
1

Distributed Operating
Systems

 Synchronization in Parallel
Systems

Marcus Völp
2009

Distributed Operating Systems 2009 Marcus Völp 2

Topics

 Synchronization
 Locking
 Analysis / Comparison

Distributed Operating Systems 2009 Marcus Völp 3

Overview

 Introduction
 Hardware Primitives
 Locking

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks
 MCS Locks

 Lock-free Synchronization
 Special Issues

 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

 Performance

Distributed Operating Systems 2009 Marcus Völp 4

Introduction

 An example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail

Distributed Operating Systems 2009 Marcus Völp 5

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head

Distributed Operating Systems 2009 Marcus Völp 6

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer

Distributed Operating Systems 2009 Marcus Völp 7

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer

Distributed Operating Systems 2009 Marcus Völp 8

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer

Distributed Operating Systems 2009 Marcus Völp 9

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer

Distributed Operating Systems 2009 Marcus Völp 10

Introduction

 First Solution
 Locks

 coarse grain: lock entire list
 fine grain: lock list elements

lock_list;

 insert_element;

unlock_list;

lock head

if (try_lock head->next) {

 insert_element

 unlock head->next

}

unlock head

retry if trylock failed

Distributed Operating Systems 2009 Marcus Völp 11

Hardware Primitives

 How to make instructions atomic
 Bus lock

 Lock memory bus for duration of single instruction (e.g., lock add)
 Cache Lock

 x86 > Pentium 4: processor may not grab the bus lock but execute
atomic operation on single cacheline; subsequent accesses to this
cacheline are delayed

 Observe Cache (ARM v6, Alpha, x86: monitor, mwait)
 Load Linked: Load value and watch location
 Store Conditional: Store value if no other store has accessed location

 Atomic operations
 loads, stores
 swap (XCHG)
 bit test and set (BTS)

 if bit clear then set bit; return true else return false
 compare and swap (CAS m, old, new)

 if m == old then m := new ; return true else new := m, return false

Distributed Operating Systems 2009 Marcus Völp 12

Load Linked – Store Conditional

CPU 0 CPU 1

load linked a → reg

modify reg

store conditional reg → a

(!I:) S S

Distributed Operating Systems 2009 Marcus Völp 13

Load Linked – Store Conditional

CPU 0 CPU 1

load linked a → reg

modify reg store a

store conditional reg → a

 S S->M

write a

Distributed Operating Systems 2009 Marcus Völp 14

Load Linked – Store Conditional

CPU 0 CPU 1

load linked a → reg

modify reg store a

store conditional reg → a

S → I S → M

write a

Distributed Operating Systems 2009 Marcus Völp 15

Mutual Exclusion without Locks

 Last week: Decker / Peterson
 only atomic stores, atomic loads
 if memory is sequentially consistent

 (memory fences otherwise)

bool flag[2] = {false, false};

int turn = 0;

void entersection(int thread) {

int other = 1 - thread; /* id of other thread; thread in {0,1}*/

flag[thread] = true; /* show interest */

turn= other; /* give precedence to other thread */

while (turn == other && flag[other]) {}; /* wait */

}

void leavesection(int thread) {

flag[thread] = false;

}

Distributed Operating Systems 2009 Marcus Völp 16

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap
lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2009 Marcus Völp 17

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

Lock

CPU
0

CPU
1

CPU
2

CPU
3

l = M l = I l = I l = I

Distributed Operating Systems 2009 Marcus Völp 18

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

LockSwap

CPU
0

CPU
1

CPU
2

CPU
3

l = I l = M l = I l = I

Distributed Operating Systems 2009 Marcus Völp 19

Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

l = I l = I l = I l = M

Lock Swap

Distributed Operating Systems 2009 Marcus Völp 20

Locking Algorithms

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 do { } while (l == 1);

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

l = I l = I l = M l = I

Lock

Distributed Operating Systems 2009 Marcus Völp 21

Locking Algorithms

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 do { } while (l == 1);

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

l = S l = S l = M l = I

Locktesttest

Distributed Operating Systems 2009 Marcus Völp 22

Locking Algorithms

 Fairness

lock
test

test
unlock

test
lock

unlock

test

test
lock

test

free

free

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2009 Marcus Völp 23

Locking Algorithms

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_var & l) {

 current_ticket ++;

}

 [my_ticket] current next
 0 0
L.CPU0 [0]: 0 1 => Lockholder = CPU0
L.CPU1 [1]: 0 2
L.CPU2 [2]: 0 3

U.CPU0 [0]: 1 3 => Lockholder = CPU1

L.CPU3 [3]: 1 4
L.CPU0 [4]: 1 5

U.CPU1 [1]: 2 5 => Lockholder = CPU 2

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2009 Marcus Völp 24

Locking Algorithms

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_var &l) {

 current_ticket ++;

}

Spin on global variable

write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU
0

CPU
1

CPU
2

CPU
3

However:
- Signal all CPUs not only next
- Preemption of enlisted threads

Distributed Operating Systems 2009 Marcus Völp 25

parallel readswrite

Local Spinning

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to propagate write on Bus 2-3 (or 1 – 3)

CPU 0 CPU 1

CPU 2 CPU 3

msg
3 Network Messages

Distributed Operating Systems 2009 Marcus Völp 26

MCS-Lock
by Mellor-Crummey and Scott

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2009 Marcus Völp 27

MCS-Lock (Mellor Crummey
Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2009 Marcus Völp 28

MCS-Lock (Mellor Crummey
Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2009 Marcus Völp 29

MCS Locks

 Fair, local spinning
 atomic compare exchange: cmpxchg (L == Old, New)

lock(Node * & L, Node * I) {
 I->next = null;
 I->lock = false;
 Node * prev = swap(L, I);
 If (prev) {
 prev->next = I;
 do {} while (I->lock == false);
 }
}

unlock (Node * & L, Node * I) {
 if (!I->next) {
 if (cmpxchg (L == I, 0)) return; // no waiting cpu
 do { } while (!I->next); // spin until the following process
 updates the next pointer
 }
 I->next->lock = true;
}

Distributed Operating Systems 2009 Marcus Völp 30

Lock-free synchronization

prev

new

next

insert(new, prev) {
 retry:
 new.next = next;
 if (not CAS(prev.next == next, new)) goto retry;
}

prev

new

next

insert(new, prev) {
 retry:
 new.next = next;
 new.prev = prev;
 if (not DCAS(prev.next == next && next.prev ==prev, prev.next = new, next.prev = new))
 goto retry;
}

Distributed Operating Systems 2009 Marcus Völp 31

Lock-free Synchronization

 Load Linked, Store Conditional

insert (prev, new) {

 retry:

 ll (prev.next);

 new.next = prev.next;

 if (not stc (prev.next, new)) goto retry;

}

Distributed Operating Systems 2009 Marcus Völp 32

Overview

 Introduction
 Hardware Primitives
 Locking

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks
 MCS Locks

 Lock-free Synchronization
 Special Issues

 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

 Performance

Distributed Operating Systems 2009 Marcus Völp 33

Special Issues

 Timeouts
 No longer apply for lock after timeout
 Dequeue from MCS queue

 Reader Writer Locks
 Lock differentiates two types of lockers:

 reader, writer
 Multiple readers may hold the lock at the same time
 A writer can hold the lock only exclusively

 Fairness
 Improve reader latency by allowing readers to

overtake writers (unfair lock)

Distributed Operating Systems 2009 Marcus Völp 34

Special Issues

 Fair Ticket Reader-Writer Lock
 combine read, write ticket in single word

lock read (next, current) {
 my_ticket = xadd (next, 1);
 do {} while (current.write != my_ticket.write);
}

lock write (next, current) {
 my_ticket = xadd (next.write, 1);
 do {} while (current != my_ticket);
}

unlock_read () {
 xadd (current.read, 1);
}

unlock write () {
 current.write ++;
}

readwrite

current next R0 R1 W2 R3
 0 0 0 0 0 0
 0 1 0 1
 0 2 0 2
 1 2 1 2

Distributed Operating Systems 2009 Marcus Völp 35

Special Issues

 Lockholder preemption
 Spinning-time of other CPUs increase by the preemption

time of lockholders
 E.g., no packets can be sent when the OS network thread is

preempted while it holds the lock of the xmit queue

=> do not preempt lock holders

spin_lock(lock_var) {
 pushf; // store whether interrupts were already closed
 do {
 popf;
 reg = 1;
 do {} while (lock_var == 1); spin_unlock(lock_var) {
 pushf; lock_var = 0;
 cli; popf;
 swap(lock_var, reg); }
 } while (reg == 1);
}

Distributed Operating Systems 2009 Marcus Völp 36

Special Issues

 Monitor, Mwait
 Stop CPU / HT while waiting for lock (signal)

 Saves power
 Frees up processor resources (HT)

 Monitor: watch cacheline
 Mwait: stop CPU / HT until:

 cacheline has been written, or
 interrupt occurs

while (trigger[0] != value) {

 monitor (&trigger[0])

 if (trigger[0] != value) {

 mwait

 }

}

CPU 0 CPU 1

mwait

write to trigger

t

Distributed Operating Systems 2009 Marcus Völp 37

Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory through log4(depth) switched network
Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]: “Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”

Distributed Operating Systems 2009 Marcus Völp 38

References
 Scheduler-Conscious Synchronization

LEONIDAS I. KONTOTHANASSIS, ROBERT W. WISNIEWSKI, MICHAEL L.
SCOTT

 Scalable Reader- Writer Synchronization for Shared-Memory
Multiprocessors
John M. Mellor-Crummey, Michael L. Scottt

 Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors
JOHN M. MELLOR-CRUMMEY, MICHAEL L.

 Concurrent Update on Multiprogrammed Shared Memory
Multiprocessors
Maged M. Michael, Michael L. Scott

 Scalable Queue-Based Spin Locks with Timeout
Michael L. Scott and William N. Scherer III

 Reactive Synchronization Algorithms for Multiprocessors

B. Lim, A. Agarwal
 Lock Free Data Structures

John D. Valois (PhD Thesis)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

