Distributed Operating Systems
S$S2008

Multiprocessor Synchronization
using Read-Copy Update

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed

Operating
Systems -
Outline
= Basics
— Introduction
— Examples
= Design

— Grace periods and quiescent states
— Grace period measurement

= |mplementation in Linux 2.6.25
— Data structures and functions
— Examples
= Evaluation
— Scalability
Frone — Performance

sl = Conclusion

Operating
Systems Group

Distributed
Operating
Systems

Introduction

= Multiprocessor OS's need to synchronize access to
data structures

> Synchronization primitive is crucial for performance
and scalability

= Two important facts
— Small critical sections (, that access data structures)
— Data structures with many reads and few updates

= Goals
— Reducing synchronization overhead
— Reducing lock contention
— Deadlock avoidance

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Synchronization Primitives

= Coarse-grained locking (code-based locks)
— Spinlock (called 'Big kernel lock' in Linux)
— Reader-writer lock (called 'Big reader lock' in Linux)

= Fine-grained locking (data-based locks)
— Spinlock
— Reader-writer lock
— Per-cpu reader-writer lock
= | ock-free synchronization
> Fine grained
— Avoids disadvantages of locks
— Hard (to do right) for complex data structures

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Lockless Synchronization

|dea

— Combine advantage of reader-writer locks with lock-free
synchronization techniques

— No locks on reader side
— Locks only on writer side (no concurrent write operations)

Prerequisites

— Many readers and few writers on data structure
— Short critical sections

— Properly designed data structure

— Stale data tolerance for readers
Problem

— When to reclaim memory after update?

Solution
— Deferred memory reclamation
— Two-phase update protocol

Distributed
Operating
Systems

Two-Phase Update - Example

Writer

—~ AN — B el —~

Writer

Reader

Reader

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Two-Phase Update - Principle

= Phase 1.
— Update data structure and make new state visible
= Wait period:

— Allow existing read operations to proceed on the old state until
completed

= Phase 2:

— Remove old (invisible) state of data structure

= RCU uses pessimistic approach:

,<Wait until every concurrent read operations has completed and
no pending references to the data structure exist®

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Applications

= Scenarios

File descriptor table

Routing cache

Network subsystem policy changes
Hardware configuration

Module unloading

= |mplementation

DYNIX

* UNIX-based operating system from Sequent
Tornado

* Operating system for large scale NUMA architectures
K42

* Operating system from IBM for large scale architectures
Linux

Distributed
Operating
Systems

void read(long addr)
{
read lock(&list lock);
struct elem *p = head->next;
while (p '= head)
{
It (p->address == addr)
{
/*read-only access to p */
read unlock(&list lock);
return;
}
p = p->next;
}
read unlock(&list lock);
return;

Torsten }
Frenzel

TU Dresden
Operating
Systems Group

Example 1: List -

Read

void read(long addr)

{

struct elem *p = head->next;
while (p !'= head)

{
It (p->address == addr)
{
/*read-only access to p */
return;
}
p = p->next;
}
return;
}

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

void delete(struct elem *p)
{
struct elem *p = head->next;
write_lock(&list_lock);
while (p != head)
{
if (p->address == addr)
{
p->next->prev = p->preyv;
p->prev->next = p->next;
write_unlock(&list_lock);

kfree(p);
return;
}
p = p->next;
}
write_unlock(&list_lock);
return;

}

Example 1: List - Delete

void delete(struct elem *p)
{
struct elem *p = head->next;
spin_lock(&list_lock);
while (p = head)
{
if (p->address == addr)
{
p->next->prev = p->preyv,
p->prev->next = p->next;
spin_unlock(&list_lock);
wait_for_rcu();
kfree(p);
return;
}
p = p->next;
}
spin_unlock(&list_lock);
return;

}

Distributed
Operating
Systems

Example 2: Filedescriptor Table

spin_lock(&files->file_lock);

nfds = files-=>max_fdset + FDSET INC VALUE;
[* prepare new openset */

[* prepare new exec set */

old_openset = xchg(&files->open_fds, new_openset);
old_execset = xchg(&files->close_on_exec, new_execset);

nfds = xchg(&files->max_fdset, nfds);
spin_unlock(&files->file_lock);
wait for rcu();

free_fdset(old _openset, nfds);
free_fdset(old execset, nfds);

Torsten
Frenzel

TU Dresden
Operating
Systems Group

11

Distributed
Operating
Systems

Grace Periods and Quiescent States

= Definition of a grace period

— Intuitive: duration until references to data are no longer hold
by any thread

— More formal: duration until every CPU has passed through a
quiescent state

= Definition of a quiescent state
— State of a CPU without any references to the data structure

= How to measure a grace period?
— Enforcement: induce quiescent state into CPU
— Detection: Wait until CPU has passed through quiescent state

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Quiescent State

= \What are good quiescent states?
— Should be easy to detect
— Should occur not to frequent or infrequent

= Per-CPU granularity

— For example: context switch, execution in idle loop, kernel
entry/exit, CPU goes offline

— OSs without blocking and preemption in read-side critical
sections
= Per-thread granularity

— OSs with blocking and preemption in read-side critical
sections

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Quiescent State Enforement

CPU1 N
N
N
CPU2 N
N\
CPU3
\
»

CPU4
Torsten
renee Grace period Minimal Detected
TU Dresden start Grace period grace period end

Operating
Systems Group

14

Distributed
Operating
Systems

Quiescent State Detection

— — e
CPU4
Torsten
rrenze Grace period Minimal and detected
TU Dresden start Grace period

Operating
Systems Group

Distributed
Operating
Systems

Quiescent State Bitmask

1110 1010

1010 1010

CPU3
0010

>—|>’-‘_>_>_>
CPU4
Torsten

Frenzel Grace period Minimal and detected

TU Dresden start Grace period
Operating
Systems Group

Distributed
Operating
Systems

Enhancing RCU

= Two observations
— Measuring grace periods adds overheads
— Influence on system design

= Consequences
— Batching of RCU requests
* Single grace period can satisfy multiple requests
— Maintaining per-CPU request lists
— Callback functions for deferred memory reclamation
* Avoids blocking
— Low-overhead algorithm for measuring grace periods
— Measurement framework for long-running critical sections

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Linux's RCU Implementation

= QOptimized version of RCU
— Batching with per-CPU request list
— Separation of CPU-local and global data structures
— Low overhead if no RCU system is idle

= Grace periods are numbered in increasing order

= One active batch per CPU waiting for completion of
current or next grace period

= One next batch per CPU for new requests

= Seperation of quiescent state detection and grace
period measurement (RCU core)

Torsten = Support for CPU hotplugging
= Support for preemptible read-side critical section
W = Support for weak memory consistency

Systems Group

1€

Distributed
Operating
Systems

Data Structures

= Global data: rcu_ctribik
cur number of current grace period
completed number of recently completed grace period
next_pending flag, requesting another grace period

cpumask bitfield of CPUs, that have to pass through a

quiescent state in order complete the
ongoing grace period

CPU-local data: rcu_data

quiescbatch grace period this CPU thinks as current
(should be equally global cur)
gs_pending CPU needs to pass through a quiescent
Torsten passed_quiesc CPU has passed a quiescent state
e curlist closed batch of RCU requests
el batch grace period the current batch belongs to

Systems Group

nxtlist open batch of RCU requests 1¢

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Functional Separation

Interface
— call_rcu()add RCU callback to batch request list
— synchronize_rcu () wait for grace period to complete

Tasklet (implements RCU core)
— Batch processing
* Invokes callbacks after grace period
— Finish and start new grace period
— Quiescent state handling

Timer-interrupt handler
— Updates variable passed_quiesc of CPU
— Schedules tasklet of RCU work is pending

Scheduler
— Updates variable passed_quiesc of CPU

2(

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Batch Processing

static void __rcu_process_callbacks(struct rcu_ctrlblk *rep,
struct rcu_data *rdp)

{

if (rdp->curlist and
(rep->completed >= rdp->batch))
{

/* Is the current batch list not empty? */
/* Has grace geriod this batch is waiting for completed? */

... move current batch list to temporary batch list ...

}

if (rdp->nxtlist and
not rdp->curlist)

{

/* Is the next batch list empty? */
/* Is the current batch list empty? */

... move next batch list to current batch list ...

rdp->batch = rcp->cur + 1;

if (not rcp->next_pending)

{
rcp->next_pending = 1;
rcu_start_batch(rcp);

}
rcu_check_quiescent_state(rcp, rdp);

if (rdp->donelist)
rcu_do_batch(rdp);

I* After the next grace period has completed
this batch can be processed */

/* Is a new grace period aleady requested? */

I* A new grace period has to be started */
[* Try to start a new grace period immediately */

/* Check if this CPU gone through a quiescent state */

/* is there a completed batch? */
/* process completed batch */

21

Distributed
Operating
Systems

Quiescent State Handling

static void rcu_check_quiescent_state(struct rcu_ctrlblk *rep,
struct rcu_data *rdp)

{

If (rdp->quiescbatch != recp->cur) { /* Has a new grace period has started? */
rdp->qs_pending = 1; /* Reset, for new grace period */
rdp->passed_quiesc = 0; /* Reset, for new grace period */
rdp->quiescbatch = rcp->cur; /* Set the grace period this cpu is passing through */
return;

1

it (Irdp->gs_pending) * Is this cpu waiting for quiescent state */
return; /* No, go on with work */

If ('rdp->passed_quiesc) /* Has this cpu passed a quiescent state */
return; /* No, come back later */

rdp->qs_pending = 0; /* This cpu has passed through a quiescent state! */

if (rdp->quiescbatch == rcp->cur) /* sanity check */
cpu_quiet(rdp->cpu, rep); [* update cpu bitmask and check if global grace period

Torsten completed */
Frenzel }

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Finish and Start of Grace Period

static void cpu_quiet(int cpu, struct rcu_ctriblk *rcp)

{
cpu_clear(cpu, rcp->cpumask); /* Clear bit of this cpu in cpu bitmask */
if (cpus_empty(rcp->cpumask)) /* Has a grace period completed? */
{
rcp->completed = rcp->cur; [* Set completed grace period to current grace period */
rcu_start_batch(rcp); [* Try to start a new grace period, immediatly */
}
}
static void rcu_start_batch(struct rcu_ctrlblk *rcp)
{
if (rcp->next_pending and /* Should a new grace period be started? */
rcp->completed == rcp->cur) /* Is completed grace period equal current grace period? *
{
rcp->next_pending = 0; /* Reset grace period trigger */
rcp->cur++; /* A new global grace period starts */
. /* Update cpu bitmask */
Fferf]tzeerl‘ cpus_andnot(rep->cpumask, cpu_online_map, nohz cpu_mask);
U Dresden rcp->signaled = 0;
Operating }

Systems Group

Distributed
Operating
Systems

When to invoke the RCU Core?

static int _rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
{
/* This cpu has pending rcu entries and the grace period
for them has completed. */
if (rdp->curlist and rcp->completed >= rdp->batch)
return 1;

/* This cpu has no pending entries, but there are new entries */
if (not rdp->curlist and rdp->nxtlist)
return 1;

/* This cpu has finished callbacks to invoke */
if (rdp->donelist)
return 1;

/* The rcu core waits for a quiescent state from the cpu */
If (rdp->quiescbatch != rep->cur or rdp->qs_pending)

return 1;
Torsten

Frenzel
return O;

TU Dresden }
Operating
Systems Group

Distributed
Operating
Systems

Linux RCU Example

| ‘
CPU1 I5(2) d(2)

B.2

‘ I | | ‘ I
CPU2 | s(2) dQJ

C.2I

CPU3 ‘ | ‘ ‘
--:-4D%----L1"'"""""""'*'i"'*” ‘
CPU4 A’ s(1) | d(1)Js(3)] d(3)

D.2
0 1 | 2 | B
0 | 1 .
Torsten completed | |

Frenzel

next pending
TU Dresden

Operating

Systems Group

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Scalability and Performance

= How does RCU scale?
— Number of CPUs (n)
— Number of read-only operations

= How does RCU perform?
— Fraction of accesses that are updates (f)
— Number of operations per unit

= \What other algorithms to compare to?
— Global reader-writer lock (globalrw)
— Per-CPU reader-writer lock (brlock)
— Data spinlock (spinbkit)
— Lock-free using safe memory reclamation (SMR)

2¢€

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Scalability

= Hashtable benchmark

— B I " | L] I
= ideal
gL "RCU" ————- A
5 "SMR" - ------ -
= "oriock” —-———- i
N B "spinbkt" ——-—- o 53 |
o "globalrw" —---—- ol -
5 5 it =
= - B
- -

@ iy
E 4 = - - &
= - g
— II'_.-l" _._r"
= ik
ad 3 [..rff ..r"rr --""-'-:'f:.;.
e g _,."'J T
%:_ Al P =
Lo] E == - i i o :-'_',.".a-"-- N
ﬂ:l _..."" - Lrar
i S P el
E 1 - _,_.-:"rr‘-‘,r_ —
(3 o
(_% e i ST N e e e -

a | | | | | |

Distributed
Operating
Systems

Performance

1 E =
= | | | | 3
o |
= B - £
I : - 7
_G |
4 |
— 0.1 =
= il =
S N]
= B 2
E e e H:_'__':': SRS _
] “"-—.._,____h_‘__' e Ty
2 001 g TR -
= - -
@ & 3
=
5 | o
(1] = =
&
0.001 ' | | |
0 0.2 0.4 0.6 0.8 1
Torsten Update Fraction
Frenzel
"RCU" —— "globalw” -
TU Dresden "SMR" ———-— "briock” —-—-—-
S;E)stemngroup "Eplﬂbl‘ﬂ" _______

2¢

Distributed
Operating
Systems

Performance vs. ComEIexitx

= \When should RCU be used?

— Instead of simple spinlock? (spinlock)
— Instead of per-CPU reader-writer lock? (drw)

= Under what conditions should RCU be used?

— Memory-latency ratio (r)
— Number of CPUs (n=4)

= Under what workloads?

— Fraction of access that are updates (f)
— Number of updates per grace period (A = {small, large})

Torsten
Frenzel

TU Dresden
Operating
Systems Group

2¢

Distributed
Operating
Systems

Bad Case - Small Update Fraction

1 § | | | | | L DL | IIII | | | | | L DL | IIII | | | | | L L ll§
- i spinlock ;
o I e
© 0.1 e T =
© = ¥ =
Ll - .
% -, drw -
3 0.01 f ~"=—o_ =
—d = T =
= = Py =
QD - i -
= ~
£ I g |
S 0.001 | RCU = <
o : T
-II:-?erf]tzeerl] O.DUD-I 1 r 1 3l L 1l 1 L1 ||||:
1 10 100 1000
el Memory-Latency Ratio

Systems Group

Distributed
Operating
Systems

Good Case - Large Update Fraction

1] I IIIIIII] I IIIIIII

- spinlock

- RCU o

Breakeven Update Fraction

Torsten
Frenzel

0-1 1 1 IIIIIII 1 1 IIIIIII 1 1 L1 L1111l

1 10 100 1000
Memory-Latency Ratio

TU Dresden
Operating
Systems Group

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Concluding Remarks

RCU performance and scalability
— Linear scaling with increasing number of CPUs
— Very good performance under high contention

RCU modifications
— Support for weak consistency models
— Support for NUMA architectures
— Without stale data tolerance
— Support for preemptible critical sections

Other memory reclamation schemes
— Lock-free reference counting

— Hazard-pointer-based recalamation
— Epoch-based reclamation

Distributed
Operating
Systems

References

= Read-Copy Update: Using Execution History to Solve
Concurrency Problems; McKenney, Slingwine; 1998

= Read-Copy Update; McKenney, Karma, Arcangeli,
Krieger, Russel; 2003

= Making Lockless Synchronization Fast: Performance
Implications of Memory Reclamation; Hart McKenney;
Brown:; 2006

= Linux Journal: Introduction to RCU; McKenney 2004;
http://linuxjournal.com/article/6993

= Linux Journal: Scaling dcache with RCU; McKenney;
2004; http://linuxjournal.com/arcticle/7124

Torsten
Frenzel

TU Dresden
Operating
Systems Group

