung des Puffers besteht darin, den verfügbaren Pufferbereich in mehrere
einzelne gleichgroße Teile aufzuteilen. Jeder dieser kleineren Puffer gehört zu jedem Zeitpunkt maximal
einer Anwendung, und nur diese kann auf den Puffer zugreifen. Ist eine Anwendung mit der Bearbeitung
der Daten eines Puffers fertig, wird der Puffer an die nächste Anwendung der Kette weitergegeben. Durch
diese Vorgehensweise ist keine Synchronisation der Zugriffe auf die Puffer notwendig, die Anwendungen

30 KAPITEL 3. ENTWURF

arbeiten unabhängig voneinander, wodurch ein Blockieren einer Anwendung durch eine andere verhindert
werden kann.

Für die Umsetzung der zweiten Variante muß die Pufferverwaltung also eine Menge getrennter Puffer
verwalten. Die Anzahl und Größe dieser Puffer wird durch die Admission Control in Abhängigkeit der
geforderten Bandbreite und Verweildauer des Puffers bei der Anwendung bestimmt. Durch die Angabe
der Verweildauer können auch Anwendungsketten beschrieben werden, die die Puffer über mehr als zwei
Elemente weitergeben; aus Sicht des Dateisystems ist dann die Dauer, die die Puffer in der zum Dateisystem
nächsten Anwendung benötigt werden, entsprechend größer.

Puffer 2

- Verweis auf SCSI-Aufträge

- Pufferbeschreibung

Auftrag 1:
- Beginn
- Ende

Auftrag 2:

- Auftragsliste:

Puffer 1

Puffer 2

Puffer 3Puffer 4

Puffer 5

Abbildung 3.8: Ringliste zur Verwaltung der Übertragungspuffer

Die Puffer werden in einer Ringliste organisiert (siehe Abb. 3.8), jedes Element dieser Liste enthält neben
einer Beschreibung des Puffers eine Liste mit den Aufträgen, die für diesen Puffer noch ausstehen. Ein
Auftrag ist dabei durch einen Zeitraum (Beginn;Ende) beschrieben, indem dieser Puffer der Anwendung
zur Verfügung stehen muß. Anhand des Verweises auf die SCSI-Aufträge kann überprüft werden, ob die
Aufträge zum Lesen/Schreiben der Daten des Puffers auch korrekt ausgeführt wurden.

Die Verwendung einer derartigen Auftrags-Warteschlange auch für die Puffer ermöglicht eine flexible Auf-
tragsplanung, da die SCSI-Aufträge unabhängig davon erzeugt werden können, ob der Puffer noch in Be-
nutzung ist.

3.7 Auftragsplanung

Aufgrund der Aufteilung der SCSI-Slots durch die Admission Control ist die grundlegende Vorgehensweise
bei der Auftragsplanung bereits vorgegeben. Das Dateisystem verwaltet einen Plan, in dem jedem Slot des
Zyklus ein Datenstrom zugeordnet ist (siehe Abbildung 3.9). Für die Erzeugung der konkreten Aufträge
werden in festgelegten Zeitabständen die Aufträge für einen Ausschnitt aus diesem Plan erzeugt, indem für
die jeweiligen Datenströme die nächsten Blöcke geliefert werden. Die Länge dieses Ausschnitts und der
Abstand zwischen der Generierung dieser Auftragsgruppen ist von der Anzahl an Aufträgen abhängig, die
der SCSI-Treiber auf einmal verwalten kann.

Des weiteren muß auch die Planung der Pufferübertragung erfolgen. Dazu müssen die entsprechenden
Einträge in den Auftragswarteschlangen der Puffer erzeugt werden. Da die Puffer in der Regel größer
als ein einzelner Datenblock sind, werden mehrere SCSI-Aufträge zum Lesen eines Puffers benötigt. Der
frühestmögliche Zeitpunkt, an dem der Puffer an die Anwendung geliefert werden kann liegt demzufolge
nach dem Abschlußdes letzten Leseauftrags. Der Zeitpunkt, an dem der Puffer für andere Aufträge wieder
verfügbar ist, wird durch die Verweildauer des Puffers bei der Anwendung bestimmt. Beim Schreiben
eines Datenstroms wird anders verfahren. Der Zeitraum, in dem der Puffer der Anwendung zur Verfügung

3.8. SCHWANKUNGSBESCHRÄNKTE DATENSTRÖME 31

2 3 2

1 1 1 1

3 2

1111

2

Zyklus

Planungsausschnitt

Abbildung 3.9: Plan zur Auftrags-
generierung

steht, wird durch das festgelegte Datenlayout bestimmt. Die Einhaltung dieses Zeitraums wird durch das
Dateisystem durchgesetzt, d.h. die Puffer sind meistens nicht vollständig gefüllt. Für das Schreiben der
Daten aus dem Puffer werden dann die Slots verwendet, die für diesen Datenstrom nach dem Zeitpunkt des
Zurückholens des Puffers reserviert sind.

3.8 Schwankungsbeschränkte Datenströme

Durch die beschriebene Vorgehensweise beim Lesen der Datenströme werden diese mit einer konstanten
Bandbreite geliefert. Reale Datenströme weisen jedoch häufig Schwankungen der Datenrate auf, z.B. durch
Kompressionsverfahren wie MPEG. Diese Schwankungen können bis zu einem gewissen Punkt durch eine
Pufferung ausgeglichen werden. Datenströme, bei denen ein derartiger Ausgleich möglich ist, können auch
als schwankungsbeschränkte Datenströme bezeichnet werden.

Für den Ausgleich der Schwankungen ist die Verwendung von zusätzlichem Pufferspeicher notwendig.
Durch die Admission Control wird eine Datenmenge bestimmt, die bereits vor dem Start der eigentlichen
Bearbeitung des Datenstroms gelesen werden muß. Die Bedienung des Datenstroms erfolgt durch das
Dateisystem anhand der mittleren Bandbreite des Datenstroms. Durch die Schwankungen beim Lesen des
Datenstroms seitens der Anwendung wird der Vorlauf, der durch das Voraus-Lesen der Daten entstanden
ist, nach und nach aufgebraucht.

Da das Lesen der Daten von der Festplatte auch bei schwankungsbeschränkten Strömen mit einer kon-
stanten Bandbreite erfolgt, können die bisher vorgestellten Verfahren für die Planung der SCSI-Aufträge
weiterhin verwendet werden. Für die Übertragung der Puffer an die Anwendung müssen die Schwankun-
gen der Datenrate jedoch berücksichtigt werden. Abbildung 3.10 stellt die entsprechende Situation dar.
Aufgrund der Abweichung von der mittleren Bandbreite beim Lesen der Daten ergibt sich ein Bereich,
in dem sich der Lesezeiger der Anwendung befinden kann. Durch die verwendete Strombeschreibung ist
jedoch nicht bekannt, an welcher Stelle sich die Anwendung genau befindet, so daß die obere und untere
Grenze dieses Bereichs über den kompletten Zeitraum berücksichtigt werden muß. Das Intervall, für das
ein Puffer der Anwendung zur Verfügung stehen muß, ergibt sich dann aus der Betrachtung der möglichen
Grenzfälle. Dies ist für den Beginn des Intervalls wenn die Anwendung mit dem Lesen um den maximal
erlaubten Wert voraus ist, für das Ende des Intervalls falls die Anwendung um den erlaubten Wert hinterher
ist. Das Intervall ist dann durch diese beiden Werte sowie die Verweildauer des Puffers bei der Anwendung
bestimmt.

32 KAPITEL 3. ENTWURF

menge
Daten-

untere Grenze für
Schwankungen

mittlere
Datenrate

Schwankungen
obere Grenze für

Verweildauer
bei Anwendung

größe
Puffer-

Intervall, in dem Puffer für
Anwendung verfügbar sein muß

Zeit

Vorlauf

Abbildung 3.10: Planung bei schwankungsbeschränkten Datenströmen

3.9 Zusammenfassung

Abbildung 3.11 stellt noch einmal einen Überblick über die wichtigsten Komponenten des Echtzeit-Datei-
systems sowie die verwendeten Mechanismen dar. Damit das Dateisystem Zusagen über Datenraten geben
kann, arbeiten die Admission Control, die Auftragsplanung und der SCSI-Treiber eng zusammen. Durch
die Admission Control wird bereits festgelegt, zu welchen Zeitpunkten die einzelnen Aufträge der Daten-
ströme bearbeitet werden.

3.9. ZUSAMMENFASSUNG 33

dateisystem
Echtzeit-

VFS

Stub

Admission Control

L4Linux

Ressourcen-Verwaltung

L4

Auftragsgenerierung

Pufferverwaltung

Datei- und
Blockverwaltung

Anwendung

SCSI-Treiber

- Generierung der Aufträge

- Datenübertragung von/zu
 anhand der Slot-Einteilung

 der Anwendung

 für jeden Datenstrom

- Verwaltung der Puffer
 als einzelne Ringliste

- unterstützt variable
 Blockgrößen
- Inodes zur Dateiverwaltung,
 werden in Datenblöcken

- Datenlayout Round-Robin,
 gespeichert

 zur Bandbreitenanpassung
 Auslassen von Datenblöcken

Abbildung 3.11: Gesamtstruktur des Echtzeitdateisystems

34 KAPITEL 3. ENTWURF

Kapitel 4

Implementierung

Im vorangegangenen Kapitel wurden die Konzepte vorgestellt, die das Dateisystem zur Verwaltung der Da-
ten verwendet. Daran anschließend soll jetzt auf einige Aspekte der Implementierung eingegangen werden.

Als Grundlage für die Implementierung dient der Mikrokern L4 [Lie96] und der von Frank Mehnert por-
tierte Treiber für die NCR53c8xx SCSI-Hostadapter Familie [Meh98].

4.1 Threadstruktur

Durch die Verwendung von Threads kann der Eigenschaft vieler Anwendungen Rechnung getragen wer-
den, daß diese mehrere nebenläufige Abarbeitungspfade besitzen. Diese Abarbeitungspfade können dann
auch auf Programmebene entkoppelt werden, was zu einer geringeren Beeinflussung dieser Pfade unterein-
ander führt.

Da man auch die Bearbeitung eines einzelnen Datenstroms durch das Dateisystem als separaten Abarbei-
tungspfad ansehen kann, wäre als Struktur für das Dateisystem die Verwendung eines Threads für jeden
Datenstrom denkbar, um eine Beeinflussung der Datenströme untereinander zu vermeiden. Gegen eine
derartige Struktur spricht allerdings der Umstand, daß L4 nur 128 Threads innerhalb eines Adreßraums
unterstützt. Für einige Anwendungen, etwa einen Video-Server, ist das bei der verwendeten Hardware aus-
reichend, für andere Anwendungen stellt es jedoch eine Limitation dar, da die Hardware dann theoretisch
mehr Datenströme liefern könnte, als das Dateisystem verarbeiten kann, z.B. bei einer Musik-Datenbank.

Die in Abbildung 4.1 dargestellte Threadstruktur nutzt die Eigenschaft des Dateisystementwurfs aus, daß
für kontinuierliche Datenströme das Dateisystem von sich aus die Auftragsgenerierung und Datenüber-
tragung steuert. Diese beiden Aufgaben werden in getrennten Threads abgearbeitet. Der Thread zur Auf-
tragsplanung erzeugt anhand des in Abschnitt 3.7 vorgestellten Plans die SCSI-Aufträge, der Thread der
Pufferplanung ist für die Übertragung der Puffer an die Anwendung entsprechend der festgelegten Zeitin-
tervalle verantwortlich.

Da die Aufträge nicht-kontinuierlicher Datenströme für das Dateisystem nicht vorhersagbar sind, werden
diese durch getrennte Threads bearbeitet, um ein gegenseitiges Blockieren der Datenströme zu vermeiden.

4.2 Auftragsbearbeitung

Ausgehend von der beschriebenen Threadstruktur erfolgt die Bearbeitung der Aufträge unterschiedlich für
die einzelnen Zugriffsarten, dies ist in Abbildung 4.2 schematisch dargestellt.

35

36 KAPITEL 4. IMPLEMENTIERUNG

Blocklisten
Lesen derPuffer-

planung

Auftrags-
planung annahme

Auftrags-
Auftrags-
behandlung

Pager
Bitmap-

Synchronisation

Datei- und
Blockverwaltung

Auftrags-
behandlung

Auftragsgenerierung

Nicht-Echtzeitströme

DateisystemSCSI-Treiber

Echtzeitströme
kontinuierliche nicht-kontinuierliche

Echtzeitströme

Abbildung 4.1: Threadstruktur des Dateisystems

� Kontinuierliche Echtzeitdaten
Für die Bearbeitung eines kontinuierlichen Datenstroms wendet sich eine Anwendung zunächst an
die Admission Control mit einer Anforderung zum Öffnen der entsprechenden Datei. Als Argument
werden dabei die benötigte Datenrate und Verweildauer der Puffer übergeben. Bei erfolgreicher Ad-
mission wird der Auftrag an den Thread zur Auftragsbehandlung weitergegeben. Für die Erzeugung
der SCSI-Aufträge werden in dem im Abschnitt 3.7 beschriebenen Plan die entsprechenden Felder
belegt und es wird die Ringliste der Übertragungspuffer erzeugt. Die Blocklisten der einzelnen Da-
teien können nicht permanent im Speicher gehalten werden, durch einen separaten Thread werden
die im Moment benötigten Ausschnitte der Blocklisten gelesen. Die Übertragung der Daten erfolgt
durch das Einblenden der Puffer in den Adreßraum der Anwendung.

� Nichtkontinuierliche Echtzeitdaten
Die Bearbeitung eines nicht-kontinuierlichen Datenstroms erfolgt durch einen separaten Thread pro
Datei. Die Anwendung wendet sich ebenfalls zuerst an die Admission Control. Diese startet bei
erfolgreicher Admission einen neuen Thread zur Behandlung der Aufträge für diese Datei. Die An-
wendung kommuniziert dann mit diesem Thread für das Lesen oder Schreiben der Daten.

� Nicht-Echtzeitdaten
Alle Aufträge für Nicht-Echtzeitdateien werden durch einen einzigen Thread bearbeitet, der beim
Hochfahren des Systems gestartet wird.

Zeitsteuerung

Die Bearbeitung der kontinuierlichen Datenströme erfordert eine periodische Abarbeitung der Threads
zur SCSI- und Pufferplanung sowie des Threads zum Lesen der Blocklistenabschnitte. Ziel des DROPS-
Projekts ist es, derartige periodische Threads durch ein geeignetes CPU-Scheduling zu unterstützen [Wol97].
Bedingung dafür ist, daß neben der Periodenlänge auch die maximale Bearbeitungsdauer innerhalb einer

4.3. SPEICHERVERWALTUNG 37

planung
Puffer-

Auftrags-
planung

annahme
Auftrags-

Lesen der
Blocklisten

Auftrags-
behandlung

Nicht-
Echtzeitströme

Namens-
dienst

Auftrags-
behandlung

Admission
Control

Datenfluß

3

4

1 3

5

2 2

Steuerfluß
Nicht-Echtzeitströme

5

4

1

23

1 5. . . Reihenfolge der Bearbeitung

SCSI-Treiber

Anwendung

Dateisystem

SCSI-Aufträge

Echtzeitströme

Steuerfluß nicht-

Echtzeitströme

Echtzeitströme

Steuerfluß kontinuierlicher

kontinuierlicher Echtzeitströme

kontinuierliche

nicht-kontinuierliche

Abbildung 4.2: Bearbeitungsablauf

Periode bekannt ist. Für den Thread zur Erzeugung der SCSI-Aufträge ist die Periodenlänge durch die Grö-
ße des Planungsausschnitts (vgl. Abschnitt 3.7), die Bearbeitungsdauer durch die Anzahl der Aufträge pro
Planungsausschnitt bestimmt1. Die Übertragung der Puffer erfolgt durch das vorgestellte Modell ebenfalls
periodisch, die Periodenlänge ist abhängig von der verwendeten Datenrate2.

4.3 Speicherverwaltung

Die Speicherverwaltung läßt sich in zwei Teile untergliedern: Verwaltung der Adreßräume des Dateisy-
stems und des SCSI-Treibers sowie die Bereitstellung der zur Übertragung der Daten benötigten Puffer.

4.3.1 Pager

Die Ressourcenverwaltung von DROPS stellt derzeit nur Speicher zur Verfügung, der eins zu eins zu dem
physischen Speicher in einen Adreßraum eingeblendet ist. Eine Anwendung muß davon ausgehend für
die Verwaltung ihrer virtuellen Adreßräume sorgen. Der für das Dateisystem verwendete Pager basiert auf
einer Arbeit von Torsten Paul [Pau97]. Dieser verwendet eine invertierte Seitentabelle, um die Adreßräume
mehrerer Anwendungen verwalten zu können. Der Pager wird beim Hochfahren des Systems geladen und
startet seinerseits dann das Dateisystem bzw. den SCSI-Treiber. Abbildung 4.3 stellt die so entstehende
Adreßraumstruktur dar.

Eine weitere Aufgabe der Speicherverwaltung ist die Bereitstellung dynamisch allokierbaren Speichers
für die Anwendungen. Dies ist besonders für das Dateisystem wichtig, um eine effiziente Verwaltung der

1Damit die Bearbeitungsdauer für einen Planungsabschnitt möglichst genau bestimmt werden kann, sollte die Aufteilung des
Zyklus in einzelne Abschnitte so erfolgen, daß pro Abschnitt möglichst die gleiche Anzahl an Aufträgen erzeugt werden muß.

2Bei der Verwendung unterschiedlicher Datenraten kann die Bestimmung der Periodenlänge durch die Berechnung des größten
gemeinsamen Teilers der Periodenlängen der einzelnen Datenströme erfolgen.

38 KAPITEL 4. IMPLEMENTIERUNG

Stack

Dateisystem
Adreßraum

SCSI-Treiber
Adreßraum

�
�
�
�

Programmtext/-daten

Übertragungspuffer

dynamischer Speicher

Pager
Adreßraum

������
������
������

������
������
������

���
���
���
���

1 GB 1,5 GB

Heap

0,25 GB 0,5 GB0

0 16 MB 18 MB

Abbildung 4.3: Adreßraumstruktur

diversen Listen und Warteschlangen zu erleichtern. Um dies zu ermöglichen, wurde der Pager so erwei-
tert, daß er pro Anwendung einen Speicherbereich verwaltet, dessen Größe dynamisch verändert werden
kann. Dieser Bereich wird von einem Speicherverwaltungsalgorithmus verwendet, um der Anwendung dy-
namischen Speicher zur Verfügung zu stellen [Lea96]. Die Verwendung dieses Speichers erfolgt über die
üblichen malloc-, free- und realloc-Funktionen.

4.3.2 Pufferverwaltung

Die zweite Aufgabe der Speicherverwaltung besteht in der Bereitstellung der für die Übertragung der Da-
ten an die Anwendung erforderlichen Puffer. Die Verwaltungskomponente muß dabei zwei Bedingungen
erfüllen:

� Die physische Adresse der Pufferbereiche mußbekannt sein. Dies ist erforderlich, da die Daten durch
den SCSI-Treiber mittels DMA direkt in den Speicher geschrieben werden.

� Die Puffer sollten aus möglichst großen zusammenhängendenSpeicherbereichen bestehen. Der SCSI-
Treiber ist zwar durch Scattered Gathering in der Lage, Daten in verstreut liegende Speicherberei-
che zu schreiben, die Verwaltung dieser Bereiche ist jedoch nur für eine kleine Anzahl einzelner
Speicherabschnitte ausgelegt, so daß für die Puffer möglichst wenige getrennte Speicherbereiche
verwendet werden sollten.

Die Verwaltung der Puffer erfolgt in zwei Stufen. In der ersten Stufe wird durch einen separaten Thread im
Pageradreßraum ein zusammenhängender Speicherbereich verwendet, der am Anfang in den Adreßraum
so eingeblendet wird, daß die physischen und virtuellen Adressen übereinstimmen. Für die Organisation
dieses Bereichs wird die in Abbildung 4.4 gezeigte Struktur verwendet.

Für ein schnelles Allokieren der Speicherbereiche werden dynamisch erzeugte Freispeicherlisten verwen-
det. Zu Beginn existiert nur eine Liste mit einem Element, durch das der gesamte Speicherplatz beschrie-
ben wird. Zur Allokation eines Speicherbereichs werden dann bei Bedarf größere Bereiche geteilt. Um ein
schnelles Zusammenfassen der Speicherbereiche beim Freigeben zu gewährleisten und somit eine Frag-
mentierung des Speicherplatzes zu verhindern, werden die Speicherbereiche noch durch eine doppelt ver-
kettete Liste verbunden, so daßdie angrenzenden Speicherbereiche einfach zu ermitteln sind.

Ausgehend von dieser Listenstruktur werden dann Anwendungen (in diesem Fall dem Dateisystem) Puffer
zur Verfügung gestellt. Bei der Anforderung eines Puffers wird zunächst versucht, einen einzigen zusam-
menhängenden Speicherbereich für den Puffer zu verwenden, gelingt dies nicht, werden mehrere Bereiche

4.4. FESTPLATTENVERWALTUNG 39

4 KB 64 KB 128 KB 3768 KB

freie
Speicherbereiche

benutzte
Speicherbereiche

Freispeicherlisten

Abbildung 4.4: Pufferverwaltung durch Freispeicher- und Bereichsliste

verwendet. Für die Beschreibung des Puffers wird der Anwendung eine Liste aller verwendeten Speicher-
bereiche übergeben, ein Speicherbereich ist in dieser Liste durch seine physische Adresse und Länge defi-
niert.

Die zweite Stufe der Verwaltung wird durch das Dateisystem realisiert. Die Puffer werden durch die be-
reits im Entwurf beschriebene Ringliste verwaltet, dafür werden sie in den Adreßraum des Dateisystems
eingeblendet. Bei diesem Einblenden sind einige Eigenschaften des L4 Mikrokerns zu beachten. In L4
werden Speicherbereiche durch die Verwendung von Flexpages zwischen Adreßräumen übergeben. Eine
Flexpage beschreibt einen Ausschnitt aus dem Adreßraum einer Anwendung durch die Angabe der Start-
adresse und der Größe. Die Größe muß dabei eine Zweierpotenz sein, die kleinstmögliche Größe ist die
einer physischen Speicherseite (bei x86-Systemen sind das 4 KByte). Ein Speicherbereich, dessen Größe
keine Zweierpotenz ist, muß durch mehrere Flexpages beschrieben werden. Eine weitere Bedingung ist,
daß die Flexpage entsprechend ihrer Größe ausgerichtet sein muß und zwar sowohl im Quell- als auch im
Zieladreßraum. Aus diesem Grund übergibt das Dateisystem bei der Anforderung zum Einblenden eines
Puffers die Ausrichtung der Zieladresse, die Pufferverwaltung im Pageradreßraum erzeugt dann die Flexpa-
ges entsprechend dieser und der Ausrichtung der Speicherbereiche in ihrem Adreßraum. Damit von Seiten
des Dateisystems immer eine optimale Ausrichtung der Zieladresse gewährleistet werden kann, wird der
für das Einblenden der Puffer vorgesehene Adreßbereich durch einen binären Buddy-Algorithmus verwal-
tet. Dadurch kann erreicht werden, daß Puffer der Größe einer Zweierpotenz immer an einer nach dieser
Größe ausgerichteten Adresse eingeblendet werden, für andere Puffer wird ein Adreßbereich mit der Größe
der nächst höheren Zweierpotenz verwendet.

4.4 Festplattenverwaltung

Für die Implementierung der Festplattenverwaltung stellt sich zuerst die Frage, ob alle verfügbaren Fest-
platten als eine logische Platte oder voneinander getrennt behandelt werden. Da durch das Datenlayout
zwischen einzelnen Festplatten unterschieden wird, wird eine getrennte Verwaltung verwendet, die Orga-
nisation als eine logische Platte wäre bei der Blockallokation eher hinderlich.

Die einzelnen Festplatten werden in der Form von Partitionen verwaltet. Dies ermöglicht es, daß auf ei-
ner Festplatte theoretisch mehrere Dateisysteme angelegt werden3. Für den Eintrag der Partitionen in die
Partitiontabelle der Festplatten wird die bisher noch ungenutzte Dateisystem-Id 0x86 verwendet.

Abbildung 4.5 stellt den Aufbau einer Partition dar. Am Anfang jeder Partition steht ein Superblock, der
die Partition beschreibt (siehe Abb. 4.6). Er enthält neben den Parametern des Buddy-Algorithmus eine
Partition-Id sowie eine Liste aller zu dem Dateisystem gehörenden Partitionen. Die Partition-Id wird für

3Eine denkbare Anwendung dafür wäre, die langsameren inneren Bereiche einer Festplatte für ein Linux-Dateisystem zu ver-
wenden, während die äußeren, schnellen Bereiche für das Echtzeitdateisystem genutzt werden. Voraussetzung dafür ist, daß der
SCSI-Treiber auch direkt von Linux aus angesprochen werden kann und er diese Aufträge in freie Slots einordnen kann.

40 KAPITEL 4. IMPLEMENTIERUNG

Super-
Block

Bitmap-
Blöcke Datenblöcke

Abbildung 4.5: Aufbau einer Partition

die eindeutige Identifikation der Partition innerhalb des Dateisystems verwendet, sie entspricht im Moment
der SCSI-Device-Nummer der Partition. Letztendlich wird die Partition-Id jedoch unabhängig vom SCSI-
System sein, die Auflösung der Partition-Id in die SCSI-Device-Nummer soll dann erst durch den SCSI-
Treiber erfolgen. Dadurch soll z.B. das Verschieben einer Partition auf eine andere Festplatte auf eine
einfache Art ermöglicht werden. Die neue Zuordnung muß nur im SCSI-Treiber berücksichtigt werden,
alle weiter oben liegenden Verwaltungsstrukturen bleiben von der Änderung unberührt.

struct rtfs_superblock
{
unsigned partition_id:16; /* partition id */
unsigned buddy_om:16; /* buddy basis */
unsigned b_basis:16; /* smallest blocksize */
unsigned b_bitmap:16; /* bitmap blocksize */

dword_t data_blocks; /* number of data blocks */
dword_t bitmap_blocks; /* number of bitmap blocks */

rtfs_blockid_t root; /* location of the root directory */

dword_t free_count[NO_BLOCKSIZES];
/* counter for free blocks per size */

byte_t reserved[492 - 4 * NO_BLOCKSIZES];

word_t partitions[256]; /* other rtfs partitions */
};

Abbildung 4.6: Superblock

Die nächste Fragestellung lautet, wie die Verwaltungsstrukturen des Buddy-Algorithmus gespeichert wer-
den. Die Standardimplementierung des Buddy-Algorithmus für die Hauptspeicherverwaltung besteht in der
Verwendung je einer Freispeicherliste pro verfügbarer Blockgröße. Diese Struktur besitzt für den Einsatz
für die Verwaltung des Festplattenplatzes zwei Nachteile:

� Ein eher kleineres Problem ist, daßdie Listen keine konstante Länge haben.

� Das Hauptproblem besteht darin, daß aufgrund des Zusammenfassens benachbarter Datenblöcke
beim Freigeben auch Lücken innerhalb der Listen entstehen. Für eine dynamisch erzeugte Liste im
Hauptspeicher ist das kein Problem, für eine Liste, die statisch durch die Verwendung von Daten-
blöcken auf der Festplatte realisiert ist, bedeutet das jedoch ein Umkopieren aller Daten hinter dem
freigegebenen Listenelement. Die Lösungsvariante, die Freispeicherlisten während der Bearbeitung
im Hauptspeicher zu halten und nur gelegentlich auf die Festplatte zu schreiben, ist aufgrund des
hohen Speicherbedarfs nicht realisierbar.

4.4. FESTPLATTENVERWALTUNG 41

Für das Dateisystem wurde daher eine andere Darstellungsart gewählt. Für jede Blockgröße wird eine
Bitmap mit je einem Bit pro verfügbaren Block verwaltet. Die Bitmap für die maximale Blockgröße enthält
damit ein Bit, die der Basisblockgröße die maximale Anzahl an Bits. Ein gesetztes Bit in der Bitmap einer
Blockgröße bedeutet, daß der entsprechende Block dieser Größe verfügbar ist. Da kleinere Blöcke durch
die Aufteilung größerer Blöcke entstehen, bezieht sich ein Bit in der Bitmap einer Blockgröße auch auf die
Blöcke kleinerer Blockgrößen, die durch eine Teilung dieses Blocks entstehen. Ist ein Block als verfügbar
gekennzeichnet, sind die zu diesem Block gehörenden Blöcke kleinerer Größen zunächst nicht verfügbar
(die Bits in den entsprechenden Bitmaps sind nicht gesetzt), erst durch eine Teilung des größeren Blocks
können die kleineren verfügbar gemacht werden (siehe Abb. 4.7). Durch diesen Umstand werden für die
Verwaltung eines Blocks der Basisblockgröße effektiv zwei Bits verwendet.

00 0 0 1 0 0 0

0 0 0 1

1 0

0

0

1

0

belegter Datenblock (Bit nicht gesetzt)

verfügbarer Datenblock (Bit gesetzt)

nicht belegter Datenblock innerhalb eines größeren freien Blocks

0

1

2

3

Ebene Bitmap

Abbildung 4.7: Implementierung des Buddy-Algorithmus mit-
tels Bitmap

Der für die Speicherung der Bitmaps benötigte Speicherplatz ist konstant, er wird durch die Größe der
Partition bestimmt. Die Bitmap einer 2 GByte Partition bei einer minimalen Blockgröße von 4 KByte ist
128 KByte groß. Für größere Dateisysteme können die Bitmaps also durchaus einige MByte großsein, so
daß diese nicht vollständig permanent im Hauptspeicher gehalten werden können, sie müssen bei Bedarf
von Festplatte geladen werden. Um dies transparent zu gestalten, verwendet das Dateisystem einen Pager.
Die Bitmaps werden in den Adreßraum des Dateisystems eingeblendet. Bei Bedarf lädt der Pager einen
Bitmapblock an die entsprechende Adresse, dazu werden eine feste Anzahl an Speicherseiten verwendet. Ist
keine freie Speicherseite verfügbar, wird ein anderer Bitmapblock auf die Festplatte zurückgeschrieben und
diese Speicherseite verwendet4. Um zu vermeiden, daßdurch den Zugriff auf eine benachbarte Blockebene
beim Aufteilen oder Zusammenfassen eines Blocks auch auf einen anderen Bitmapblock zugegriffen wird,
werden die Bitmaps durch das in Abbildung 4.8 dargestellte Schema auf die Festplatten-Blöcke verteilt.

Durch die Verwendung von 4 KByte Festplatten-Blöcken für die Speicherung der Bitmaps können bei
einer minimalen Blockgröße von 4 KByte durch einen Bitmapblock 64 MByte Festplattenplatz verwaltet
werden, durch die in Abbildung 4.8 dargestellte zweistufige Hierarchie 2 TByte.

Für die Synchronisation der in den Speicher geladenen Bitmapblöcke mit den Blöcken auf den Festplatten
wird ein separater Synchronisations-Thread verwendet, der in regelmäßigen Abständen alle Bitmaps auf
die Festplatten zurückschreibt.

4Für die Auswahl der zu verdrängenden Speicherseite wird im Moment kein spezieller Algorithmus verwendet. Die zur Verfügung
stehenden Speicherseiten werden durch eine Ringliste verwaltet und entsprechend der Reihe nach verwendet.

42 KAPITEL 4. IMPLEMENTIERUNG

Bitmapblock

Abbildung 4.8: Zuordnung der Bitmaps zu Bitmapblöcken

4.5 Dateien

Eine Datei wird durch die in Abbildung 4.10 dargestellte Inode-Struktur beschrieben. Diese Struktur ist in
zwei Teile untergliedert, den Inode-Kopf und den direkt in der Inode gespeicherten Abschnitt der Blockli-
ste.

Neben den üblichen Angaben enthält der Inode-Kopf die für die Datei verwendete Datenblockgröße sowie
die Größe des Inode-Blocks. Der restliche Speicherplatz im Inode-Block wird für die Speicherung des
ersten Teils der Blockliste der Datei verwendet.

BlocknummerPartition-Id

0232431

Abbildung 4.9: Block-Id

Ein Block der Datei wird durch die Angabe einer Block-Id (siehe Abb. 4.9) beschrieben. Diese enthält die
Id der Partition, auf der der Block gespeichert ist, sowie die Nummer des Blocks innerhalb dieser Partition.

Die Benennung der Dateien erfolgt analog zu ext2fs, die Zuordnung eines Namens zu einer Inode erfolgt
durch den Eintrag in dem Elternverzeichnis der Datei. Die Verzeichnisse werden ebenfalls durch eine Inode
beschrieben, die Organisation erfolgt durch eine einfach verkettete Liste, Abbildung 4.11 stellt einen Ein-
trag in dieser Liste dar.

Ausgehend vom Wurzelverzeichnis, dessen Inode-Block-Id im Superblock der Partition gespeichert ist,
wird die Verzeichnisstruktur analog zu ext2fs aufgebaut.

4.5. DATEIEN 43

/* Inode header */
typedef struct rtfs_inode_header
{
word_t i_type; /* file type */
word_t i_uid; /* owner */
word_t i_gid; /* owner */
word_t i_unused1;
rtfs_time_t i_time_create; /* creation time */
rtfs_time_t i_time_access; /* last access */
rtfs_time_t i_time_modify; /* last modification */
word_t i_blk_size; /* log2 blocksize, blk_size = 2n * B0 */
word_t i_striping_unit; /* striping unit -> size = n * blk_size */
dword_t i_inode_size; /* log2 inode size, size = 2n */
dword_t i_blk_count; /* number of blocks */
dword_t i_unused2;
qword_t i_size; /* file size */
dword_t i_unused3[7];
rtfs_blockid_t i_indirect1; /* single indirect blocks */
rtfs_blockid_t i_indirect2; /* double indirect blocks */
rtfs_blockid_t i_indirect3; /* triple indirect blocks */

} rtfs_inode_header_t;

/* Inode */
typedef struct rtfs_inode
{
rtfs_inode_header_t i_header; /* Inode header */
rtfs_blockid_t i_direct[1]; /* direct blocks */

} rtfs_inode_t;

Abbildung 4.10: Aufbau der Inode

4.5.1 Anlegen der Dateien

Die Allokation neuer Datenblöcke für eine Datei erfolgt dann, wenn auf eine Position nach dem Ende der
Datei geschrieben wird. Es werden dabei immer für den kompletten Bereich zwischen dem aktuellen Ende
der Datei und der Schreibposition Blöcke allokiert, so daß keine Lücken innerhalb der Datei entstehen5.
Die Suche nach einem freien Block erfolgt in zwei Schritten. Zuerst wird die Festplatte bestimmt, auf der
der Block gespeichert werden soll, im Moment wird dafür eine strikte Round-Robin-Verteilung verwendet.
Im zweiten Schritt wird auf dieser Festplatte ein Datenblock der entsprechenden Größe reserviert.

Wie in Abschnitt 3.4.2 beschrieben, soll beim Speichern einer Datei in Echtzeit das Datenlayout bereits
im voraus bestimmt werden. Dies kann beim gegenwärtigen Entwicklungsstand erfolgen, indem die Größe
der Datei durch eine seek- und write-Operation auf das Ende der Datei festgelegt wird; da wie oben
beschrieben dadurch alle Blöcke der Datei reserviert werden, stehen beim Schreiben der Daten die Blöcke
bereits zur Verfügung.

5In UNIX-Dateisystemen wird die Allokation eines Blocks meistens erst dann vorgenommen, falls auf diesen konkreten Block
zugegriffen wird. Dadurch können innerhalb einer Datei Bereiche existieren, für die keine Blöcke allokiert sind.

44 KAPITEL 4. IMPLEMENTIERUNG

/* directory entry */

struct rtfs_dir_entry
{
rtfs_blockid_t inode; /* inode block number */
unsigned short rec_len; /* entry length */
unsigned short name_len; /* name length */
char name[RTFS_FILENAME_LENGTH]; /* file name */

};

Abbildung 4.11: Eintrag in Verzeichnis-Liste

4.5.2 Speicherung der Strombeschreibungen

Die Speicherung der für die Beschreibung der Echtzeitdateien verwendeten Daten erfolgt in separaten Da-
teien; dadurch wird ein einfacher Zugriff auf diese Daten auch durch L4Linux-Anwendungen möglich. Die
Zuordnung der Dateien erfolgt durch spezielle Dateinamenserweiterungen, die in Tabelle 4.1 aufgeführt
sind.

Neben den in Abschnitt 3.1.3 beschriebenen Parametersätzen werden in einer weiteren Datei datentyp-
spezifische Informationen gespeichert, wie z.B. die Auflösung und das verwendete Kompressionsverfahren
bei einem Video.

Dateiname Inhalt
name.data Daten
name.para Parametersätze der Strombeschreibung
name.desc Beschreibung des Dateityps

Tabelle 4.1: Verwendete Dateinamenserweiterungen

4.6 Stand der Implementierung

Die derzeitige Implementierung umfaßt die Speicher-, Festplatten- und Dateiverwaltung sowie die Behand-
lung der Nicht-Echtzeitdateien. Für die Steuerung und das Testen des Dateisystems wurde zusätzlich eine
serielle Konsole implementiert, diese besteht aus einem Server, der die Kommunikation mit der seriellen
Schnittstelle durchführt sowie einem separaten Thread des Dateisystems, der die Darstellung der Konsole
übernimmt.

Der Zugriff auf die Dateien erfolgt über eine UNIX-ähnliche Schnittstelle. Diese umfaßt die open-,
create-, close-, read-, write- und seek- sowie spezielle fcntl- und fstat-Funktionen und
ist auf eine IPC-Kommunikation mit dem Behandlungs-Thread im Dateisystem abgebildet. Über diese
Schnittstelle wird im Moment auch von L4Linux-Anwendungen aus auf das Dateisystem zugegriffen; eine
Bibliothek mit den entsprechenden Funktionen wurde dazu entwickelt.

Die Implementierung umfaßt ca. 12500 Zeilen C-Quelltext für das Dateisystem (inklusive Pager und se-
rielle Konsole) sowie weitere 1500 Zeilen für die L4Linux-Bibliothek und darauf basierende Programme
zum Zugriff auf die Dateien von L4Linux aus.

Kapitel 5

Leistungsbewertung

Bei dem derzeitigen Stand der Implementierung können noch keine umfangreichen Tests zur Leistungsfä-
higkeit des Dateisystems vorgenommen werden. Es kann jedoch bereits überprüft werden, welchen Einfluß
die Wahl der Blockgröße auf die Datenrate beim Lesen und Schreiben von Dateien hat.

5.1 Testumgebung

Die Messungen wurden auf einem PC mit einem 100 MHz Intel Pentium Prozessor, 32 MByte Haupt-
speicher, Asus SC200 SCSI-Controller (NCR53c810) und einer 2,1 GByte Quantum VP32210 Festplatte
durchgeführt. Für die Ermittlung von Vergleichswerten wurde das Programm h2bench verwendet, wel-
ches die Eigenschaften der Festplatte (Zoneneinteilung, Datenraten bei verschiedenen Blockgrößen und
Zugriffszeiten) durch direkten Zugriff über BIOS-Funktionen bestimmt [Bög96].

Für die Bestimmung der Datenraten wurde eine 64 MByte große Datei auf der schnellsten Zone der Fest-
platte1 geschrieben bzw. gelesen. Die Blöcke der Datei lagen linear hintereinander, eine zufällige Verteilung
der Daten ist im Moment nicht möglich, da die Blockallokation innerhalb einer Platte nicht beeinflußt wer-
den kann. Für die Vergleichswerte wurden daher die Ergebnisse des Test beim linearen Lesen und Schrei-
ben von h2bench verwendet. Die Datei wurde von L4Linux aus über die IPC-Schnittstelle geschrieben
bzw. gelesen. Bei den einzelnen Aufträgen wurde dabei generell auf 128 KByte der Datei zugegriffen. Die
Blockliste wurde permanent im Speicher gehalten, da auch bei der Bearbeitung der Echtzeit-Datenströme
so vorgegengen werden soll. Für die Messung der Dauer der Auftragsbearbeitung wurde der Time Stamp
Counters des Pentium Prozessors verwendet.

5.2 Meßergebnisse

In Tabelle 5.1 sind die Ergebnisse der Messungen aufgeführt, in den Abbildungen 5.1 und 5.2 werden diese
mit den durch h2bench ermittelten Maximalwerten verglichen2. Die in der Tabelle angegebenen Zeiten
beziehen sich auf die Bearbeitung eines einzelnen Schreib-/Leseauftrags, die Datenraten wurden aus diesen
Werten berechnet.

Bei einer Blockgröße von 64 KByte erreicht das Dateisystem beim Schreiben 38% und beim Lesen 51%
der maximalen Datenrate. Der große Unterschied läßt sich zum Teil damit erklären, daßdie Daten zwischen
dem Dateisystem und der L4Linux-Anwendung durch eine L4 String-Message übertragen werden, bei der
die Daten durch den L4 Kern kopiert werden müssen. Um den dadurch entstehenden Aufwand zu bestim-
men, wurde zusätzlich die Zeit bestimmt, die durch das Dateisystem für die Bearbeitung eines Auftrags

1Die schnellste Zone wurde durch h2bench ermittelt, bei der Quantum VP32210 liegt diese bei Block 0.
2Die Messungen von h2bench werden nur bis zu einer Blockgröße von 64 KByte durchgeführt.

45

46 KAPITEL 5. LEISTUNGSBEWERTUNG

Schreiben Lesen
Blockgröße Bearbeitungsdauer Datenrate Bearbeitungsdauer Datenrate
[KByte] [ms] [KByte/s] [ms] [KByte/s]

4 103,67 1234 62,01 2064
8 88,80 1441 49,32 2595

16 69,47 1842 45,39 2820
32 57,86 2212 44,18 2897
64 56,63 2260 44,08 2903

128 53,02 2414 43,13 2967

Tabelle 5.1: Meßergebnisse

intern benötigt wird. Die Differenz der Gesamtbearbeitungszeit und dieser Zeit ist der Kommunikations-
aufwand zwischen Dateisystem und der Anwendung. Für die bei der Messung verwendete Datengröße
von 128 KByte wurde dafür eine Zeit von ca. 20 ms gemessen. Berücksichtigt man diese Zeit bei der Be-
rechnung der Datenrate, wird durch das Dateisystem beim Lesen annähernd die Maximaldatenrate, beim
Schreiben ca. 60% der maximalen Datenrate erreicht.

Besonders beim Lesen sind die Datenraten über einen größeren Bereich relativ konstant. Aufgrund der
Meßergebnisse von h2bench läßt sich dies jedoch auf die kontinuierliche Allokation der Datei zurück-
führen, für eine zufällige Anordnung der Blöcke ergeben sich deutliche Unterschiede in den erreichten
Datenraten.

0

1000

2000

3000

4000

5000

6000

0 4 8 16 32 64 128

D
at

en
ra

te
 [

K
B

yt
e/

s]

Blockgröße [KByte]

h2bench
Dateisystem

Abbildung 5.1: Datenraten beim Lesen

5.2. MESSERGEBNISSE 47

0

1000

2000

3000

4000

5000

6000

0 4 8 16 32 64 128

D
at

en
ra

te
 [

K
B

yt
e/

s]

Blockgröße [KByte]

h2bench
Dateisystem

Abbildung 5.2: Datenraten beim Schreiben

48 KAPITEL 5. LEISTUNGSBEWERTUNG

Kapitel 6

Zusammenfassung und Ausblick

In dieser Arbeit wurden der Entwurf und Teile der Implementierung eines echtzeitfähigen Dateisystems
beschrieben. Das Dateisystem verwendet zum Speichern der Daten mehrere Festplatten, um den hohen
Bedarf an Speicherplatz und Bandbreite der betrachteten Datenströme erfüllen zu können. Um den spezi-
ellen Eigenschaften der unterschiedlichen Datentypen Rechnung zu tragen, können bei der Allokation des
Speicherplatzes unterschiedliche Blockgrößen verwendet werden.

Für den Zugriff auf die Daten verwendet das Dateisystem einen zusagefähigen SCSI-Treiber, der in der
Diplomarbeit von Frank Mehnert beschrieben ist [Meh98]. Die für den Entwurf verwendeten Ideen zur
Admission Control beruhen auf einer Arbeit von Sven Rudolph [Rud97a].

Für weitere Arbeiten an dem Dateisystem in der nächsten Zeit gibt es folgende Problemstellungen:

� Abschluß der Implementation, dies umfaßt die Behandlungsroutinen für kontinuierliche und nicht-
kontinuierliche Datenströme.

� Ausgehend von dieser Implementierung eine Überprüfung der getroffenen Entwurfsentscheidungen.
Insbesondere gilt das für die Verwendung variabler Blockgrößen, es ist zu überprüfen, ob bei den
letztendlich zur Admission Control und Planung verwendeten Verfahren dies noch sinnvoll ist.

� Die derzeitige Organisation der Dateien ist stark durch die Vorgehensweise bei der Bearbeitung
kontinuierlicher Datenströme beeinflußt. Es ist zu untersuchen, inwieweit für die Behandlung nicht-
kontinuierlicher Daten geeignetere Organisationsstrukturen verwendet werden müssen.

� Eine Aufgabenstellung für einen späteren Zeitpunkt ist die Entwicklung eines großen Speichersy-
stems auf Basis mehrerer miteinander verbundener Dateisysteme.

Die bei ersten Messungen erreichten Leistungen liegen noch deutlich unter den theoretisch möglichen
Werten. Die Gründe dafür sind jedoch zum Teil bekannt, so daßbei einer entsprechenden Implementierung
deutlich bessere Ergebnisse erwartet werden können.

49

50 KAPITEL 6. ZUSAMMENFASSUNG UND AUSBLICK

Anhang A

Glossar

Block Einheit, in der Speicherplatz auf der Festplatte reserviert werden kann. Die minimale Blockgröße ist
durch die Festplatten-Hardware bestimmt, das Dateisystem kann darauf aufbauend größere logische
Blöcke definieren.

Continuous Media Data Bezeichnung für Datentypen, auf die in der Regel kontinuierlich zugegriffen
wird, d.h. die einzelnen Teilobjekte werden der Reihe nach bearbeitet. Beispiele dafür sind Video-
und Audioströme, die einzelnen Teile (Bilder bzw. Samples) werden zum Abspielen der Reihe nach
gelesen. Der zeitliche Abstand zwischen den Teilobjekten wird durch die Datenrate bei der Bearbei-
tung bestimmt.

DMA Direct Memory Access, direkter Zugriff auf den Hauptspeicher ohne Mitwirkung der CPU.

Fragmentierung Aufteilung des Speicherplatzes in benutzte und unbenutzte Teilbereiche, die durch das
Löschen von einzelnen Dateien entsteht.

Hamming-Code Verfahren zur Prüfsummenberechnung, bei dem auch Mehrfachfehler erkannt und korri-
giert werden können.

Metadaten Verwaltungsdaten einer Datei, die zusätzlich zu den Nutzdaten gespeichert werden müssen.

MPEG Moving Pictures Experts Group

Pager Komponente zur Verwaltung eines virtuellen Adreßraums.

Positionierungszeit Zeit, die durch die Festplatte zur Positionierung des Schreib-/Lesekopfs über den
angeforderten Block benötigt wird.

SCAN Algorithmus zur Planung von Festplatten-Aufträgen. Die Aufträge werden der Reihe nach bear-
beitet, kann während der Positionierung jedoch bereits ein anderer Auftrag bearbeitet werden, wird
dieser bereits im voraus bearbeitet.

SCAN-EDF Wie SCAN, die Reihenfolge der Aufträge wird jedoch durch den Zeitpunkt bestimmt, an dem
ein Auftrag ausgeführt sein muß.

SCSI Small Computer Systems Interface, Standard zum Anschlußvom Peripheriegeräten

Verschnitt Differenz zwischen dem reservierten Speicherplatz und der tatsächlichen Größe der Datei.
Diese entsteht, da die Reservierung nur in Vielfachen der verwendeten Blockgröße erfolgen kann.

Worst-Case ungünstigster anzunehmender Anwendungsfall

VFS Virtual File System, einheitliche Schnittstelle des Linux-Kerns zum Zugriff auf verschiedene Datei-
systeme.

51

52 ANHANG A. GLOSSAR

Literaturverzeichnis

[AOG91] ANDERSON, David P. ; OSAWA, Yoshitomo ; GOVINDAN, Ramesh: Real-Time Disk Storage
and Retrieval of Digital Audio/Video Data / CS Division, EECS Department, University of
California at Berkeley. 1991 (CSD-91-646). – Forschungsbericht

[BBD 95] BECK, Michael ; BÖHME, Harald ; DZIADZKA, Mirko ; KUNITZ, Ulrich ; MAGNUS, Robert ;
VERWORNER, Dirk: Linux-Kernel-Programmierung - Algorithmen und Strukturen der Version
1.2. Addison-Wesley, 1995

[BFD97] BOLOSKY, William J. ; FITZGERALD, Robert P. ; DOUCEUR, John R.: Distributed Schedule
Management in the Tiger Video Fileserver. In: Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997

[Bög96] BÖGEHOLZ, Harald. H2bench. zu finden unter ftp://ftp.heise.de/pub/ct/pci/h2bench.zip. 1996

[BGMJ94] BERSON, Steven ; GHANDEHARIZADEH, Shahram ; MUNTZ, Richard ; JU, Xiangyu: Stagge-
red Striping in Multimedia Information Systems. In: Proceedings of ACM SIGMOD, 1994

[Bil92] BILIRIS, Alexandros: An Efficien Database Storage Structure for Large Dynamic Objects. In:
Proceeding of the IEEE Data Engineering Conference, Phoenix, 1992

[Cus94] CUSTER, Helen: Inside the Windows NT File System. Microsoft Press, 1994

[GVKR95] GEMMELL, D. J. ; VIN, Harrick M. ; KANDLUR, Dilip D. ; RANGAN, P. V.: Multimedia
Storage Servers: A Tutorial and Survey. In: IEEE Computer (1995)

[GZS 96] GHANDEHARIZADEH, Sharam ; ZIMMERMANN, Roger ; SHI, Weifeng ; REJAIE, Reza ; IERA-
DI, Doug ; LI, Ta-Wei: Mitra: A Scalable Continuous Media Server / University of Southern
California. 1996. – Forschungsbericht

[Ham97] HAMANN, Claude-Joachim: On the Quantitative Specification of Jitter Constrained Periodic
Streams. In: Proceedings of MASCOTS, 1997

[Hoh96] HOHMUTH, Michael: Linux-Emulation auf einem Mikrokern, TU Dresden, Diplomarbeit, 1996

[Här97a] HÄRTIG, Hermann. Betriebssysteme. Vorlesungsskript TU Dresden. 1997

[Här97b] HÄRTIG, Hermann. Ein Planungsmodell für das Echtzeitdateisystem. mündliche Mitteilung.
1997

[KGM93] KAO, Ben ; GARCIA-MOLINA, Hector: An Overview of Real-Time Database Systems. In:
Proceedings of NATO Advanced Study Institute on Real-Time Computing, 1993

[Kli97] KLIX, Thomas: Multimedia-Dateisystem auf L4, Technische Universität Dresden, Diplomar-
beit, 1997

[Lea96] LEA, Doug. A Memory Allocator. zu finden unter http://g.oswego.edu/dl/html/malloc.html.
1996

53

54 LITERATURVERZEICHNIS

[Lie96] LIEDTKE, Jochen. L4 Reference Manual for 486, Pentium and Pentium Pro. zu finden auf
http.//os.inf.tu-dresden.de/L4/l4refx86.ps.gz: IBM Watson Technical Report. 1996

[Löw97] LÖWIS, Martin: Im verborgenen: Microsofts NT Filesystem. In: iX (1997), 4, S. 136 – 139

[Meh98] MEHNERT, Frank: Ein zusagenfähiges SCSI-Subsystem für DROPS, Technische Universität
Dresden, Diplomarbeit, 1998

[MHN95] MAKAROFF, Dwight J. ; HUTCHINSON, Norman C. ; NEUFELD, Gerald W.: The UBC Dis-
tributed Continuous Media File System: Internal Design of Server / Department of Computer
Science at University of British Columbia, Canada. 1995. – Forschungsbericht

[MJLF84] MCKUSICK, Marshall K. ; JOY, William N. ; LEFFLER, Samuel J. ; FABRY, Robert S.: A Fast
File System for UNIX. In: ACM Transactions on Computer Systems (TOCS) 2 (1984), Nr. 3

[NOM 97] NISHIKAWA, Junji ; OKABAYASHI, Ichirou ; MORI, Yasuhiro ; SASAKI, Shinji ; MIGITA,
Manabu ; OBAYASHI, Yoshimasa ; FURUYA, Shinji ; KANEKO, Katsuyuki: Design and Im-
plementation of Video Server for Mixed-rate Streams. In: Proceedings of the 7th Interna-
tional Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), 1997

[Pau97] PAUL, Torsten. Videopräsentationen mit Echtzeitsystemen. Großer Beleg, TU Dresden. 1997

[PGK88] PATTERSON, David A. ; GIBSON, Garth ; KATZ, Randy H.: A Case for Redundant Arrays of
Inexpensive Disks (RAID). In: Proceedings of the SIGMOD Conference, 1988

[Rei97] REISER, Hans. Trees Are Fast. zu finden unter http://ideom.com/�beverly/reierfs.html. 1997

[RO92] ROSENBLUM, Mendel ; OUSTERHOUT, John K.: The Design and Implementation of a Log-
Structured File System. In: Proceedings of the 13th ACM Symposium on Operating Systems
Principles, 1992

[Rud97a] RUDOLPH, Sven. Admission Control im RTFS. mündliche Mitteilung. 1997

[Rud97b] RUDOLPH, Sven. Bandbreitenanpassung durch Datenlayout. mündliche Mitteilung. 1997

[RzS96] RASTOGI, Rajeev ; ÖZDEN, Banu ; SILBERSCHATZ, Avi: Disk Striping in Video Server En-
vironments. In: Proceedings of the IEEE International Conference on Multimedia Computing
and Systems, 1996

[RzS97] RASTOGI, Rajeev ; ÖZDEN, Banu ; SILBERSCHATZ, Avi: Multimedia Support for Databases.
In: Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
1997

[SGRV97] SHENOY, Prashant J. ; GOYAL, Pawan ; RAO, Sriram S. ; VIN, Harrick M.: Symphony: An
Integrated Multimedia File System / Department of Computer Sciences, Univ. of Texas at
Austin. 1997 (TR-97-09). – Forschungsbericht

[SV97] SHENOY, Prashant J. ; VIN, Harrick M.: Efficient Striping Techniques for Multimedia File
Servers. In: Proceedings of the 7th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 97), 1997

[Tan94] TANENBAUM, Andrew S.: Moderne Betriebssysteme. Carl Hanser Verlag / Prentice Hall, 1994

[WJNB95] WILSON, Paul R. ; JOHNSTONE, Mark S. ; NEELY, Michael ; BOLES, David: Dynamic Storage
Allocation: A Survey and Critical Review. In: Proceedings of the International Workshop on
Memory Management, 1995

[Wol97] WOLTER, Jean. Erste Ideen zum Scheduling im DROPS-Projekt. Vortrag Echtzeit-AG, TU
Dresden. November 1997

