
Quality-Assuring Scheduling —
Using Stochastic Behavior to Improve

Resource Utilization

Claude-Joachim Hamann Jork L¨oser Lars Reuther Sebastian Sch¨onberg
Jean Wolter Hermann H¨artig

Dresden University of Technology
Department of Computer Science

e-mail: drops@os.inf.tu-dresden.de

Abstract

We present a unified model for admission and schedul-
ing, applicable for various active resources such as CPU
or disk to assure a requested quality in situations of tempo-
rary overload. The model allows us to predict and control
the behavior of applications based on given quality require-
ments. It uses the variations in the execution time, i.e., the
time any active resource is needed.

We split resource requirements into a mandatory part
which must be available and an optional part which should
be available as often as possible but at least with a cer-
tain percentage. In combination with a given distribution
for the execution time we can move away from worst-case
reservations and drastically reduce the amount of reserved
resources for applications which can tolerate occasional
deadline misses. This increases the number of admittable
applications. For example, with negligible loss of quality
our system can admit more than two times the disk band-
width than a system based on the worst-case.

Finally, we validated the predictions of our model by mea-
surements using a prototype real-time system and observed
a high accuracy between predicted and measured values.

1 Introduction

The design of systems that behave predictably in situ-
ations of overload has obtained a lot of attention in the
real-time, networks and operating systems community in
the last decade. This interest has been sparked by so-
called soft real-time applications that can tolerate occa-
sional misses of deadlines, but cannot afford the waste of
resources coming along with absolute guarantees for worst
case load situations. The most fashionable examples are
media applications where it is widely accepted to drop parts
of a stream instead of repeating outdated data packets again.
In addition to such an application driven scenario, it be-

came apparent that particularly modern hardware architec-
tures exhibit a widening gap between normal and worst case
behavior of systems and hence behave badly with respect to
absolute time guarantees [10].

Early work on reservation-based real-time systems fo-
cused on the CPU as the resource to be shared. RT Mach’s
capacity reserves are an example where a process can re-
serve a certain number of cycles per period. But to simplify
the design of a complete system, a sufficient model should
not only cover CPU but all resources of interest, such as
disk bandwidth or network. Hence, systems such as “Re-
source Kernels” [15] have extended the initial work. They
all use deterministic reservation times, which leads to over
allocation of resources since the worst-case must also be
covered.

To handle overload situations, the Imprecise Computa-
tions Model [11, 13] was introduced. It splits an applica-
tion into two parts based on importance. Themandatory
part must be completed, theoptional part is nice-to-have
and improves quality. Another interesting line of results ex-
tended deterministic mathematical models by probabilistic
elements. An example is Statistic Rate Monotonic Schedul-
ing (SRMS) [2]. It replaces worst-case execution times1 by
probabilistic execution times and introduces a probability
for each job by which the deadline is requested to be met.

These approaches have a severe shortcoming in common:
they are based on deterministic duration of the resource us-
age (which leads to a poor resource utilization), or they can-
not guarantee a desired quality. Therefore, we propose a
scheduling method that enables a better resource utilization
and that assures a requested quality. Our approach com-
bines the distinction between mandatory and optional parts
with varying execution times and includes a quality param-
eter (i.e., the percentage of optional parts of a periodic task
which meet their deadlines). From that an admission algo-
rithm based on a probabilistic model computes a reserva-
tion time to schedule each task so that the actual achieved

1By execution times we mean the time any active resource is used

1



quality is the requested quality. This approach fundamen-
tally differs from all known algorithms for imprecise com-
putations. Furthermore, we present an implementation of
resource managers for CPU and a SCSI disk subsystem fol-
lowing the model.

The remainder of the paper is organized as follows. Sec-
tion 2 compiles related work. Section 3 gives an overview
about requirements to both, the scheduling and admission
model, and the system. The generic model of “Quality-
Assuring Scheduling” is introduced in Section 4. The next
section describes how we apply the model to two compo-
nents, a real-time scheduler for CPU, and one for SCSI
disks. It encloses a comparison of model predictions and
system behavior for each of these resources based on ran-
dom synthetic load and load generated from a real world
example. We conclude the paper with a overhead analysis
and an outlook for future work.

2 Related Work

Imprecise computationswere invented in the real-time
community about ten years ago as a scheduling model for
so called flexible computations [12]. Such computations
are designed for graceful degradation in result quality or
in timeliness for real-time applications, for which a timely
result of a poorer quality is better than a late result of the
desired quality. The idea is that a mandatory part pro-
vides a minimum level of quality. An optional part will
then improve the quality if enough resources are available.
Scheduling is done such thatall mandatory parts meet their
deadlines while the remaining time is used by the optional
parts as far as possible according to an optimal algorithm
(i.e., an algorithm that finds a feasible schedule whenever
the given set of jobs or tasks has a feasible schedule). Since
the problem to find optimal algorithms is NP-hard for most
practical cases, a lot of heuristical algorithms were pro-
posed in the literature [13, 12]. Almost all of them have
two disadvantages: they are based on deterministic dura-
tion of the resource usage, and they cannot assure a desired
result quality. Only a few papers study tasks with random
execution times, arrival times [4, 13] and even deadlines [3]
using a queueing-theoretical approach. For that reason, all
these times are assumed to be exponentially distributed - a
quite unrealistic assumption in hard real-time systems, in
particular for periodic tasks. Furthermore, only statements
about mean values result from queueing theory.

Finally, while imprecise computations have been subject
to considerable theoretical study in the real-time commu-
nity and concrete real-time systems apparently have been
built on that basis, we know only of one short note [7]
to build support for it into and use it as the structuring
paradigm for an operating system. And we know of no at-
tempt to use imprecise computations for any other resource
than CPU cycles.

The problem of expressing and assuring different levels of
quality was addressed first by algorithms usingtime-value

functions [8, 16, 9]. Such functions express the gained
quality depending on of the required resources for that qual-
ity. The solutions are of a rather static nature, because the
different achievable levels of quality are considered only at
admission time of jobs. That means, the solutions do not
consider the jitter in resource needs during execution and
they ignore changing load situations due to parallel best-
effort applications.

Locke [8] uses time-value functions to represent the ben-
efit of different computation times of a task when provid-
ing different levels of quality. Rajkumar’sQ-RAM ap-
proach [16] includes quality dimensions other than time-
liness. Multiple non-discrete and concave functions can be
specified. They are used to maximize a global objective
with given resources. By defining a minimal required level
of quality, the mandatory parts of the imprecise computa-
tion model can be emulated. Rajkumar relaxes the assump-
tions on the time-value functions in [9]. He supports dis-
crete QoS operating points which may be obtained by mea-
surements, and are therefore more appropriate than the ar-
tificial time-value functions. All these solutions utilize the
varying execution times of jobs but changing system load is
not taken into account.

A system adapting to changing system load is presented
in [1]. The authors describe a CPU-related approach to QoS
negotiation. The application specifies a set of utility-gains
and resource needs, and the system does admission on this.
The set is accepted if, among other conditions, the system
can guarantee to fulfill at least one tuple of the set. Each
tuple is assigned to a set of tasks that must be executed if
the tuple is selected for execution. However, the system
targets at long-lived real-time services, and switching be-
tween QoS-levels is done upon explicit request after admit-
ting new tasks. Thus, this system also assumes constant
resource needs of one task.

An approach that shares our view of quality as miss-rate
of jobs is presented in [18, 17]. While the papers focus
on packet scheduling for network traffic, the authors be-
lieve, that their algorithm is feasible for scheduling other
resources as well [18]. The authors address the quality of
optional parts by limiting the number of late or missed pack-
ets within a time window respective within finite numbers of
consecutive packets. This allows them to dynamically adapt
to changing resource utilization and to guarantee a specified
level of quality [17]. However, in contrast to our approach,
the scheduling does not deal with semantic dependencies
between packets of one stream.

A probabilistic extension of the classical rate monotonic
scheduling approach is presented in [2]. Statistical Rate
Monotonic Scheduling (SRMS) replaces the worst case ex-
ecution times by values derived from statistic distributions.
The main difficulty is that it relies on the knowledge of the
actual execution time of a periodic task at the beginning of
each period. This seems impractical, especially if disk ac-
cesses are part of the resource admission process.

Regarding resource specification, the work most closely

2



resembling the ideas presented here is theresource ker-
nel [14, 15], where a uniform interface to resource usage is
presented. Call back mechanisms can be used to notify ap-
plications if resources with soft reservations are not avail-
able. However, there are two fundamental differences to
our work. Firstly, a resource kernel provides access to all
resources and manages them. In contrast, various servers
can be added to or removed from the system to manage the
resources in our approach. Secondly, the resource kernel
follows the traditional scheme used in the real-time com-
munity to allocate a resource for a certain fraction of a pe-
riod of time. Overload is not addressed, and nothing is said
about the achieved quality or amount of optional resources.
In contrast, our approach specifies the varying resources
needed to accomplish a job. Based hereof, the needed re-
sources are calculateda priori.

3 Overview

Before we describe and discuss the scheduling model and
the exemplary implementation for two resources, we de-
scribe the requirements to the model and the system.

� An application must be able to specify which parts are
critical and must maintain a certain amount of quality
(e.g., decoding I and P frames of a MPEG Group of
Picture), and which parts are non-critical or optional
to improve quality. Some applications require multiple
optional parts (e.g., the more B frames are completely
decoded the better the quality). We refer toquality
the fraction of completely executed optional parts of a
periodic task.

� All active resources are handled by the same abstrac-
tion and a unified model. This allows us to some re-
source specific extent to use a single set of formulae
for admission and scheduling of applications and re-
sources.

� The system must be designed to assure the requested
percentage of successful operations.

� The implemented system must allow us to enforce the
assignment of resources and to revoke non-guaranteed
resources.

The scheduling model is based on periodic use of active
resources. The distribution of the variation in the execu-
tion time must be known before admission. Applications
may split resource requests into several parts which may
depend on each other and give a value for the importance.
Furthermore, the model provides fixed priorities. Finally, a
resource is allocated to a task only for a certain time span
called reservation time. The basic idea of our approach is to
compute the reservation time of a task in an admission test
before the task is started. So the scheduling overhead is kept
low and only the requested quality has been achieved. The

approach is applicable to all types of flexible computations
in the sense of Liu [12]; for lack of space it is demonstrated
here for imprecise computations by periodic tasks using the
sieve method (i.e., optional parts are discarded in their en-
tirety).

The implementation for CPU is straight forward. Op-
tional parts are scheduled only, if their reservation time is
not yet fully used. For CPU, variation is mostly due to the
jitter in processing time (e.g., variation in decoding time of
video frames) and to a lesser extend to hardware reasons
such as cache or TLB impacts.

In contrast to the CPU, the reason of the variance of disk
execution times is based on the hardware and not on the
requests coming from the application. A disk job is a se-
quence of single disk requests. The omission of optional
parts corresponds to skipping disk requests. That leads to a
filesystem implementing “optional streams.” Here, blocks
of optional streams are dropped and not delivered instead of
postponed. Figure 1 illustrates such a behavior.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

disk m1

b11 b8 b7

gap b6

b5 b0b1b2b4

m2 m0

gap b9gap b10 gap b3

mandatory

with gaps

stream
optional stream

Figure 1. File system delivering a stream with one
mandatory part and four optional parts per period.
The quality parameter is 0.67

4 Scheduling and Admission Model

4.1 General Approach

The goal is to schedule active resources such that under
overload a periodic task need not meet its deadline (the end
of period) in each period but only in a user-specified frac-
tion. More precisely, a periodic taskT i is a sequence of
jobsJi j whereJi j is to execute in thejth period ofTi. Each
job consists of a mandatory part and one or more optional
parts; the number of optional parts is fixed for each task.
Each of these parts is considered assuccessful if it is com-
pletely executed. This condition must hold for all manda-
tory parts of a task, but it is sufficient that a given percent-
age (probability) of optional parts is successful. Since usu-
ally ([13, 12, 2]) an optional job is not completed only if
it exceeds the end of period it may occur that an optional
job which has a high priority but a low quality parameter
(e.g., 40%) exceeds its requested quality immense (nearly
100%). Such jobs needlessly restrict the set of feasible tasks
in overload situations. Therefore, a resource scheduler must
enforce the reservation times for tasks as following: A con-
stant amount of time is assigned to each taskT i in each pe-
riod to execute the optional parts (analogously the manda-
tory part). When an optional part has consumed that amount

3



it is aborted (if possible) and later optional parts of the same
job are not started (similarly at the end of period).

Formally, for anyr 2 R and anyi 2N, let pi(r) denote the
probability that an optional part ofT i is successful. Hence,
the reservation timeri of taskTi is the smallest timer where
pi(r) is at least the given percentageqi of successful op-
tional parts:

ri = min(r 2 Rjpi(r)� qi) 8i = 1; :::;n (1)

n: number of tasks

(the achieved percentage of successful parts may exceed
the requested percentage because the random variables have
only discrete values).

Thus, the general admission criterion is that all manda-
tory parts of task Ti must meet their deadline, and the system
of equations in Formula (1) is solvable.

Next, we give a general formal description of a task. Then
we describe how the reservation times of a task are calcu-
lated and how the priorities are derived. We start with a
specific situation with regard to the SCSI experiments (see
Section 5.2): all tasks have the same length of period, and
the resource is not preemptible. Finally, we give an outlook
to the general situation.

4.2 The Task Model

Each taskTi is a sequence of jobsJi j to be processed pe-
riodically:

Ti = (Ji j) j=1;2;:::
i = 1; :::;n (2)

wheren 2 N denotes the total number of tasks in the task
setT = fT1; :::;Tng.

Each jobJi j consists of a mandatory partMi j andci op-
tional partsOi j1;Oi j2; :::;Oi jci . TheMi j;Oi j1;Oi j2,... parts
are started in this order within each period, but the second
optional partOi j2 is only started if the first optional partOi j1
was successful (and so on).

The execution time of the mandatory and the optional
parts of taskTi varies. In addition, no mandatory part ex-
ceeds the worst case execution timewi. In other words,
the execution time of the mandatory partsMi j and the op-
tional partsOi jk are non-negative random variablesXi j;Yi jk,
respectively (k = 1; :::;ci). We assume that all random vari-
ables of all tasksTi are pairwise independent. Furthermore,
for each taskTi the random variablesXi j are assumed to be
identically distributed as well as all theYi jk.

Finally, an application may specify a probability that an
optional part of taskTi is successful. In summary, the fol-
lowing definition describes a task.

Definition. A taskTi is a tuple

Ti = (Xi;Yi;ci;wi;qi; ti); i 2 N (3)

where

Xi non-negative random variable; execution time of the
mandatory part;

Yi non-negative random variable; execution time of an op-
tional part;

ci positive integer; number of optional parts;

wi real number less or equalti; worst case execution time
of the mandatory part, i.e.,P(Xi � wi) = 1;

qi real number 0� qi � 1; quality parameter, percentage of
successful optional parts;

ti positive real number; length of period.

Note thatXi � 0 enables us to consider tasks consisting of
optional parts only (similarly of the mandatory part only).
For simplicity, we identify the parts with their random vari-
ables and consider each mandatory partMi j as a realization
of the random variableXi and theOi jk as a realization ofYi.

4.3 Nonpreemptible Resources, Uniform Periods

Let us now assume a task set with uniform periods
(i.e., t1 = t2 = ::: = tn =: t) and let us consider non-
preemptible resources, that means optional parts which can-
not be aborted during its execution (e.g., a single disk ac-
cess).

4.3.1 Calculating Reservation Times

Each mandatory part of a taskT i precedes its optional parts
and must meet its deadline even in worst case situations.
Therefore, we will give (see Section 4.3.2) the mandatory
partsXi of a set of tasksT a priority higher than the priority
of any optional part. Thus, all mandatory parts meet their
deadline if and only if

n

∑
i=1

wi

t
� 1 (4)

andwi is the reservation time of the mandatory partXi of
taskTi. To derive the reservation timesri of the optional
parts ofTi it is sufficient to consider the first period[0; t]
under the assumption that all tasks are ready at instant zero;
obviously, it holdsri � t for all i. Due to the priorities of
Xi all the mandatory parts ofT are scheduled before any
optional part is scheduled. Hence, letX describe the sum of
the execution times of all mandatory partsXi.

Without loss of generality, we assume thatT is ordered
according to the priorities of the optional parts. All optional
parts of taskTi have the same priority. SoY1 has highest
priority (but lower than the priority of anyXi) and so on.
An optional part ofTi is started if the end of the reservation
time or the end of the period is not yet reached and it will
be successful regardless whether it exceeds these deadlines

4



or not. Therefore,qi is the percentage of optional parts of
taskTi which can be started during a period ofT i. Let de-
note

ri reservation time of the optional parts of taskT i;

Ai number of optional parts of taskT i which can be started
during a period ofT i; random variable, their values are
non-negative integers;Ai depends onr1; :::;ri�1.

Then the specified admission criterion for Formula (1) is

9r1; :::;rn8i = 1; :::;n : ri = min(rjEAi � qici); (5)

EAi =
ci

∑
k=1

P(Ai � k):

For i = 1 (the highest prioritized task) it holds (see Fig-
ure 2):

P(A1(r)� k) = P(X +(k�1)Y1 < t ^ (k�1)Y1 < r);

k = 2; :::;c1�1;

P(A1(r) = c1) = P(X +(c1�1)Y1 < t): (6)

X Y1 Y1 Y1
. . .

(k�1)times

U1k

0 t

r1

Figure 2. Computing the reservation time ri and the
total execution time of an optional job

To derive the reservation timer2 we determine the ran-
dom variable

U1 total execution time of an optional job of taskT i.

For that reason we define random variablesU11; :::;U1;c1

(see Figure 2); their values are at leastr1 (U1;c1 has arbitrary
values) and it holds forU1k:

1� k < c1 : X +(k�1)Y1 < r1^X + kY1 � r1

k = c1 : X +(c1�1)Y1 < r1: (7)

Then

U1 =
c1

∑
k=1

w1k �U1k;

w1 j = P(A1(r1)� j)�P(A1(r1)� j+1): (8)

Now we substituteX by X +U1 and computer2 in the
same way asr1 and so on.

4.3.2 Deriving Priorities

As explained in Section 4.3.1, we giveXi an arbitrary but
high priority. Next we assign priorities to the optional parts
such that they are less than all priorities of all mandatory
parts. Additionally, if an optional part has a lower quality
parameter than another optional part also receives a lower
priority. We call this priority assignment “Quality Mono-
tonic Scheduling” (QMS) by analogy with the well known
Rate Monotonic Scheduling (RMS).

4.4 Generalizations

So far we have considered nonpreemptible resources and
uniform periods. We generalize that now.

4.4.1 Preemptible Resources

If the optional parts can be aborted during its execution then
obviously it holds (see Figure 2)

U1 = max(X +(c1�1)Y1;r1) (9)

and so on.

4.4.2 Harmonic Periods and one Optional Part

Let us now consider tasks with one optional part only (c i =1
for all i) but with harmonic periods (any longer period
must be a multiple of all shorter periods). Considering
only the mandatory parts RMS is known to be optimal, and
fX1; :::;Xng is feasible if and only if Formula (4) holds with
ti instead oft. Unfortunately, including the optional jobs
neither RMS nor QMS is optimal. Hence, two different
ways (both based on QMS) to assign priorities are checked
during admission. The task setT is not admitted if and only
if the solution of Formula (5) fails in both cases.

4.4.3 Arbitrary Periods

The basic procedure is the same as described in Sec-
tion 4.3.2. Priorities are assigned strictly according to QMS
to all optional parts of any task. Now we use a simulator
tool what was developed to verify the analytical results. The
reservation timesri belong to the inputs. Theqi-quantilesik
of Yik

sik = min(s 2 RjP(Yik � s)� qi (10)

is a good approximation ofri for high-prioritized optional
parts because they seldom exceed the end of the period.
Now we check the feasibility ofT starting the simulation
based on these values for all optional parts. IfT is feasible
it is admitted. Otherwise, letYjl (1� l � ci) be the highest
prioritized optional part which did not reach its quality pa-
rameterq j. Then we determine an approximated best value

5



of r j by binary search betweens jl andt j (greatest possible
value ofr j). Only if we can calculate the reservation times
of all optional parts the task setT is admitted.

5 Implementation in DROPS

The section describes the implementation of Quality-
Assuring Scheduling for two resources, namely CPU and
SCSI. Both resource schedulers have been implemented in
the Dresden Real-Time Operating System DROPSbased on
the scheme of cooperating resources managers [5].

5.1 CPU Scheduling

5.1.1 CPU Reservations

The underlying microkernel of the DROPS system uses a
fixed priority scheduling with time slices and round-robin
scheduling among tasks within the same priority class. On
top of that it provides support for periodic threads and reser-
vations. A user level scheduler can assign tuples(priority,
time slice) to a thread. A thread owning such a reservation
runs on the assigned priority until it either voluntarily re-
leases the reservation or the reserved time slice expires. In
both cases, the kernel assigns new scheduling parameters
using the next reservation or the normal scheduling param-
eters of the thread. If a thread is periodic, the kernel au-
tomatically reassigns the reservations at the begin of each
period. To allow threads to handle error situations, the ker-
nel generates messages to the thread’s associated scheduler
if a reserved time slice has expired or a new period starts
before all reservations have been consumed.

Based on these mechanism, DROPS provides a simple
programming model for periodic real-time tasks. Figure 3
shows a code fragment. Real-time threads choose a pe-
riod, make one or more reservations and enter an endless
loop. rts_begin_period() releases all active reser-
vations and blocks until the beginning of the new period.
Then it starts its work, picks its next reservation using
rts_next_reservation() and finally starts the loop
again. If the thread consumes more than the reserved time
or misses its deadline (the end of the period), the frame-
work uses the message generated by the kernel to raise an
exception.

The usage of reservation is not restricted to periodic tasks.
It can also be used to guarantee a certain amount of CPU
time at a high priority for known entities within the system
like interrupt handlers. At the same time we specify an up-
per bound for the CPU consumption of these tasks.

5.1.2 Evaluation

To demonstrate the usability of our approach, we adapted an
MPEG player to DROPS. It guarantees a minimum visual
quality by decoding all I and P frames (i.e., at least each
third frame is encoded). It tries to improve this basic quality

Periodic Handler:
rts_set_period (period);
rts_reserve_time (mand_time, mand_priority);
rts_reserve_time (opt_time, opt_priority);
do {

rts_begin_period ();
try {

do_something()
} catch {

exceeded:
adjust_quality ();

};
rts_next_reservation ();
try {

do_something_else()
} catch {

exceeded:
discard_result ();

};
} while (!end);
rts_end_period ();

Figure 3. Code fragment for CPU reservation

by decoding as many B frames as the system load permits,
but at least the requested amount.

To admit a new MPEG decoder, we need the period and
distribution of decoding times for the stream to be played.
Using the MPEG typical “group-of-picture”, the length of
the period follows from the (in general) fixed amount of I, P,
and B frames. The player tries to reserve time for a manda-
tory job in which it decodes I and P frames and an optional
job to decode the B frames. Here, decoding one B frame
corresponds to one optional part. The distribution of decod-
ing times depends on the hardware and the video and has
to be measured once before playing the MPEG stream. The
distribution of decoding time we used for our measurements
is shown in Figure 4.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

35 40 45 50 55 60 65 70

Distribution of decoding times for mandatory and optional part

distribution of decoding time for 8 B frames 
distribution of decoding time for I and P frames 

Figure 4. Measured distribution of total decoding
times for I and P frames (left graph) and B frames
(right graph) per group-of-pictures

Due to the complex decoding algorithms, the current ver-
sion of our MPEG decoder is currently not able to cancel
the decoding process at arbitrary points in time. Therefore,

6



it cannot correctly handle incoming exceptions raised by
the kernel after the decoder has exceeded its reserved time
or has reached its deadline (the end of period). To over-
come this, the decoder sets a flag when an exception ar-
rives and checks this flag before starting to decode the next
frame. Therefore, it can happen that the decoder continues
the B frame from the previous period within the reserva-
tion for the mandatory part of the new period. To handle
this correctly, we use the model described in Section 4.3 for
non-preemptible resources and add the worst case decoding
time of one B frame to the worst case execution time of the
mandatory part. An improved version will be interruptible
and able to handle all required exceptions at their time.

To validate our approach we admitted the decoder with
different quality parameters and measured the actually
achieved quality by counting the decoded and dropped
frames. Table 1 illustrates the dependency between re-
quested quality, model-derived reservation time and the
achieved measured quality of the optional parts. The re-
sults are within five percent of the expected quality. This
points to some hidden overhead within the implementation.
But the results look promising especially since we did not
remove sources of simple errors such as inaccurate timing
yet.

The system was not in an overload situation during the
measurements. To simulate a loaded system we restricted
the MPEG decoder to its reserved time by assigning it no
normal scheduling parameters. Therefore it blocked until
the beginning of the next period after its last reservation
was expired. By assigning the appropriate normal schedul-
ing parameters other policies like time sharing with normal
application or running at higher or lower priority than time
sharing applications would be possible.

Requested Required Time Reservation for Achieved
Quality for Optional Parts/ms Optional Parts/ms Quality

0.95 54.22 55 0.9506
0.90 51.84 53 0.8588
0.80 45.51 47 0.7875
0.70 38.85 39 0.6740
0.60 31.61 32 0.5804
0.40 22.52 23 0.4063
0.20 8.04 9 0.2451

Table 1. Requested quality, derived reservation
time, and measured quality of the optional parts

5.2 Disk Scheduling

For media applications like video and audio streaming it
is important to predict the bandwidth capacity of the disk
system. In contrast to the CPU scheduling where the non-
deterministic behavior is primarily induced by the applica-
tion and less by hardware, for disks the non-deterministic
behavior is mainly caused by the hardware. The processing
time of a disk request mainly depends on rotational and seek

delays. Using worst case assumptions for reservation based
on maximum values for rotational and seek latencies and the
transfer times of a disk leads to very low disk utilization. In
fact, our experiments showed that the worst case process-
ing time of a Seagate Cheetah ST39102LW disk drive is
about 2.5 times the average processing time under random
workload. Figure 5 shows the distributions of the process-
ing times for some of our disk drives.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Request processing time (ms)

Seagate ST39102LW
IBM DGVS09U

IBM DORS32160W

Figure 5. Distributions of disk request processing
times (read requests, request size 64KB)

5.2.1 Resource Specification

Clients of the disk system (e.g., a real-time filesystem) re-
quest a certain bandwidth. This bandwidth requirement is
translated into a number of disk requests per period2. Using
the notation defined in Section 4.2, the client request can
now be specified as a task with either a mandatory (if the
requested quality is 1.0) or an optional job. The optional
job consists of several optional parts, the number of parts is
equal to the number of disk requests necessary to meet the
requested bandwidth. As already mentioned, a disk request
cannot be preempted once it is sent to the disk. Thus, the
admission uses the algorithm described in Section 4.3.1 to
calculate the reservation times.

5.2.2 Scheduling

The disk system defines the abstraction of astream. Clients
request a stream with a certain bandwidth and quality. Once
the stream is established (i.e., the admission control suc-
cessfully calculated the reservation time), the client must
generate the disk requests in a timely manner. The requests
must be available to the disk scheduler at the beginning of
the period in which the request is to be processed. The dead-
line of the request is the end of that period.

The disk scheduler uses a fixed period, fixed priority
scheme. At the beginning of a period the available process-

2 The length of the period is defined by the disk system and must be
chosen according to the available memory and latency requirements. In
our experiments we used a period length of 500ms.

7



ing time for each stream client is set to its reservation time.
Requests for a client are processed if

1. the client did not yet exceed its available processing
time or its maximum number of requests per period;

2. no request of a client with a higher priority is available,
and this client did neither exceed its available process-
ing time nor its maximum number of requests in that
period.

Requests without a reservation (non-stream or best-effort
requests) are executed only if no stream request with the
above-named properties is available and if sufficient time is
left in the current period so that the request does not overlap
with the next period.

5.2.3 Evaluation

We incorporated the disk scheduling algorithm into our
SCSI device driver which runs on top of the Fiasco mi-
crokernel [6]. All experiments were done with a Sea-
gate Cheetah ST39102LW (9.1GB, 10000rpm) disk drive.
The disk was attached to a 200MHz PentiumPro PC via a
NCR53c875 Ultra Wide SCSI adapter. Figure 6 shows the
distribution of the “read-block” request processing times we
used to calculate the reservation times. The mean value is
13.2ms with a standard deviation of 2.6ms, the maximum
value is 33.2ms. The average bandwidth is 4852KB/s. In-
stead of a real client we used for all measurements a client
which generates a randomly distributed workload to read
disk blocks of 64KB size. For only few parallel active
streams, the random load generates higher processing times
than a filesystem does, since file blocks are often contigu-
ously allocated. For multiple parallel active streams, the
head has to “jump” between the streams which is closer to
the generated used random load.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5 10 15 20 25 30 35

F
re

qu
en

cy

Request processing time (ms)

Random Read 64KB

Figure 6. Distribution of the request processing
time of a Seagate Cheetah ST39102LW disk drive

In our first experiment, we checked how accurate the
disk system meets the predictions done by the admission.
Table 2 shows an example configuration of this experi-
ment. The client requests four different streams, each with

bandwidth and quality requirements. The effective band-
width is the bandwidth effectively to deliver to the client
(quality � requested bandwidth). The last row shows the
percentage of successfully processed disk requests. The re-
sults prove the practicability of the scheduling model for
disk drives.

Stream 1 2 3 4

Requested
bandwidth (KB/s) 2560 1280 640 1280
Number of
disk requests 20 10 5 10
Requested
quality 0.950 0.900 0.850 0.500
Effective
bandwidth (KB/s) 2432 1152 544 640
Reservation
time (ms) 244.7 112.4 50.0 61.1
Achieved
quality 0.947 0.898 0.850 0.508

Table 2. Test configuration with four streams

The next obvious question is about the benefit of the ap-
proach. Table 3 shows the dependency of the requested
quality of a stream and the maximum available bandwidth
for our disk drive. With a quality requirement of 100%
(which means that all requests of a stream must be de-
livered and thus the reservation must be done with worst
case times), only 40% of the actual bandwidth is available
to stream requests. But already with a quality of 99.99%
(which means that 64KB out of 625MB of disk data get
dropped), 92% of the average bandwidth is available to
stream requests. With a quality of about 95% practically
the full available bandwidth can be used for stream requests.
Furthermore, the potential number of concurrent streams in-
creases.

Max. number Bandwidth (KB/s)
Quality of disk requests requested effective

1.0000 15 1920.0 1920.0
0.9999 35 4480.0 4479.6
0.9993 36 4608.0 4604.8
0.9961 37 4736.0 4717.6
0.9864 38 4864.0 4797.8
0.9691 39 4992.0 4837.7
0.9473 40 5120.0 4850.2
0.9246 41 5248.0 4852.3

Table 3. Dependency of available bandwidth and
quality

We used these streams for another experiment. In addi-
tion to the stream request the client generates a non-stream
(best effort) workload. Table 4 shows the results. The
achieved overall bandwidth is about 1% below the average
bandwidth of the disk (4852 KB/s). We suspect this is due
to the special handling of the period end of the disk schedul-
ing algorithm.

8



Bandwidth (KB/s)
Quality Stream Non-Stream ∑
1.0000 1920.0 2872.2 4792.2
0.9999 4477.5 287.9 4765.4
0.9993 4602.3 159.5 4761.8
0.9961 4709.1 69.7 4778.8
0.9864 4773.7 17.4 4791.1
0.9691 4800.7 4.7 4805.5
0.9473 4812.3 2.2 4814.5
0.9246 4804.3 2.8 4807.1

Table 4. Concurrent stream and non-stream work-
load

5.2.4 Concluding Remarks

Our experiments proved that the predictions of the schedul-
ing model can be achieved with a real disk system. How-
ever, the randomly generated workloads we used do not
well reflect the actual behavior of real-world clients like a
filesystem. Further tests can be made using e.g., traces of
real filesystem workloads. But as shortly mentioned, here
we expect more improved results. The disk scheduler cur-
rently uses a FIFO scheduling scheme, requests are pro-
cessed in the order of their position in the stream. Since
the deadline for all requests of a period is the end of the
period, the requests of a period can be reordered to reduce
seek overhead (e.g., using SCAN algorithms).

6 Admission and Scheduling Overhead

It is worth emphasizing that the scheduling overhead is
negligible small in comparison to other scheduling meth-
ods for flexible applications as known to us (especially in
comparison to SRMS where at each ready time of a job an
on-line admission is required).

The overhead caused by the CPU scheduler mainly con-
sists of additional manipulations of the ready queue when
activating a reservation and therefore increasing the priority,
and when a reservation is released or expired and the sched-
uler must restore the original priority. This happens once
per period for each reservation. Another source of overhead
is the notification of the user level scheduler in case of a
reservation overrun. This notification is sent using L4’s fast
IPC.

The disk scheduler maintains a list for each period con-
taining all clients which enqueued requests in that period.
Each client descriptor contains the requests and the remain-
ing reservation time for that client. The list is sorted accord-
ing to the priority of the clients. Thus, picking out the next
client can be done with virtually no costs.

The admission control is more expensive, but it is not
time-critical because it is done before starting the applica-
tion. It must solve the Formula (5) to calculate the reserva-
tion times for the optional parts. We use discrete random
variables derived from our measurements for the execution

times for the mandatory and optional partsXi resp.Yi. The
most costly part of the calculation is the convolution of ran-
dom variables which is required to calculate the distribution
function of the sum of two random variables. The complex-
ity of one convolution iso(ν2) whereν denotes the maxi-
mum number of values of the random variables.

We needn�1 convolutions to computeX andn � (c 1�1)
convolutions for(c1� 1)Y1 (see Formulae (6), (7)). The
complexity to computeP(Ai(r) � k), U1k andU1 is o(c1ν),
o(c1ν2) ando(c1ν), respectively. So the complexity of the
entire admission algorithm iso(n � c �ν2) where

c = max
i=1;:::;n

(ci): (11)

Based on the example described in Section 5.2.3, we stud-
ied the influence ofν on the admission timetAdm, on the
reservation timesri, and on the achieved qualityqi;ach. Each
stream consists of optional parts only. The numberc i of op-
tional parts of stream 1,...,4 is 20, 10, 5, and 10 per period,
respectively. The length of periodt is 500ms. The number
of values of the distribution functions varies in the range of
500 through 50,000 (i.e., the class width varies from 1ms
through 0.01ms). The dependency oft Adm onν is shown in
Table 5 and in a double logarithmic coordinate system (see
Figure 7). The ascent of the straight line is about 2, that
means, the admission timetAdm depending onν is approxi-
mately a function of the typey = ax2. Furthermore, Table 6
shows that the reservation timeri is the smaller (and hence,
qi;ach is the more precise) the larger the number of values.
The achieved quality (determined by simulation based on
ν = 50;000) does not remain under the requested qualityq i
in all situations.

ν tAdm=s

500 0.015
1,000 0.053
2,500 0.304
5,000 1.204

10,000 5.017
25,000 75.774
50,000 609.191

Table 5. Dependency of the admission time tAdm on
the number of values ν of the distribution functions

7 Conclusion and Future Work

We presented an approach for a unified admission and
scheduling scheme to give probabilistic guarantees for pe-
riodic real-time use of active resources. Considering the
known distribution of the variation of execution times al-
lows us to admit far more applications than in systems based
on worst-case admission.

Currently, we considered resources as independent and
quality parameters must be derived for each resource sep-
arately. As future work, we also want to include resource

9



ν r1=ms q1;ach r2=ms q2;ach r3=ms q3;ach r4=ms q4;ach

500 246.00 0.954 114.00 0.914 51.00 0.872 62.00 0.507
1,000 245.00 0.951 113.00 0.907 50.00 0.857 60.50 0.507
2,500 245.00 0.951 112.40 0.903 49.80 0.854 61.40 0.513
5,000 244.70 0.950 112.50 0.903 50.00 0.857 61.10 0.511

10,000 244.65 0.950 112.10 0.901 49.65 0.852 60.30 0.507
25,000 244.64 0.950 112.08 0.900 49.54 0.850 59.70 0.503
50,000 244.64 0.950 112.09 0.901 49.56 0.851 59.80 0.504

qi 0.950 0.900 0.850 0.500

Table 6. Dependency of the reservation times ri and the achieved quality qi;ach on the number of values ν
of the distribution functions

0.01

0.1

1

10

100

1000

100 1000 10000 100000

A
dm

is
si

on
 ti

m
e 

in
 [s

]

Number of values

Figure 7. Regression test for admission times

dependencies such as the amount of CPU the disk sched-
uler requires. We also want to extend the system to derive
all resource parameters from one application-specified qual-
ity parameter. Additionally, a precise scheduling model for
harmonic and arbitrary periods should be found.

8 Acknowledgments

We appreciate the valuable feedback and comments from
the reviewers to improve this paper. We would also like
to thank DFG, Intel Research, and IBM for supporting this
work.

References

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. Qos negoti-
ation in real-time systems and its application to automated
flight control. In Third IEEE Real-time Technology and
Applications Symposium (RTAS), Montreal, Canada, June
1997.

[2] A. Atlas and A. Bestavros. Statistical Rate Monotonic
Scheduling. Technical Report 98-010, Boston University,
May 2, 1998.

[3] R. Baldwin, N. J. D. IV, J. E. Kobza, and S. F. Midkiff. Real-
time queueing theory: A tutorial with an admisison control
application. Technical report, 2000.

[4] E. K. P. Chong and Z. Wei. Performance evaluation of
scheduling algorithms for imprecise computer systems.The
Journal of Systems and Software, 15(3):261pp, July 1991.

[5] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul.
Cooperating resource managers. InFifth IEEE Real-Time
Technology and Applications Symposium (RTAS), Vancou-
ver, Canada, June 1999.

[6] M. Hohmuth. The Fiasco kernel: System architecture. Tech-
nical report, TU Dresden, 2000. Unpublished manuscript.

[7] D. Hull, W. chun Feng, and J. W. S. Liu. Operating Sys-
tem Support for Imprecise Computation. InAAAI Fall Sym-
posium on Flexible Computation, University of Illinois at
Urbana-Champaign, 11 1996.

[8] E. D. Jensen, C. D. Locke, and H. Toduda. A time-driven
scheduling model for real-time operating systems. InPro-
ceedings of the 6th IEEE Real-Time Systems Symposium,
1985.

[9] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek. On
quality of service optimization with discrete qos options. In
Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium, 1999.

[10] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled
cache predictability for real-time systems. InThird IEEE
Real-time Technology and Applications Symposium (RTAS),
pages 213–223, Montreal, Canada, June 1997.

[11] K. J. Lin, S. Natarajan, and J. W. S. Liu. Imprecise results:
Utilizing partial computations in real-time systems. InProc.
IEEE Real-Time System Symp., 1987.

[12] J. W. S. Liu.Real-Time Systems. Prentice Hall, 2000.
[13] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung,

and W. Zhao. Algorithms for scheduling imprecise compu-
tations.IEEE Computer, 1991.

[14] S. Oikawa and R. Rajkumar. Linux/RK: A Portable Re-
source Kernel in Linux. In19th IEEE Real-Time Systems
Sumposium, Madrid, Spain, Dec 2-4 1998.

[15] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source Kernels: A Resource-Centric Approach to Real-Time
Systems. InSPIE/ACM Conference on Multimedia Comput-
ing and Networking,, Jan 1998.

[16] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
resource allocation model for qos management. InProceed-
ings of the 18th IEEE Real-Time Systems Symposium, 1997.

[17] R. West and C. Poellabauer. Analysis of a window-
constrained scheduler for real-time and best-effort packet
streams. In21st IEEE Real-Time Systems Symposium
(RTSS), Orlando, Florida, USA, Nov. 2000.

[18] R. West, K. Schwan, and C. Poellabauer. Scalable schedul-
ing support for loss and delay constrained media streams. In
Fifth IEEE Real-Time Technology and Applications Sympo-
sium (RTAS), Vancouver, Canada, June 1999.

10


	Introduction
	Related Work
	Overview
	Scheduling and Admission Model 
	General Approach
	The Task Model
	Nonpreemptible Resources, Uniform Periods
	Calculating Reservation Times
	Deriving Priorities

	Generalizations
	Preemptible Resources
	Harmonic Periods and one Optional Part
	Arbitrary Periods


	Implementation in Drops
	CPU Scheduling
	CPU Reservations
	Evaluation

	Disk Scheduling
	Resource Specification
	Scheduling
	Evaluation
	Concluding Remarks


	Admission and Scheduling Overhead
	Conclusion and Future Work
	Acknowledgments

