
- Definition(Wang, Xu 98):
 - A computer system (HW + SW) is called scalable if it can scale up (improve its resources) to accommodate ever increasing performance and functionality demand and / or scale down (decrease resources) to reduce cost.
- Dimensions of Scalability:
 - Size (more CPUs)
 - Other Resources (Memory)
 - Software (Versions, better libs, etc.)
 - Heterogeneity (different hardware / SW = portability)

Scalability in Computer Systems DNS/BIND as an example

Outline and Goal of Lecture

Outline:

- Scalability problems, terminology and basic methods
- Names in Distributed Systems purposes of naming, terminology
- Application of scalability methods on naming

Goal:

understand some of the important principles how to build scalable systems

using DNS as an example

Definitions Scalability

Scalability

the ease with which a system or component can be modified to fit the problem area.

http://www.sei.cmu.edu/str/indexes/glossary/

Scalability [in telecommunication and software engineering] indicates the capability of a system to increase performance under an increased load when resources (typically hardware) are added

Wikipedia

Scalability in Computer Systems

A system is described as scalable

if it remains effective when there is a significant increase in the number of resources and the number of users.

Coulouris, Dollimore, Kindberg: Distributed Systems

A system is scalable

if it works well for very large and very small numbers

Another aspect of scalability:

Prepare for change in functionality

- software engineering
- choose sufficiently large logical resources
- provide hooks for extension

Problems for Scalability in Distributed/Parallel Systems

Performance bottlenecks in ...

Failures of ...

Abuse of ...

- computers
- communication

Principles to achieve Scalability ("RPC")

<u>Partitioning</u>

split systems into parts that can operate independently to a large extent

<u>Replication</u>

provide several copies of components

- that are kept consistent eventually
- that can be used in case of failure of copies

Locality (Caching)

maintain a copy of information

that is nearer, cheaper/faster to access than the original

Some Challenges

Balance load:

keep load under reasonable threshold

- at each component
- in the communication subsystems

load balancing can be static or dynamic. Will study a detailed example for dynamic load balancing later(Mosix).

Minimize the delay induced by "RPC".

Prepare for change.

Choose best degree of consistency.

Names, Identifiers, Addresses

Names

- symbolic
- have a meaning for people

Identifiers

- identifies a component (uniquely)
- are used by programs

Addresses

- locates a component
- can change

Name resolution

Name Resolution:

- map symbolic names to objects
- better: to a set of attributes such as identifiers, addresses, other names, security properties

Interfaces:

- Register (Name, attributes, ...)
- Lookup (Name) -> attributes

Related

Compilers

statically map names to addresses

Dynamic libraries

dynamically remap addresses

Port Mapper

map service to port

Name resolution is a form of dynamic mapping of pathnames to attributes.

Observation

Many services, tools, ... provide their own name resolution

- file systems path names to I-Nodes
- login
- RPC systems (portmapper)

Purpose of Directory Services

- integration of name services
- generic name service
- world-wide use of names

Today mostly used:

- email/web
- computer attributes (IP addresses)
- people attributes (certificates, ...)

A Bit of History

5

UUCP/MMDF (cum grano salis):

- iralgmdziloldenburglheinrichluser (path to destination)
- user@ira!heinrich%gmdzi (mixing identifiers and path information)

ARPA-Net:

- a single file: hosts.txt
- maintained at Network Information Center of SRI (Stanford)
- accessed via ftp
- TCP/IP in BSD Unix => chaos name collisions, consistency, load

-DNS: Paul Mockapetries (84) Distributed OS SS 2008, Scalability/DNS

More Terminology

Name Space

• set of names recognized by a name service

Context

• unit for which a name can be mapped directly

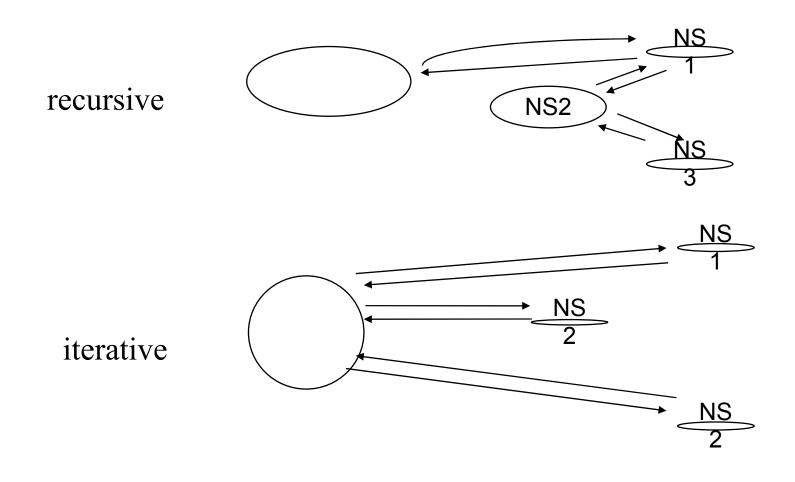
Aliases

several names for one object

More Terminology

Naming Domain

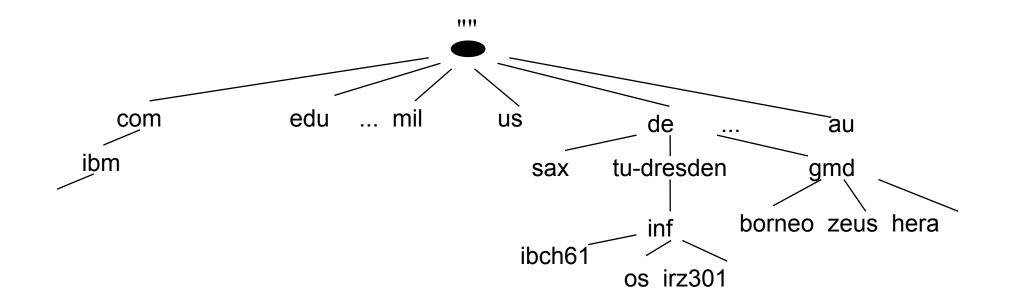
• Subtree in the hierarchy of DNS contexts


Zone

 (aka Zone of authority) Subset of a domain over which an authority has complete control. Subzones (starting at apices of a zone) can be delegated to other authorities.

Navigation

• querying in a set of cooperating name spaces


Basic Implementation Variants

Requirements / Properties

- arbitrarily large numbers
- arbitrary units of administration
- long living, the higher in the hierarchy the longer
- high robustness
- restructuring of name spaces
- consistency
- efficiency

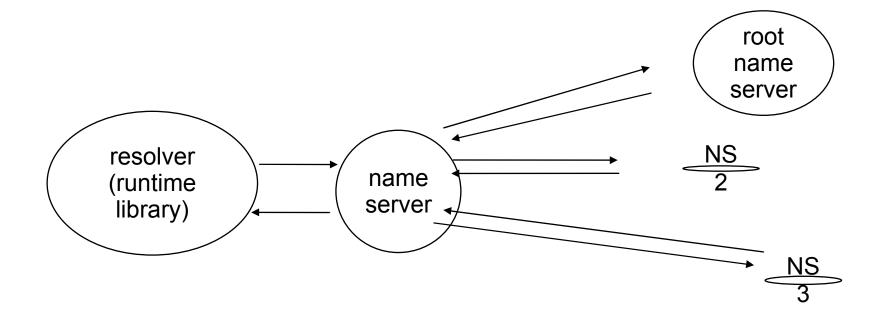
DNS Name Space

Distributed OS SS 2008, Scalability/DNS

Examples

inf.tu-dresden.de De os.inf.tu-dresden.de C heidelberg.ibm.com De

Domain Computer Domain


ftp ftp.inf.tu-dresden.de DNS: --> IP address: 141.76.2.3 ftp daemon: IP address, port 21

Properties:

- location independent
- not very deep

Distributed OS SS 2008, Scalability/DNS

Implementation Structure (BIND)

Distributed OS SS 2008, Scalability/DNS

22

Partitions: Zones

Zones:

- administrative unit
- resolves all names within a zone recursively
- maps to names and addresses of name servers responsible for sub zones
- maintains management data

Name server:

• process doing the name resolution for one zone

Resource records (RR):

key interface

Replication

Currently 13 root name servers

each zone has at least

- one primary
- one secondary

name server

Caching

each name server caches resource records time to live attribute

authoritative versus non-authoritative answers

Distributed OS SS 2008, Scalability/DNS

Resource Records

record type interpretation content

A	address	IPv

AAAA address

NS name server

CNAME symbolic link

SOA start of authority

PTR IP reverse pointer

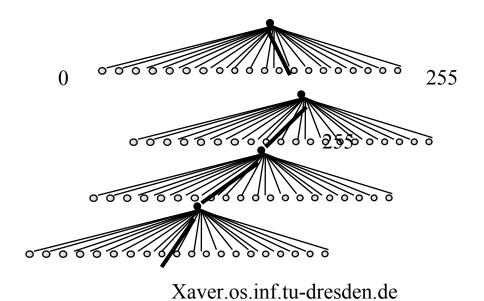
HINFO host info

IPv4 address

IPv6 address

DNS name

DNS name of canonical


zone-specific properties

DNS name

text description of host OS

Reverse Resolution

Example IP-Address: 141.76.48.97 => DNS-Name: 97.48.76.141.in-addr.arpa

Summary: Scalability and DNS

Good points:

- replication and caching work well
- over time, DNS scaled from small numbers to millions

Bad Points:

IP addresses too small

Literature

Paul Albitz & Cricket Liu DNS and BIND

O'Reilly & Associates, Inc.

Distributed OS SS 2008, Scalability/DNS