
The Barrelfish operating system for
heterogeneous multicore systems

Andrew Baumann

Systems Group, ETH Zurich

c© Systems Group | Department of Computer Science | ETH Zurich 8th April 2009

Teaser

I Problem: Hardware is changing faster than software
I More cores
I Increasing heterogeneity

I Idea: build the OS as a distributed system
I No sharing by default
I Explicit message-passing between (heterogeneous) cores
I Support new and existing applications

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 2

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 3

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 4

Barrelfish goals
We’re exploring how to
structure an OS to:

I scale to many processors
I manage and exploit

heterogeneous hardware
I run a dynamic set of

general-purpose applications
I reduce code complexity to do this

Barrelfish is:
I written from scratch

I some library code reused
I open source, BSD licensed

I expect a release soon

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 5

Barrelfish goals
We’re exploring how to
structure an OS to:

I scale to many processors
I manage and exploit

heterogeneous hardware
I run a dynamic set of

general-purpose applications
I reduce code complexity to do this

Barrelfish is:
I written from scratch

I some library code reused
I open source, BSD licensed

I expect a release soon

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 5

Dramatis personæ
Systems Group, ETH Zurich, Switzerland:

I Andrew Baumann
I Pierre-Evariste Dagand
I Simon Peter
I Jan Rellermeyer
I Timothy Roscoe
I Adrian Schüpbach
I Akhilesh Singhania

Microsoft Research, Cambridge, UK:
I Paul Barham
I Tim Harris
I Rebecca Isaacs

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 6

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 7

Many cores

I Sharing within the OS is becoming a problem
I Cache-coherence protocol limits scalability
I Tornado/K42, Disco, Corey, . . .

I Prevents effective use of heterogeneous cores

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 8

Scaling existing OSes

I Increasingly difficult to scale conventional OSes
I Removal of dispatcher lock in Win7 changed 6kLOC in 58 files

I Optimisations are specific to hardware platforms
I Cache hierarchy, consistency model, access costs

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 9

Increasing hardware heterogeneity

1. Non-uniformity
2. Core diversity
3. System diversity

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 10

Diversity 1: Non-uniformity
The machine looks different from different cores

I Memory hierarchy becomes more complicated
I Non-uniform memory access (NUMA), plus . . .
I Many levels of cache sharing (L2, L3 caches)

I Device access
I where are my PCIe root complexes?

I Interconnect increasingly looks like a network
I Tile64, Intel 80-core
I Larrabee

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 11

Diversity 2: Core diversity
The cores within a box will be diverse

I Architectural differences on a single die:
I Streaming instructions (SIMD, SSE, etc.)
I Virtualisation support, power mgmt.

I Within a system
I Programmable NICs
I GPUs
I FPGAs (in CPU sockets)

I Already seeing machines with heterogeneous cores
I Heterogeneity will increase

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 12

Diversity 3: System diversity
Machines themselves become more diverse

Old 2×4-core Intel system Old 2×2-core AMD system

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 13

Diversity 3: System diversity
Machines themselves become more diverse

8×4-core AMD system

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 14

Diversity 3: System diversity
Machines themselves become more diverse

This is new in the mass-market, desktop or server space:
I Specialised code for a certain architecture not possible

I Unlike with HPC / scientific workloads
I Can’t optimise for a particular memory hierarchy

I If you buy two machines, they may have very different
performance tradeoffs.

I Can’t manually tune for specific machine
=⇒ system software must adapt at runtime. Hard . . .

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 15

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 16

Traditional OS vs Multikernel

I Traditional OSes scale up by:
I Reducing lock granularity
I Partitioning state

Multikernel:
I State partitioned/replicated by default rather than shared

I Start from the extreme case
I Cores communicate via message-passing

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 17

Traditional OS vs Multikernel

I Traditional OSes scale up by:
I Reducing lock granularity
I Partitioning state

Multikernel:
I State partitioned/replicated by default rather than shared

I Start from the extreme case
I Cores communicate via message-passing

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 17

Multikernel architecture

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 18

Why message-passing?

I We can reason about it
I Decouples system structure from inter-core communication

mechanism
I Communication patterns explicitly expressed

I Naturally supports heterogeneous cores
I Naturally supports non-coherent interconnects (PCIe)
I Better match for future hardware

I . . . with cheap explicit message passing (e.g. Tile64)
I . . . without cache-coherence (e.g. Intel 80-core)

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 19

Message-passing vs. sharing: reduced blocking

I Access remote shared data can be viewed as a blocking RPC
I Processor stalled while line is fetched or invalidated
I Limited by latency of interconnect round-trips

I Perf scales with size of data (number of cache lines)
I By sending an explicit RPC (message), we:

I Send a compact high-level description of the operation
I Reduce the time spent blocked, waiting for the interconnect

I Potential for more efficient use of interconnect bandwidth

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 20

Message-passing vs. sharing: tradeoff

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y (

cy
cle

s ×
 10

00
)

Cache lines

2 cores, shared
8 cores, shared

2 cores, message
8 cores, message

I Shared: Client cores modify shared array (no locking)
I Message: Clients send URPC messages to server core

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 21

Change of programming model: why wait?

I In a traditional OS, blocking operations are the norm
I eg: unmap, global TLB shootdown

Idea: change programming model:
I Don’t wait: do something else in the meantime
I Make long-running operations split-phase from user space

=⇒ tradeoff latency vs. overhead

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 22

Replication
Given no sharing, what do we do with the state?

I Some state naturally partitions
I Other state must be replicated and kept consistent
I How do we maintain consistency?

TLBs (unmap) single-phase commit
Capabilities (retype/reallocation) two-phase commit
Cores come and go (power management, hotplug) agreement

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 23

Optimisation
Sharing as an optimisation in multikernels

I We’ve replaced shared memory with explicit messaging
I But sharing/locking might be faster between some cores

I Hyperthreads, or cores with shared L2/3 cache

=⇒ Re-introduce shared memory as optimisation
I Hidden, local
I Only when faster
I Basic model remains split-phase

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 24

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 25

Non-original ideas in Barrelfish
Techniques we liked

I Capabilities for all resource management (seL4)
I Minimise shared state (Tornado, K42, Corey)
I Upcall processor dispatch (Psyche, Sched. Activations, K42)
I Push policy into application domains (Exokernel, Nemesis)
I User-space RPC decoupled from IPIs (URPC)
I Lots of information (Infokernel)
I Single-threaded non-preemptive kernel per core (K42)
I Run drivers in their own domains (µkernels, Xen)
I EDF as per-core CPU scheduler (RBED)
I Specify device registers in a little language (Devil)

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 26

Barrelfish structure
Monitors and CPU drivers

I CPU driver serially handles traps and exceptions
I Monitor mediates local operations on global state

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 27

Messaging implementation on current hardware

I Current hardware provides one communcation mechanism:
cache-coherent shared memory

I Can we “trick” cache-coherence protocol to send messages?
I User-level RPC (URPC) [Bershad et al., 1991]

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 28

URPC implementation

I Channel is shared-memory ring buffer
I Messages are cache-line sized
I Sender writes message into next line
I Receiver polls on last word
I Marshalling/demarshalling, naming,

binding all implemented above

I Slight performance gain (< 5%) possible if
sender uses 128-bit SSE instructions

I Buffer placement matters on AMD (NUMA effect)

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 29

URPC performance

System Cache Latency Throughput
cycles ns cycles/msg

2×4-core Intel shared 168 63.2 49
non-shared 169 63.5 49

2×2-core AMD shared 450 160.7 145
non-shared 532 190.0 145

8×4-core AMD shared 583 291.5 138
non-shared 623 311.5 137

I Non-shared corresponds to two HyperTransport requests
I Batching/pipelining comes for free

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 30

Local vs. remote messaging
2×2-core AMD system

Latency Throughput Cache lines touched
cycles cycles/msg Icache Dcache

URPC 450 145 7 8
LRPC 978 978 33 24
L4 IPC 424 424 25 13

I Barrelfish LRPC could be improved
I Also invokes user-level thread scheduler

I URPC to a remote core compares favourably with IPC
I No context switch: TLB unaffected
I Lower cache impact
I Higher throughput for pipelined messages

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 31

Polling for receive
. . . not as stupid as it sounds

I It’s cheap: line is local to receiver until message arrives
I Memory prefetcher helps

I Some channels need only be polled when awaiting a reply
I If a core is doing something useful, why interrupt it?

I Tradeoff between timeslicing overhead and message latency

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 32

Alternatives to polling

I Alternatives available on current (x86) hardware:
I IPI: few cycles to send, hundreds to receive
I MONITOR/MWAIT: core enters low-power state until

designated cache line is modified
I General idea:

I Receiver sends message to indicate they are not polling
I Sender uses appropriate mechanism to notify receiver core

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 33

Unmap (TLB shootdown)

I Send a message to every core with a mapping,
wait for all to be acknowledged

I Linux/Windows:
1. Kernel sends IPIs
2. Spins on acknowledgement

I Barrelfish:
1. User request to local monitor
2. Single-phase commit to remote monitors

I Possible worst-case for a multikernel
I How to implement communication?

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 34

Unmap communication protocols
Raw messaging cost

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

nc
y (

cy
cle

s ×
 10

00
)

Cores

Broadcast
Unicast

Multicast
NUMA-Aware Multicast

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 35

Why multicast?
8×4-core AMD system

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 36

Unmap latency

 0
 5

 10
 15

 20
 25
 30
 35

 40
 45
 50

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

nc
y (

cy
cle

s ×
 10

00
)

Cores

Windows
Linux

Barrelfish

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 37

Application-level results

I Shared-memory apps (OpenMP, SPLASH-2) uninteresting
I Network IO: placement on cores matters

I 887.9 MBit/s vs. 502.7 Mbit/s UDP echo
I Pipelined web server

I Static: 14180 requests per second vs. 5700 for Apache/Linux
I Dynamic: ≈1500 requests per second (bottlenecked on SQL)

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 38

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 39

Managing heterogeneity

I Multikernel architecture handles core diversity
I Can specialise CPU driver / data structures to cores

I Doesn’t deal with heterogeneity in general
I Want to optimise on complex HW representation without

affecting fast-paths
Idea: specialise mechanisms,
reason on explicit HW representation for policy

I We deploy a system knowledge base

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 40

The system knowledge base
Representing the execution environment

I Representation of hardware and current state
in a subset of first-order logic

I Runs as an OS service
I Off the fast-path
I Queried from applications for application level policies
I Used by OS to derive system policies
I Reduces code complexity

Initial implementation: port of the ECLiPSe constraint solver

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 41

Populating the SKB
Information sources

I Resource discovery and monitoring
I Device enumeration
I ACPI . . .

I Online measurement and profiling
I Devices
I Interconnect links
I CPU performance counters
I Application performance and behaviour

I Asserted a priori knowledge
I Data sheets, documentation
I Device identifiers

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 42

SKB example
Uniquely assign IRQ numbers to devices

I Each device supports some IRQ numbers
I Need to find unique allocation

device(e1000,...,supported_irqs([1, 3, 4]))

device(SATA,...,supported_irqs([1, 4, 6]))

constrain_irq(L,I) :-

i(_,supported_irqs(List)) = L,

I::List.

allocate_irqs(DevIRQ,IRQList) :-

findall(i(Loc,I),device(_,Loc,_,_,_,I),DevIRQ),

maplist(constrain_irq,DevIRQ,IRQList),

alldifferent(IRQList),

labeling(IRQList).

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 43

Outline

Introduction and goals
Who’s involved

Why should we write a new OS?
Many cores
Increasing heterogeneity

The Multikernel architecture

Implementation and results

Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 44

Current status
What’s working this week?

I x86-64 CPU/APIC driver, multiple cores
I Capability system & memory management
I Monitor implementation
I Low-level IDC/LRPC/URPC messaging
I High-level OSGi-like component system
I User-space libraries, incl. threads
I Devices: PCI, ACPI, 3 NICs, framebuffer, . . .
I lwIP, NFS stacks
I SQLite, Python, OpenMP, . . .
I currently serving www.barrelfish.org

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 45

www.barrelfish.org

Conclusions

1. Treat the machine as a distributed system:
I Concurrency, communication, heterogeneity
I Tailor messaging mechanisms and algorithms to the

machine
I Hide sharing as an optimisation

2. Tackle the heterogeneity and complexity head-on:
I Discover, measure, or just assert it
I Spend cycles to reason about it

3. Build a real system!

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich 46

	Introduction and goals
	Who's involved

	Why should we write a new OS?
	Many cores
	Increasing heterogeneity

	The Multikernel architecture
	Implementation and results
	Direct representation of heterogeneity
	Status & Conclusion

