
1

Distributed Systems
Synchronization

Marcus Völp
2008

Distributed Operating Systems 2008 Marcus Völp 2

Purpose of this Lecture

 Synchronization
 Locking
 Analysis / Comparison

Distributed Operating Systems 2008 Marcus Völp 3

Overview

 Introduction
 Hardware Primitives
 Locking

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks
 MCS Locks

 Lock-free Synchronization
 Special Issues

 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

 Performance

Distributed Operating Systems 2008 Marcus Völp 4

Introduction

 An example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail

Distributed Operating Systems 2008 Marcus Völp 5

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head

Distributed Operating Systems 2008 Marcus Völp 6

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer

Distributed Operating Systems 2008 Marcus Völp 7

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer

Distributed Operating Systems 2008 Marcus Völp 8

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer

Distributed Operating Systems 2008 Marcus Völp 9

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer

Distributed Operating Systems 2008 Marcus Völp 10

Introduction

 First Solution
 Locks

 List Lock
 List Element Lock

lock_list;
insert_element;
unlock list;

Distributed Operating Systems 2008 Marcus Völp 11

Hardware Primitives

 How to make instructions atomic
 Bus lock

 Lock memory bus for duration of single instruction (e.g., lock add)

 Observe Cache (ARM v6, Alpha, x86: monitor, mwait)
 Load Linked: Load value and watch location
 Store Conditional: Store value if no other store has accessed location

 Atomic operations
 loads, stores
 swap (XCHG) !! x86 implementation requires no bus lock !!

 bit test and set (BTS)
 if bit clear then set bit; return true else return false

 compare and swap (CAS m, old, new)
 if m == old then m := new ; return true else new := m, return false

Distributed Operating Systems 2008 Marcus Völp 12

Locking Algorithms

 Peterson's Algorithm
 Works only for 2 Threads
 atomic stores, atomic loads
 sequential consistency (memory fences)

bool interested[2];

int blocked;

void entersection(int thread) {

int other; /* number of other thread */

other = 1 - thread; /* the other thread: 1 for thread 0, 0 for thread 1 */

interested[thread] = true; /* show that you are interested */

blocked=thread;

while (blocked == thread && interested[other] == true){};/*wait*/

}

void leavesection(int thread) {

interested[thread] = false;

}

Distributed Operating Systems 2008 Marcus Völp 13

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap
lock (lock_var l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var l) {

 l = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 14

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var l) {

 l = 0;

}

Lock

CPU 0 CPU 1 CPU 2 CPU 3

l = M l = I l = I l = I

Distributed Operating Systems 2008 Marcus Völp 15

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var l) {

 l = 0;

}

LockSwap

CPU 0 CPU 1 CPU 2 CPU 3

l = I l = M l = I l = I

Distributed Operating Systems 2008 Marcus Völp 16

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var l) {

 l = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

l = I l = I l = I l = M

Lock Swap

Distributed Operating Systems 2008 Marcus Völp 17

Locking Algorithms

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var l) {

 do {

 reg = 1;

 do { } while (l == 1);

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var l) {

 l = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

l = I l = I l = M l = I

Lock

Distributed Operating Systems 2008 Marcus Völp 18

Locking Algorithms

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var l) {

 do {

 reg = 1;

 do { } while (l == 1);

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var l) {

 l = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

l = S l = S l = M l = I

Locktesttest

Distributed Operating Systems 2008 Marcus Völp 19

Locking Algorithms

 Fairness

lock
test

test
unlock

test
lock

unlock

test

test
lock

test

free

free

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 20

Locking Algorithms

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct l) {

 my_ticket = xadd (l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_var l) {

 current_ticket ++;

}

current next
 0 0
L.CPU0 [0]: 0 1 => Lockholder = CPU0
L.CPU1 [1]: 0 2
L.CPU2 [2]: 0 3

U.CPU0 [0]: 1 3 => Lockholder = CPU1

L.CPU3 [3]: 1 4
L.CPU0 [4]: 1 5

U.CPU1 [1]: 2 5 => Lockholder = CPU 2

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 21

Locking Algorithms

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct l) {

 my_ticket = xadd (l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_var l) {

 current_ticket ++;

}

Spin on global variable write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 22

parallel readswrite

Local Spinning

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to propagate write on Bus 2-3 (or 1 – 3)

CPU 0 CPU 1

CPU 2 CPU 3

msg
3 Network Messages

Distributed Operating Systems 2008 Marcus Völp 23

MCS-Lock (Mellor Crummey Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 24

MCS-Lock (Mellor Crummey Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 25

MCS-Lock (Mellor Crummey Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2008 Marcus Völp 26

MCS Locks

 Fair, local spinning
 atomic compare exchange: cmpxchg (L == Old, New)

lock (L, lock_element I) {
 I.next = null; I.lock = false;
 prev = xchg (L, I);
 if (prev != null) {

prev.next = I;
 do { } while (I.lock == false);
 }
}

unlock (L, I) {
 if (I.next == Null) {
 if (cmpxchg (L == I, Null)) return; // no waiting cpu
 do { } while (I.next == Null); // spin until the following process updates the next pointer
 }
 I.next.lock = true;
}

Distributed Operating Systems 2008 Marcus Völp 27

Lock-free synchronization

prev

new

next

insert(new, prev) {
 retry:
 new.next = next;
 if (not CAS(prev.next == next, new)) goto retry;
}

prev

new

next

insert(new, prev) {
 retry:
 new.next = next;
 new.prev = prev;
 if (not DCAS(prev.next == next && next.prev ==prev, prev.next = new, next.prev = new))
 goto retry;
}

Distributed Operating Systems 2008 Marcus Völp 28

Lock-free Synchronization

 Load Linked, Store Conditional

insert (prev, new) {

 retry:

 ll (prev.next);

 new.next = prev.next;

 if (not stc (prev.next, new)) goto retry;

}

Distributed Operating Systems 2008 Marcus Völp 29

Overview

 Introduction
 Hardware Primitives
 Locking

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks
 MCS Locks

 Lock-free Synchronization
 Special Issues

 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

 Performance

Distributed Operating Systems 2008 Marcus Völp 30

Special Issues

 Timeouts
 No longer apply for lock after timeout
 Dequeue from MCS queue

 Reader Writer Locks
 Lock differentiates two types of lockers: reader, writer

 Multiple readers may hold lock at same time
 Writers hold lock exclusively

 Fairness
 Improve reader latency by allowing readers to overtake

writers (unfair lock)

Distributed Operating Systems 2008 Marcus Völp 31

Special Issues

 Fair Ticket Reader-Writer Lock
 combine read, write ticket in single word

lock read (next, current) {
 my_ticket = xadd (next, 1);
 do {} while (current.write != my_ticket.write);
}

lock write (next, current) {
 my_ticket = xadd (next.write, 1);
 do {} while (current != my_ticket);
}

unlock_read () {
 xadd (current.read, 1);
}

unlock write () {
 current.write ++;
}

readwrite

current next R0 R1 W2 R3
 0 0 0 0 0 0
 0 1 0 1
 0 2 0 2
 1 2 1 2

Distributed Operating Systems 2008 Marcus Völp 32

Special Issues

 Lockholder preemption
 Spin-time of other CPUs increases by preemption time of

lockholder
 E.g., no packets can be sent when OS network code is preempted

while holding xmit queue lock

spin_lock(lock_var) {
 pushf; // store whether interrupts were already closed
 do {
 popf;
 reg = 1;
 do {} while (lock_var == 1); spin_unlock(lock_var) {
 pushf; lock_var = 0;
 cli; popf;
 swap(lock_var, reg); }
 } while (reg == 1);
}

Distributed Operating Systems 2008 Marcus Völp 33

Special Issues

 Monitor, Mwait
 Stop CPU / HT while waiting for lock (signal)

 Saves power
 Frees up processor resources (HT)

 Monitor: watch cacheline
 Mwait: stop CPU / HT until:

 cacheline has been written, or
 interrupt occurs

while (trigger[0] != value) {

 monitor (&trigger[0])

 if (trigger[0] != value) {

 mwait

 }

}

CPU 0 CPU 1

mwait

write to trigger

t

Distributed Operating Systems 2008 Marcus Völp 34

Performance

Source: Mellor Crummey, Scott : Algorithms for Scalable Synchronization on Shared Memory Multiprocessors

Distributed Operating Systems 2008 Marcus Völp 35

References
 Scheduler-Conscious Synchronization

LEONIDAS I. KONTOTHANASSIS, ROBERT W. WISNIEWSKI, MICHAEL L. SCOTT
 Scalable Reader- Writer Synchronization for Shared-Memory Multiprocessors

John M. Mellor-Crummey, Michael L. Scottt
 Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors

JOHN M. MELLOR-CRUMMEY, MICHAEL L.
 Concurrent Update on Multiprogrammed Shared Memory Multiprocessors

Maged M. Michael, Michael L. Scott
 Scalable Queue-Based Spin Locks with Timeout

Michael L. Scott and William N. Scherer III
 Reactive Synchronization Algorithms for Multiprocessors

B. Lim, A. Agarwal
 Lock Free Data Structures

John D. Valois (PhD Thesis)

