Process and Thread
Management

»<Ausgewahlte Betriebssysteme”
Professur Betriebssysteme
Fakultat Informatik

Outline

Data Structures
Process Creation
Thread Creation
Scheduling

Ausgewahlte Betriebssysteme -
Processes and Threads

Data Structures

Process represented by EPROCESS
(executive process) block

Thread represented by ETHREAD block
One process contains at least one thread

EPROCESS and ETHREAD plus associated
structures exist in system address space

Process and thread environment blocks
(PEB, TEB) exist in user address space

Ausgewahlte Betriebssysteme - 3
Processes and Threads

Data Structures (2)

Process _
> environment s
black

Thread
envircnment
block

Process address space

System address space

_"| Wina2 process block |
Process

block =>| Handle table

Thread
block

k 2

© Mark Russinovich & David Solomon (used with permission of authors)

Kernel process black {or PCB)

Process ID

Parent process 1D

Exit status

Create and exit times

PsActiveProcessHe ad =3 Next process block | EPROCESS |—>

Quota block

Memory management information

Exception port

Debugger port

> Primary access token

O ——
A teee- | Handll e table

Device map

Process environment block

Image filename

© Mark Russinovich & Image base address
David Solomon (used with
permission of authors)

Process priority class

2| \/in32 process block
e Job object

—
Ar—

Kernel Process Block (PCB)

» Contains basic information needed to
manage processes and their threads
— Page directory
— Kernel thread block list
— State
— Etc.

Ausgewahlte Betriebssysteme -
Processes and Threads

Kernel Process Block (2)

Dispatcher header

& e | Process page directory |

Kernel time

User time

Inswap/Outswap list entry

| KTHREAD | - - -

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Elcioul theead gummtam © Mark Russinovich & David
Process state Solomon (used with permission
of authors)

Thread seed

Disable boost flag

Process Environment Block

» Contains information for:
— Image loader
— Heap manager
— Other Win32 system DLLs

» Always mapped at 0x7ffdfO0

Ausgewahlte Betriebssysteme -
Processes and Threads

Process Environment Block (2)

Image hase address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

| Process heap

GDlshared handle table

Operating system version number information

Image version information

Image process affinity mask

© Mark Russinovich & David Solomon (used with permission of authors)

Ausgewahlte Betriebssysteme - 9
Processes and Threads

Thread Control Block

» Kernel object used to schedule threads

* Win32 subsystem maintains parallel structure
for each Win32 thread
» Kernel-mode portion of Win32 subsystem

maintains parallel structure for thread using
GUI or USER functions

» Fibers:
— Managed in user-mode by Win32 subsystem
— First fiber created from thread
— Successive fiber created explicitly
— Executed if called through SwitchToFiber

Ausgewahlte Betriebssysteme - 10
Processes and Threads

Thread Control Block (2)
KTHREAD '_—F

Create and exit imes

Process 1D

> |EPROCESS |

Thread start address

- | Access token |

Impersonation informatian

LPC message information

Timer information

> | Pending If0 requests |

© Mark Russinovich & David Solomon (used with permission of authors)

Ausgewahlte Betriebssysteme - 11
Processes and Threads

Kernel Thread Block

Dispatcher header

Total user time

Total kernel time

“;l Kernel stack information |

& > | System service table |

Thread-scheduling information

Trap frame

o | Thread-local storage array |

Synchronization information

List of pending APCs

Timer block and wait block

List of objects thread is waiting on

L “;lTEB|

12

Kernel Thread Block (2)

Dispatcher header: thread can be waited on,
need dispatcher object

System service dispatch table (see
Introduction — 20)

Scheduling information: base priority, current
priority, quantum, affinity mask, ...

Pending APCs (see Interrupts — 17)

Ausgewahlte Betriebssysteme - 13
Processes and Threads

Thread Environment Block

Exception list

Stack base

Stack limit
* | Subsystem thread information block (TIB)
* | Fiber information

Thread ID

Active RPC handle

|PEB|

L J

LastError value

Count of owned critical sections

Current locale

User32 client information . . .
© Mark Russinovich & David

GDIag infdrmation Solomon (used with permission of
OpenGL information authors)
TLS array
14

| Winsock data |

Outline

Data Structures
Process Creation
Thread Creation

Scheduling

Ausgewahlte Betriebssysteme - 15
Processes and Threads
Creating
process
Open EXE and
Stage 1| | create selection
object
Create
Stage 2 Windows 2000 . . .
process object © Mark Russinovich & David Solomon
* (used with permission of authors)
Create
Stage 3 Windows 2000
thread object Win32
subsystem
Set up for new
Stage 4 Notify Win32 L Ll | cess and
subsystem thread
New process
Start execution Final
Stage 5 of the initial process/image Stage 6
thread initialization
Return Start execution
at eniry point 16

to caller!

to image

Create a Process

Open image file
Create EPROCESS object
Create initial thread (stack, context, ETHREAD)

Notify Win32 subsystem (set up for new process
and thread)

5. Start execution of initial thread (unless
CREATE_SUSPENDED)
6. In context of new process and thread:
Complete initialization of address space (load DLLs, ...)
Begin execution of program

»owbdh -

Ausgewahlte Betriebssysteme - 17
Processes and Threads

Assign Priority to Process

» Can specify more than one priority class
in Create Process call = lowest used

* If no priority class specified Normal is
used, unless priority class of parent is
Idle or Below Normal

* If Real-time is specified and parent
doesn‘t have Increase Scheduling
Priority privilege High is used

Ausgewahlte Betriebssysteme - 18
Processes and Threads

Opening an Image (stage 1)

If image is OS/2 application, image changes
to os2.exe and restart

If image is MS-DOS application

— Check for running Virtual Dos Machine (VDM)

— If exists, use it to run application

— If not, image is changed to ntvdm. exe an restart
If image has .bat or .cmd extension image
changed to cmd. exe and restart

If image is Win16, decide if has to create new VDM
(flags of Create Process call)

Ausgewahlte Betriebssysteme - 19
Processes and Threads

Opening an Image (2)

Now valid Win2K exe is opened and a section
object exists for it (not mapped yet)

If image is Posix, image changes to Posix.exe
and restart

If image is DLL Create Process fails

Now check registry for entry (if exists use
specified image and restart) — see example

Ausgewahlte Betriebssysteme - 20
Processes and Threads

10

Choosing Win32 image

Run Cmd.exe Run Ntvdm .exe Use .exe directly
MS-DOS bat ; ;
S ad Win1é |r132

What kind of
application is it?

MS-DOS .exe,
.com, or_pif

N

Run Os2.exe Run Posix.exe Run Ntvdm.exe

05/2 1.x POSIX

© Mark Russinovich & David Solomon (used with permission of authors)

Ausgewahlte Betriebssysteme - 21
Processes and Threads

Create EPROCESS Object

« Set up EPROCESS block (quota, process ID,
access token)
« Creating initial process address space

— Create three initial pages for page directory,
hyperspace page, working set list

— Page table pages for non-paged system space
and system cache are mapped into process

* Initialize kernel process block (pointers)

Ausgewahlte Betriebssysteme - 22
Processes and Threads

11

Create EPROCESS Object (2)

» Conclude address space setup
— VM manager initializes internal data structures
— Ntdll.dll mapped

» Set up PEB

— Image base address, heap variables, version
numbers, ...

« Complete Setup
— Initialize handle table
— Set flags from image file in PEB

Ausgewahlte Betriebssysteme -
Processes and Threads

23

Notify Win32 Subsystem

» Duplicate handles for process and thread
» Set priority class
» Csrss process block is allocated

» Exception port is set to Win32 subsystem's

exception port

* Debug port is set to subsystem’s debug port

» Csrss thread block allocated and initialized
and queued in process thread list

« Subsytem internal counters incremented

Ausgewahlte Betriebssysteme -
Processes and Threads

24

12

Initialize in Context of Process

* Initialize loader, heap manager, critical
section structures, ...

» Load required DLLs

« If debugged, suspend all threads and
attach to debugger (via debug port)

« Start execution

Ausgewahlte Betriebssysteme - 25
Processes and Threads

Outline

Data Structures
Process Creation
Thread Creation
Scheduling

Ausgewahlte Betriebssysteme - 26
Processes and Threads

13

Create a Thread

1. Create user-mode stack
2. Initialize thread’'s hardware context

3. Create executive object (kernel) and
initialize it (access token, ID, kernel stack,

priority, ...)
4. Win32 subsystem is informed about thread
Thread handle and ID returned to caller

6. When running finish initialization: register
with DLLs and debugger, etc.

o

Ausgewahlte Betriebssysteme - 27
Processes and Threads

Create Thread (2)

« to 3.:
— Thread count in process is incremented
— Executive thread block created (ETHREAD)
— Thread ID created
— Thread's kernel stack allocated
— TEB is set up in user-mode address space
— Thread start address stored on kernel stack

— Set up KTHREAD block (priority, affinity, quantum,
machine-dependant hardware context (trap,
exception frames, ...), ...)

— Thread access token set to process* access token

Ausgewahlte Betriebssysteme - 28
Processes and Threads

14

Create Thread (3)

e t06.:

— lower IRQL to APC - system init thread routine
fires

— enable working set expansion and start loader
initialization
— call loaded DLLs to notify of new thread

— If debugger is attached suspend all threads and
call debugger

— main thread begins execution in user mode (use
trap, which has been initialized earlier)

Ausgewahlte Betriebssysteme - 29
Processes and Threads
Thread Startup
Inside new thread
|
Kernel mode Kernel mode User mode Inside Csrss
Lower IRQL
to APC
Enable working
set expansion
Queue user-mode Perform in-process
APC torun APG fires context initialization
Larintialize TAUNK [e—-| - (|nitialize loader,
and lower IRQL load required
to 0 DLLs, etc.)
]
Process
has Yas Suspend all
debugger? threads
. . Notify debugger
Send new thread LPG sendireccive proGess oF nEw
message to - >
process and wait
subsystem
for reply
Restore trap n I
frame and dismiss |- asman
threads
exception
v © Mark Russinovich & David Solomon 30
Begin execution in . P
; wsormode \ (used with permission of authors)

15

Outline

Data Structures
Process Creation
Thread Creation
Scheduling

Ausgewahlte Betriebssysteme - 31
Processes and Threads

Thread Scheduling

Priority driven and preemptive Scheduling

Runs for amount of time called quantum

Can be restricted to subset of processors (processor
affinity)

~ocheduler” spread throughout kernel (scheduling
code called dispatcher)

Dispatching occurs at DPC/dispatch level
Dispatching triggered by:

— Thread becomes ready (create, return from wait)

— Thread leaves running state (terminate, quantum end, ...)
— Thread's priority changes

— Processor affinity of running thread changes

Ausgewahlte Betriebssysteme - 32
Processes and Threads

16

Real-time
time critical

Real-time
Levels 16-31

Real-time idle
Dynamic time

a1

. Priority Levels

24

critical

Dynamic
Levels 1-15

Dynamic idle

16 High © Mark Russinovich & David Solomon
15 (used with permission of authors)
Above
13 Normal
Normal
10 Below
Normal
8

Idle

33

1
0 Used for zero page thread—not available to Win32 applications

Priority Levels (2)

Thread priority is based on priority class and relative
priority (called base and current priority)

Some system processes have priority slightly higher
than Normal (default)

Real-time thread never have priority changed (kernel
mode system threads use this range)

Real-time threads have their quantum reset when
preempted
Kernel-mode threads may raise IRQL to 1 (APC)

On multi-processor system spin lock used for
synchronization of dispatcher data

Ausgewahlte Betriebssysteme - 34
Processes and Threads

17

Thread states

Ausgewahlte Betriebssysteme - 35
Processes and Threads

Thread States

restore
context

I

reinitialize

preempt

P

kernel stack kernel stack
outswapped @ inswapped

Ausgewahlte Betriebssysteme - 36
Processes and Threads

18

Quantum

Thread starts with quantum of 6 (Professional) or 36
(Server)

On each clock interrupt 3 is subtracted from quantum
(if 0 another thread is scheduled)

Even if not running (IRQL >= DPC level) quantum is
reduced (wait)

Threads at priority < 14 and wait have quantum
reduced by 1 when returning from wait

Threads at priority >= 14 and wait have quantum
reset when returning from wait

Clock interrupt on single-processor x86 about 10ms
(multi-processor x86 15ms)

Ausgewahlte Betriebssysteme - 37
Processes and Threads

Quantum boost

Foreground window's threads have
quantum boosted

Better than priority boost, because
background processes still run

Value determined by registry; can vary
between 6 to 36

Ausgewahlte Betriebssysteme - 38
Processes and Threads

19

Scheduling Data Structures

» Dispatcher database:

— Which threads are waiting

— Which threads are running

— Which processes are executing which threads
 Dispatcher ready queue:

— One queue per priority

— Bit mask, which priority has ready threads
* |dle summary:

— Which processor is idle

Ausgewahlte Betriebssysteme - 39
Processes and Threads

Scheduling Data Structures (2)

« Default base priority

* Default processor affinity

* Default quantum

Thread H Thread | Thread H Thread |

* Base priority
Dispatcher ready queue « Current priority

*+ Processor affinity
* Quantum

31

© Mark Russinovich & David Solomon

0 (used with permission of authors)
Ready summary Idle summary
[—— | | 40
31 o 31 (1]

20

Scheduling Scenarios

Voluntary Switch:
— Wait for object (semaphore, event, I/O completion, ...)
— Thread goes to wait queue
* Preemption
— Higher priority thread’s wait completes
— Thread priority is changed
— Running thread is put at head of it's priorities ready queue
* Quantum end
— Thread moves to tail of ready queue
+ Termination

Ausgewahlte Betriebssysteme - 41
Processes and Threads

Priority Boost

» Can boost priority in five cases:
— On I/O completion (boost defined by driver)
— After waiting on events or semaphores (boosted
by 1)
— After foreground thread completes wait
— When GUI threads wake up (boosted by 2)

— When ready thread hasn‘t run for some time
(ready and not run for > 300 clock intervals ~3-4
seconds; boosted to 15 + double quantum)

Ausgewahlte Betriebssysteme - 42
Processes and Threads

21

Priority

Base priority

Priority Boost (2)

E?qantgrﬂ:l

/7Pnor|ty decay at guantum end
Boost Round-robin at

upon wait Preempt hase prority
complete (befare gquantum endjl /
Run Wait Run Run

Time

© Mark Russinovich & David Solomon (used with permission of authors)

Ausgewahlte Betriebssysteme - 43
Processes and Threads

22

