
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed Operating Systems
SS2008

Multiprocessor Synchronization

using Read-Copy Update

2

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

OutlineOutline

 Basics
– Introduction

– Examples

 Design
– Grace periods and quiescent states

– Grace period measurement

 Implementation in Linux 2.6.25
– Data structures and functions

– Examples

 Evaluation
– Scalability

– Performance

 Conclusion

3

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

IntroductionIntroduction

 Multiprocessor OS's need to synchronize access to
data structures

➔ Synchronization primitive is crucial for performance
and scalability

 Two important facts
– Small critical sections (, that access data structures)

– Data structures with many reads and few updates

 Goals
– Reducing synchronization overhead

– Reducing lock contention

– Deadlock avoidance

4

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Synchronization PrimitivesSynchronization Primitives

 Coarse-grained locking (code-based locks)
– Spinlock (called 'Big kernel lock' in Linux)

– Reader-writer lock (called 'Big reader lock' in Linux)

 Fine-grained locking (data-based locks)
– Spinlock

– Reader-writer lock

– Per-cpu reader-writer lock

 Lock-free synchronization
➔ Fine grained

– Avoids disadvantages of locks

– Hard (to do right) for complex data structures

5

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Lockless SynchronizationLockless Synchronization
 Idea

– Combine advantage of reader-writer locks with lock-free
synchronization techniques

– No locks on reader side

– Locks only on writer side (no concurrent write operations)

 Prerequisites
– Many readers and few writers on data structure

– Short critical sections

– Properly designed data structure

– Stale data tolerance for readers

 Problem
– When to reclaim memory after update?

 Solution
– Deferred memory reclamation

– Two-phase update protocol

6

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Two-Phase Update - ExampleTwo-Phase Update - Example

A B C

A B C

Reader Writer

WriterReader

A C

Reader

7

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Two-Phase Update - PrincipleTwo-Phase Update - Principle

 Phase 1:
– Update data structure and make new state visible

 Wait period:
– Allow existing read operations to proceed on the old state until

completed

 Phase 2:
– Remove old (invisible) state of data structure

 RCU uses pessimistic approach:
„Wait until every concurrent read operations has completed and

no pending references to the data structure exist“

8

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ApplicationsApplications

 Scenarios
– File descriptor table

– Routing cache

– Network subsystem policy changes

– Hardware configuration

– Module unloading

 Implementation
– DYNIX

• UNIX-based operating system from Sequent

– Tornado

• Operating system for large scale NUMA architectures

– K42

• Operating system from IBM for large scale architectures

– Linux

9

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example 1: List - ReadExample 1: List - Read

void read(long addr)
{
 read lock(&list lock);
 struct elem *p = head->next;
 while (p != head)
 {
 if (p->address == addr)
 {
 /*read-only access to p */
 read unlock(&list lock);
 return;
 }
 p = p->next;
 }
 read unlock(&list lock);
 return;
}

void read(long addr)
{

 struct elem *p = head->next;
 while (p != head)
 {
 if (p->address == addr)
 {
 /*read-only access to p */

 return;
 }
 p = p->next;
 }

 return;
}

10

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example 1: List - DeleteExample 1: List - Delete

void delete(struct elem *p)
{
 struct elem *p = head->next;
 write_lock(&list_lock);
 while (p != head)
 {
 if (p->address == addr)
 {
 p->next->prev = p->prev;
 p->prev->next = p->next;
 write_unlock(&list_lock);

 kfree(p);
 return;
 }
 p = p->next;
 }
 write_unlock(&list_lock);
 return;
}

void delete(struct elem *p)
{
 struct elem *p = head->next;
 spin_lock(&list_lock);
 while (p != head)
 {
 if (p->address == addr)
 {
 p->next->prev = p->prev;
 p->prev->next = p->next;
 spin_unlock(&list_lock);
 wait_for_rcu();
 kfree(p);
 return;
 }
 p = p->next;
 }
 spin_unlock(&list_lock);
 return;
}

11

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

spin_lock(&files->file_lock);
nfds = files->max_fdset + FDSET INC VALUE;
/* prepare new openset */
/* prepare new exec set */
...
old_openset = xchg(&files->open_fds, new_openset);
old_execset = xchg(&files->close_on_exec, new_execset);
...
nfds = xchg(&files->max_fdset, nfds);
spin_unlock(&files->file_lock);
wait for rcu();
free_fdset(old_openset, nfds);
free_fdset(old_execset, nfds);

Example 2: Filedescriptor TableExample 2: Filedescriptor Table

12

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Grace Periods and Quiescent StatesGrace Periods and Quiescent States

 Definition of a grace period
– Intuitive: duration until references to data are no longer hold

by any thread

– More formal: duration until every CPU has passed through a
quiescent state

 Definition of a quiescent state
– State of a CPU without any references to the data structure

 How to measure a grace period?
– Enforcement: induce quiescent state into CPU

– Detection: Wait until CPU has passed through quiescent state

13

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent StateQuiescent State

 What are good quiescent states?
– Should be easy to detect

– Should occur not to frequent or infrequent

 Per-CPU granularity
– For example: context switch, execution in idle loop, kernel

entry/exit, CPU goes offline

– OSs without blocking and preemption in read-side critical
sections

 Per-thread granularity
– OSs with blocking and preemption in read-side critical

sections

14

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State EnforementQuiescent State Enforement

CPU4

CPU3

CPU2

CPU1

Grace period
start

Detected
grace period end

Minimal
Grace period

writer

15

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State DetectionQuiescent State Detection

CPU4

CPU3

CPU2

CPU1

Grace period
start

Minimal and detected
Grace period

writer

16

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State BitmaskQuiescent State Bitmask

CPU4

CPU3

CPU2

CPU1

Grace period
start

Minimal and detected
Grace period

1010

0000

1110 1010

1010

0010

17

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Enhancing RCUEnhancing RCU

 Two observations
– Measuring grace periods adds overheads

– Influence on system design

 Consequences
– Batching of RCU requests

• Single grace period can satisfy multiple requests

– Maintaining per-CPU request lists

– Callback functions for deferred memory reclamation

• Avoids blocking

– Low-overhead algorithm for measuring grace periods

– Measurement framework for long-running critical sections

18

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux's RCU ImplementationLinux's RCU Implementation

 Optimized version of RCU
– Batching with per-CPU request list

– Separation of CPU-local and global data structures

– Low overhead if no RCU system is idle

 Grace periods are numbered in increasing order
 One active batch per CPU waiting for completion of

current or next grace period
 One next batch per CPU for new requests
 Seperation of quiescent state detection and grace

period measurement (RCU core)
 Support for CPU hotplugging
 Support for preemptible read-side critical section
 Support for weak memory consistency

19

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Data StructuresData Structures
 Global data: rcu_ctrlblk

cur number of current grace period

completed number of recently completed grace period

next_pending flag, requesting another grace period

cpumask bitfield of CPUs, that have to pass through a
quiescent state in order complete the
ongoing grace period

CPU-local data: rcu_data
quiescbatch grace period this CPU thinks as current

 (should be equally global cur)

qs_pending CPU needs to pass through a quiescent

passed_quiesc CPU has passed a quiescent state

curlist closed batch of RCU requests

batch grace period the current batch belongs to

nxtlist open batch of RCU requests

20

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Functional SeparationFunctional Separation

 Interface
– call_rcu()add RCU callback to batch request list

– synchronize_rcu() wait for grace period to complete

 Tasklet (implements RCU core)
– Batch processing

• Invokes callbacks after grace period

– Finish and start new grace period

– Quiescent state handling

 Timer-interrupt handler
– Updates variable passed_quiesc of CPU

– Schedules tasklet of RCU work is pending

 Scheduler
– Updates variable passed_quiesc of CPU

21

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Batch ProcessingBatch Processing
static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,

 struct rcu_data *rdp)
{
 if (rdp->curlist and /* Is the current batch list not empty? */
 (rcp->completed >= rdp->batch)) /* Has grace geriod this batch is waiting for completed? */
 {
 ... move current batch list to temporary batch list ...
 }

 if (rdp->nxtlist and /* Is the next batch list empty? */
 not rdp->curlist) /* Is the current batch list empty? */
 {
 ... move next batch list to current batch list ...
 rdp->batch = rcp->cur + 1; /* After the next grace period has completed

 this batch can be processed */

 if (not rcp->next_pending) /* Is a new grace period aleady requested? */
 {
 rcp->next_pending = 1; /* A new grace period has to be started */
 rcu_start_batch(rcp); /* Try to start a new grace period immediately */
 }
 }

 rcu_check_quiescent_state(rcp, rdp); /* Check if this CPU gone through a quiescent state */

 if (rdp->donelist) /* is there a completed batch? */
 rcu_do_batch(rdp); /* process completed batch */
}

22

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State HandlingQuiescent State Handling
static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
 struct rcu_data *rdp)
{
 if (rdp->quiescbatch != rcp->cur) { /* Has a new grace period has started? */
 rdp->qs_pending = 1; /* Reset, for new grace period */
 rdp->passed_quiesc = 0; /* Reset, for new grace period */
 rdp->quiescbatch = rcp->cur; /* Set the grace period this cpu is passing through */
 return;
 }

 if (!rdp->qs_pending) /* Is this cpu waiting for quiescent state */
 return; /* No, go on with work */

 if (!rdp->passed_quiesc) /* Has this cpu passed a quiescent state */
 return; /* No, come back later */

 rdp->qs_pending = 0; /* This cpu has passed through a quiescent state! */

 if (rdp->quiescbatch == rcp->cur) /* sanity check */
 cpu_quiet(rdp->cpu, rcp); /* update cpu bitmask and check if global grace period
 completed */
}

23

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Finish and Start of Grace PeriodFinish and Start of Grace Period

static void rcu_start_batch(struct rcu_ctrlblk *rcp)
{
 if (rcp->next_pending and /* Should a new grace period be started? */
 rcp->completed == rcp->cur) /* Is completed grace period equal current grace period? */
 {
 rcp->next_pending = 0; /* Reset grace period trigger */

 rcp->cur++; /* A new global grace period starts */

 /* Update cpu bitmask */
 cpus_andnot(rcp->cpumask, cpu_online_map, nohz_cpu_mask);

 rcp->signaled = 0;
 }
}

static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp)
{
 cpu_clear(cpu, rcp->cpumask); /* Clear bit of this cpu in cpu bitmask */

 if (cpus_empty(rcp->cpumask)) /* Has a grace period completed? */
 {
 rcp->completed = rcp->cur; /* Set completed grace period to current grace period */
 rcu_start_batch(rcp); /* Try to start a new grace period, immediatly */
 }
}

24

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

When to invoke the RCU Core?When to invoke the RCU Core?
static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp)
{
 /* This cpu has pending rcu entries and the grace period
 for them has completed. */
 if (rdp->curlist and rcp->completed >= rdp->batch)
 return 1;

 /* This cpu has no pending entries, but there are new entries */
 if (not rdp->curlist and rdp->nxtlist)
 return 1;

 /* This cpu has finished callbacks to invoke */
 if (rdp->donelist)
 return 1;

 /* The rcu core waits for a quiescent state from the cpu */
 if (rdp->quiescbatch != rcp->cur or rdp->qs_pending)
 return 1;

 return 0;
}

25

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU Example

CPU4

CPU3

CPU2

CPU1

cur

completed

next_pending

0

0

1 2

1 2

A.1

C.2

D.2

B.2

s(1) d(1), s(3)

s(2) d(2)

s(2) d(2)

d(3)

3

26

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Scalability and PerformanceScalability and Performance

 How does RCU scale?
– Number of CPUs (n)

– Number of read-only operations

 How does RCU perform?
– Fraction of accesses that are updates (f)

– Number of operations per unit

 What other algorithms to compare to?
– Global reader-writer lock (globalrw)

– Per-CPU reader-writer lock (brlock)

– Data spinlock (spinbkt)

– Lock-free using safe memory reclamation (SMR)

27

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ScalabilityScalability

 Hashtable benchmark

28

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

PerformancePerformance

29

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Performance vs. ComplexityPerformance vs. Complexity

 When should RCU be used?
– Instead of simple spinlock? (spinlock)

– Instead of per-CPU reader-writer lock? (drw)

 Under what conditions should RCU be used?
– Memory-latency ratio (r)

– Number of CPUs (n=4)

 Under what workloads?
– Fraction of access that are updates (f)

– Number of updates per grace period (λ = {small, large})

30

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Bad Case – Small Update FractionBad Case – Small Update Fraction

31

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Good Case – Large Update FractionGood Case – Large Update Fraction

32

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Concluding RemarksConcluding Remarks

 RCU performance and scalability
– Linear scaling with increasing number of CPUs

– Very good performance under high contention

 RCU modifications
– Support for weak consistency models

– Support for NUMA architectures

– Without stale data tolerance

– Support for preemptible critical sections

 Other memory reclamation schemes
– Lock-free reference counting

– Hazard-pointer-based recalamation

– Epoch-based reclamation

33

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ReferencesReferences

 Read-Copy Update: Using Execution History to Solve
Concurrency Problems; McKenney, Slingwine; 1998

 Read-Copy Update; McKenney, Karma, Arcangeli,
Krieger, Russel; 2003

 Making Lockless Synchronization Fast: Performance
Implications of Memory Reclamation; Hart McKenney;
Brown; 2006

 Linux Journal: Introduction to RCU; McKenney 2004;
http://linuxjournal.com/article/6993

 Linux Journal: Scaling dcache with RCU; McKenney;
2004; http://linuxjournal.com/arcticle/7124

