
1

K42 and Blue Gene
Two Case Studies for Parallel OS

Hermann Härtig
SS 2008

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

K42, Blue Gene, MosiX

K42
 Shared

Memory SMP
 Emulate Linux

interface

 Optimise
locality and
concurrency

Blue Gene
 Distributed

Memory MPP
 Message

Passing
Interface

 Partition

MosiX
 “Clusters” with

COTS networks
 Distribute Linux

 Balance Load
dynamically

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 3

Overview

 Introduction and some terminology
 (Interconnect Architectures)
 Programming Models
 SMP operating systems case study: IBM K42
 MPP operating systems case Study: IBM Blue Gene

 Cluster operating system case study:
MosiX

 An SMP technique in detail:
RCU by Frank Mehnert

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 4

SMP: Shared Memory / Symmetric
MP

 Characteristics of SMP Systems:
 Highly optimized interconnect networks
 Shared memory (with several levels of caches)
 Size today: up to ~1024 CPUs

 Successful Applications:
 Large Linux (Windows) machines: (workstations and)

servers
 Transaction-management systems
 Unix-Workstation + Servers

 Not usually used for:
 CPU intensive computation, massively parallel Applications

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 5

MPP: Massively Parallel
Multiprocessors
 Characteristics of MPP Systems:

 Highly optimized interconnect networks
 Distributed memory
 Size today: up to few 100000 CPUs

 Successful Applications:
 CPU intensive computation, massively parallel

Applications, small execution/communication ratios

 Not optimal for:
 Transaction-management systems
 Unix-Workstation + Servers

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 6

“Clusters”

 Characteristics of Cluster Systems:
 Use COTS (common off the shelf) PCs and networks
 Size: No principle limits (-> “GRID” computing)

 Successful Applications:
 CPU intensive computation, massively parallel

Applications, larger execution/communication ratios
 Cooperation between large organisations

 Not optimal for:
 Transaction-management systems
 Unix-Workstation + Servers

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 7

LinPack Benchmark

 Jack Dongarra
 used for Top 500 list

 largely superceded by LAPACK
 Selection of Fortran subroutines

 analyse and solve linear equations
 Matrixes: general, banded, symmetric

indefinite, symmetric positive definite,
triangular, tridiagonal square

 column oriented access
 analyse and solve least-square probles

 QR and singular value decomposition

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 8

Top 500 List
Rank1
Site: DOE /NNSA/LLNL (US)
Computer: Blue Gene/L IBM
Processors: 131072

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 9

Interconnects: Torus

 Example: Cray T3D/T3E
 No shared memory
 Supercomputer as front-end
 High efficient network:

Cache : Local : Distant
3:27:220 Cycles

 Embed distant memory in local
address space in cache-line
granularity.

 scales up to 2K knots

Memory

Cache

Mainframe:
Cray Y MP

PE

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 10

Interconnects: Fat Tree

 pioneered in Thinking Machines CM5

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 11

Interconnects: Fat Tree

 pioneered in Thinking Machines CM5

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 12

Parallel Programming Models

 Organisation of Work
 Independent, unstructured processes (normally

executing different programs) independently on
nodes (make and compilers, ...), “pile of work”

 SPMD: single program on multiple data
asynchronous handling of partitioned data
(SIMD: same operation on different data, old
MPPs)

 Communication
 Shared Memory, shared file system
 Message Passing:

Process cooperation through explicit message
passing

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 13

Usage- and Programmingmodel

 SPMD

while (true) {
work
exchange data (barrier)

}

 Common for many MPP:
All participating CPUs: active / inactive

 Techniques:
 Partitioning (HW)
 Gang Scheduling

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 14

Distributed Shared Memory

 Goal:
 Virtually Shared Memory

 Problems:
 false sharing
 Overhead

 Solutions
 Weakened consistency model
 Replication
 Structured Memory Models (Tupel, Objects)

 so far: no success in practice !!!

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 15

Distribution of Load

 Static
 Place processes at startup, don’t reassign
 Requires a priori knowledge

 Dynamic Balancing
 Process-Migration
 Adapts dynamically to changing loads

 Problems
 Determination of current load
 Distribution algorithm
 Oscillation possible

 successful in SMPs and clusters, not (yet ?) used in MPPs
 Most advanced dynamic load balancing: MosiX (next week!!!)

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 16

Messages

 Hardware – Implementation (IBM SP 2)

 Object – Systems (RPC)

 Libraries with special operations (e.g. MPI)

 Active Messages

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 17

Active Messages

 Goal:
 Very fast process communication over the network

(latency)
 Idea:

 Message contains address of procedure to be
invoked

 Message reception leads to procedure invocation (in
analogy to interrupt handler)

 Discussion
 Very successful: speed

(CM5: 12 microseconds Round Trip)
 But: repair of OS limitations?

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 18

MPI, very brief overview

 Library for message-oriented parallel programming.
 Programming-model:

 MPI program is started on all processors
 Static allocation of processes to CPUs .
 Processes have “Rank”: 0 ... N-1
 Each process can obtain its Rank

(MPI_Comm_rank).
 Typed messages
 Communicator: collection of processes that can

communicate, e.g., MPI_COMM_WORLD
 MPI_Spawn (MPI – 2)

 Dynamically create and spread processes

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 19

MPI - Operation

 Init / Finalize

 MPI-Comm-Rank delivers “rank” of calling process,
for example

MPI_Comm_Rank(MPI_COMM_WORLD, &my-rank)

if (my_rank != 0)
...
else

 MPI_barrier(comm) blocks until all processes called it
 MPI_Comm_Size how many processes in comm

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

MPI – Operations Send, RCV

 MPI_Send (
void* message,
int count,

 MPI-Datatype,
int dest, /*rank of destination process, in */
int tag,
MPI_Comm comm) /* communicator*/

 MPI_RCV(
void* message,
int count,

 MPI-Datatype,
int src, /* rank of source process, in */

/* can be MPI_ANY-SRC */
int tag, / can be MPI_ANY_TAG */
MPI_Comm comm, /* communicator*/
MPI_Status* status); /* source, tag, error*/

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

MPI – Operations Broadcast

 MPI_BCAST(
void * message,
int count,
MPI-Datatype,
int root,
MPI_Comm comm)

 process with rank == root sends,
all others receive message

 implementation optimized for particular interconnect

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 22

MPI – Operations

 Aggregation:
 MPI_Reduce

 Each process holds partial value,
 All processes reduce partial values to final

result
 Store result in RcvAddress field of Root process

 MPI_Scan
 Combine partial results into n final results and

store them in RcvAddress of all n processes

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 23

MPI - Operations
root

Compute: a[0] a[1] a[2] a[3]

a

MPI reduce

root

Compute: a[0] a[1] a[2] a[3]

MPI scan

a

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

MPI – Operations

 MPI_Reduce(
void* operand, /* in*/
void * result, /* out*/
int count, /* in */
MP_Datatype datatype,
MPI_Op operator,
int root,
MPI_Comm comm)

predefined MPI_OPs:
sum, product, minimum, maximum,
logical ops, ...

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Case Study for an SMP OS: K42

 Overview:
 Supports “pile-of-work” style,
 common/shared object (file) system,
 processes have many threads
 Threads of a process run on different CPUs and

share address space
 provides Linux syscall interface

 For more see
http://domino.research.ibm.com/comm/

research_projects.nsf/pages/k42.index.html
and paper in Eurosys 2006

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Case Study: K42

 Overview:
 Invented and/or aggressively explored many new

interesting techniques (not in this lecture):
 To support user-level thread scheduling within

processes (address spaces)
 Hot Swapping of components/implementations
 Based on their own microkernel

 Objective:
migrate invented techniques into main stream Linux

 This lecture concentrates on K42's “clustered objects”

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Clustered objects(CO) in K42

 Key ideas
 Minimize sharing, maximize locality
 Avoid global data structures and locks
 Hide internal distribution/implementation structure
 Per-processor “representatives” and

one “root” as central entity

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

CO example: counter

Operations: “inc” and “getval”

alternatives: global variable ./. local reps & root counter

cases
 Inc frequent, getval infrequent:

local rep better
 Getval frequent, inc infrequent:

shared global variable better

(in K42: swapping even at run time)

Next few slides taken from Jonathan Appavoo with
permission ...

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 29

Common MPP Operating-System-
Model

 PE: compute intensive part of application
 Micro-Kernel
 Start + Synchronization of Application
 elementary Memory Management (no demand

paging)

 all other OS functionality on separate Servers or
dedicated nodes

 strict space sharing:
only one application active per partition at a time

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 30

Space Sharing

 Assign partition from field of PEs
 Applications are pair wise isolated
 Applications self responsible for PEs
 shared segments for processes within partition

(Cray)
 Problems:

 debugging (relatively long stop-times)
 Long-running jobs block shorter jobs

 Isolation of application with respect to:
 Security
 Efficiency

 Buzzword: “eliminate the OS from the critical path"

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 31

Space Sharing

 Hardware-Supported assignment of nodes to
applications

 Partitions
 static at configuration

Installed by operator for longer period of time
 Variable(Blue Gene/L):

Selections and setup on start of Job
established by “scheduler”

 Very flexible (not in any MPP I know):
 increase and shrink during operation
 Applications need to deal with varying CPU

numbers

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 32

Case Study: IBM – Blue Gene/L

 www.research.ibm.com/bluegene
 Applications:

 Storm prediction
 Protein folding
 ...

 Requirements:
 Fold large protein:

 1 Year computation on Petaflop computer
 Ranking 1 in Top 500

using 16384 compute nodes (possible 65536)

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 33

IBM – Blue Gene Hardware

© IBM Research

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Functional HW organisation

 compute nodes:
applications only, up to 65 536

 i/o nodes:
IO, file system interaction, ...
up to 1024

 separate file servers
 service nodes

compute and IO-Nodes: newly developed, identical

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Compute and IO Nodes

 2 32 bit PowerPC 700 MH with two 64 bit FPU each
 L1 cache (not coherent),

2KB L2 and 4MB L3 cache (coherent)
L2 hit 10 cycles, L3 hit 25 cycles, L3 miss 75 cycles

 some SRAM buffers for intranode communication
 GB ethernet,
 torus, tree, interrupt/barrier control

(additional ASIC for cross plane communication)
 very low power

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 36

IBM – Blue Gene Interconnect
 5 Networks:

 3D Torus 64 (cabinet) x 32 (midplane) x 32 (cpu card)
only used by compute nodes
memory mapped:
“local injection FIFO” and “local reception FIFO”
can be partitioned
175 MB/sec per link

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 37

IBM – Blue Gene Interconnect
 5 Networks:

 Tree Network
used Combine and Broadcast (network contains ALUs)
interaction with IO/Nodes

 Barrier + Interrupt Network
 GBIT Ethernet to JTAG (machine control)
 GBIT Ethernet to outside

(communication with other systems, file servers)

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Broadcast and Combine Tree Network

MPI: root

broadcast combine

network nodes
contain ALU

ca 2 microseconds latency for complete tree

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

IBM – Blue Gene Interconnect

 “psets”:
 can be assembled as needed (with restrictions)
 e.g.: 1:8, 1:128, 1:1024 (compute:io)

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 40

System Software Overview

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 41

System Software: Overview

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 42

Principle Decisions

 strict space sharing
one application per partition at a time
enables user-mode communication without protection
problems

 one application thread per compute node
 no demand paging:

to avoid page faults and TLB misses

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 43

System Software

 compute node kernel: newly developed (CNK)
 io-nodes: Linux
 front end: compilers etc
 overall: MPI exploiting the communication hardware of

compute nodes
 service node:

control of the whole machine, DB2

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Organization

IO-Node
Network
ethernet

FS

FS

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Node and Roles

User App

File API

messages

NFS Client
Service

Processes

ION-Kernel

messages

NFS
GPFS

...

CNK ION FS

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 46

IO-Nodes

 all outside communication of compute nodes goes thru
IO-Nodes

 Job launch and control for their “psets”
 provide system services needed by application

no user application code on IO-Nodes
 diskless; boot image via RAM-Disk
 only one of the two CPUs are used by Linux

(L1 cache not coherent)
 CIOD (control and io daemon):

program launch, signaling, termination, IO
point to point messaging with compute nodes

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 47

Compute Node Kernel

 single-user dual threaded minimal kernel
 flat fixed-size 512MB address space
 kernel protected using MMU
 physical resources are partitioned between user and

kernel
 access to torus from user mode
 glibc runtime; no fork exec etc

IO shipped to IO-Nodes

Distributed Operating systems, K42 and Blue Gene Hermann Härtig

Compute Node Kernel

Messages, three layers
 HAL packet: delivery of packets
 messages: arbitrary size, reordering
 MPI

specific support for reduction, broadcast, processes
packets and messages: “active messages”

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 49

Compute Node Kernel, 2 modes of op.

 coprocessor mode,
dual threaded process sharing complete address space
 One CPU:

main application thread, non preemtable
 Other CPU as “coprocessor”:

e.g., message passing services,
but also computation in coroutine model
co_start starts a computation
co_join waits for completion

all coherence must be handled by user program
 virtual node mode (next slide)

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 50

Compute Node Kernel, 2 modes of op.

 coprocessor mode
 virtual node mode

2 single threaded processes, bound to CPUs
 each process has access to half of the memory
 share access to communication
 can communicate only via message passing

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 51

Service Node

Core Management and Control System (CMCS),
acts as global OS:
 makes all long-term policy decisions
 in coop with IO-Nodes performs/controls system

management:
monitoring, booting, temperature control,
configuration registers

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 52

Job Execution: Init and Boot

 partition allocation: identify set of unused nodes
 compute “personality” for each node

view of torus etc
 boot image for

 CNK ca 128KB
 IO-Node ca 0.5 MB + RAM Disk

 configuration info loaded into “Personality Area” of
each node

 IO-Node mounts file systems etc as needed

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 53

Summary

 Workstations, Server and Supercomputers with low
number of CPUs:
State of the Art

 Symmetric Parallel Computers with X- CPUs:
Successful application at OLTP

 Massively Parallel Computers X-hundred to x-
thousand CPUs:
promising (since a long time ...)

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 54

References

 Dave Culler, Jaswinder Sing,
Parallel Computer Architecture – A HW/SW-
Approach
99, Morgan Kaufmann

 Kai Hwang, Zhiwei Xu,
Scalable Parallel Computing
97, McGraw-Hill

 Curt Schimmel, Unix Systems for Modern
Architectures
94, Addisson Wesley

Distributed Operating systems, K42 and Blue Gene Hermann Härtig 55

References

 Blue Gene/L programming and operating
environment
by J. E. Moreira, G. Almasi, C. Archer, R. Bellofatto,
P. Bergner, J. R. Brunheroto, M. Brutman, J. G.
Castanos, P. G. Crumley, M. Gupta, T. Inglett, D.
Lieber, D. Limpert, P. McCarthy, M. Megerian, M.
Mendell, M. Mundy, D. Reed, R. K. Sahoo, A.
Sanomiya, R. Shok, B. Smith, G. G. Stewart

IBM Journal of Research and Development
Volume 49, Number 2/3, Page 367 (2005)

 MPI Tutorial
http://www-unix.mcs.anl.gov/mpi/learning.html

