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Topics
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Overview

 Introduction
 Hardware Primitives
 Locking 

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks
 MCS Locks

 Lock-free Synchronization
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 Reader Writer Locks
 Lockholder Preemption
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Introduction

 An example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail
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Introduction

A

B

1) A,B create list elements 
2) A,B set next pointer to head
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Introduction
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B

1) A,B create list elements 
2) A,B set next pointer to head
3) B set prev pointer
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Introduction

A

B

1) A,B create list elements 
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer
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Introduction

 First Solution
 Locks

 coarse grain: lock entire list
 fine grain: lock list elements

lock_list; 

  insert_element;

unlock_list;

lock head

if (try_lock head->next) {

  insert_element

  unlock head->next

}

unlock head

retry if trylock failed
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Hardware Primitives

 How to make instructions atomic
 Bus lock

 Lock memory bus for duration of single instruction (e.g., lock add)
 Cache Lock

 x86 > Pentium 4: processor may not grab the bus lock but execute 
atomic operation on single cacheline; subsequent accesses to this 
cacheline are delayed

 Observe Cache (ARM v6, Alpha, x86: monitor,  mwait)
 Load Linked: Load value and watch location
 Store Conditional: Store value if no other store has accessed location

 Atomic operations
 loads, stores
 swap (XCHG) 
 bit test and set (BTS)

 if bit clear then set bit; return true else return false
 compare and swap (CAS m, old, new)

 if m == old then m := new ; return true else new := m, return false
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Load Linked – Store Conditional

CPU 0 CPU 1

load linked a → reg

modify reg

store conditional reg → a

(!I:) S S
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Load Linked – Store Conditional

CPU 0 CPU 1

load linked a → reg

modify reg store a

store conditional reg → a

 S S->M

write a
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Load Linked – Store Conditional

CPU 0 CPU 1

load linked a → reg

modify reg store a

store conditional reg → a

S → I S → M

write a
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Mutual Exclusion without Locks

 Last week: Decker / Peterson
 only atomic stores, atomic loads 
 if memory is sequentially consistent 

 (memory fences otherwise)

bool flag[2] = {false, false};

int turn = 0;

void entersection(int thread) {

int other = 1 - thread; /* id of other thread; thread in {0,1}*/

flag[thread] = true; /* show interest */

turn= other; /* give precedence to other thread */

while (turn == other && flag[other]) {}; /* wait */

}

void leavesection(int thread) {

flag[thread] = false;

}
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Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap
lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

Lock

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = M l = I l = I l = I
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Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

LockSwap

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = I l = M l = I l = I
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Locking Algorithms

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = I l = I l = I l = M

Lock Swap
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Locking Algorithms

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     do { } while (l == 1);

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = I l = I l = M l = I

Lock
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Locking Algorithms

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     do { } while (l == 1);

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = S l = S l = M l = I

Locktesttest
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Locking Algorithms

 Fairness

lock
test

test
unlock

test
lock

unlock

test

test
lock

test

free

free

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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Locking Algorithms

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

  next_ticket,

  current_ticket

}

ticket_lock (lock_struct & l) {

  my_ticket = xadd (&l.next_ticket, 1)

  do { } while (l.current_ticket != my_ticket);

}

unlock (lock_var & l) {

  current_ticket ++;

}

 [my_ticket]  current     next
                 0   0
L.CPU0 [0]:    0       1 => Lockholder = CPU0
L.CPU1 [1]:    0       2
L.CPU2 [2]:    0       3

U.CPU0 [0]:    1       3 => Lockholder = CPU1

L.CPU3 [3]:    1       4
L.CPU0 [4]:    1       5

U.CPU1 [1]:    2       5 => Lockholder = CPU 2

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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Locking Algorithms

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

  next_ticket,

  current_ticket

}

ticket_lock (lock_struct & l) {

  my_ticket = xadd (&l.next_ticket, 1)

  do { } while (l.current_ticket != my_ticket);

}

unlock (lock_var &l) {

  current_ticket ++;

}

Spin on global variable

write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU 
0

CPU 
1

CPU 
2

CPU 
3

However:
- Signal all CPUs not only next
- Preemption of enlisted threads
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parallel readswrite

Local Spinning 

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to propagate write on Bus 2-3 (or 1 – 3)
  

CPU 0 CPU 1

CPU 2 CPU 3

msg
3 Network Messages 
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MCS-Lock 
by Mellor-Crummey and Scott

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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MCS-Lock (Mellor Crummey 
Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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MCS-Lock (Mellor Crummey 
Scott)

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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MCS Locks

 Fair, local spinning
 atomic compare exchange: cmpxchg (L == Old, New) 

lock(Node * & L, Node * I) {
  I->next = null;
  I->lock = false;
  Node * prev = swap(L, I);
   If (prev) {
      prev->next = I;
      do {} while (I->lock == false);
   }
}

unlock (Node * & L, Node * I) {
  if (!I->next) {
     if (cmpxchg (L == I, 0)) return; // no waiting cpu
     do { } while (!I->next);  // spin until the following process 
                                   updates the next pointer
  }
  I->next->lock = true;
}
   



Distributed Operating Systems 2009 Marcus Völp 30

Lock-free synchronization

prev

new

next

insert(new, prev) {
  retry: 
    new.next = next;
    if (not CAS(prev.next == next, new)) goto retry;
}

prev

new

next

insert(new, prev) {
  retry: 
    new.next = next;
    new.prev = prev;
    if (not DCAS(prev.next == next && next.prev ==prev, prev.next = new, next.prev = new)) 
      goto retry;
}
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Lock-free Synchronization

 Load Linked, Store Conditional

insert (prev, new) {

  retry:

   ll (prev.next);

   new.next = prev.next;

   if (not stc (prev.next, new)) goto retry;

}
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Overview

 Introduction
 Hardware Primitives
 Locking 

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks
 MCS Locks

 Lock-free Synchronization
 Special Issues

 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

 Performance
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Special Issues

 Timeouts
 No longer apply for lock after timeout
 Dequeue from MCS queue

 Reader Writer Locks
 Lock differentiates two types of lockers: 

 reader, writer
 Multiple readers may hold the lock at the same time
 A writer can hold the lock only exclusively 

 Fairness
 Improve reader latency by allowing readers to 

overtake writers (unfair lock)
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Special Issues

 Fair Ticket Reader-Writer Lock
 combine read, write ticket in single word

lock read (next, current) {
  my_ticket = xadd (next, 1);
  do {} while (current.write != my_ticket.write);
}
       
lock write (next, current) {
   my_ticket = xadd (next.write, 1);
   do {} while (current != my_ticket);
}

unlock_read () {
   xadd (current.read, 1);
}

unlock write () {
   current.write ++;
}

readwrite

current next  R0   R1    W2    R3
  0 0       0 0             0 0
              0 1                       0 1
              0 2                                   0 2
              1 2                                             1 2
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Special Issues

 Lockholder preemption
 Spinning-time of other CPUs increase by the preemption 

time of lockholders
 E.g., no packets can be sent when the OS network thread is 

preempted while it holds the lock of the xmit queue

=> do not preempt lock holders

spin_lock(lock_var) {
  pushf; // store whether interrupts were already closed
  do {
      popf;
      reg = 1;
      do {} while (lock_var == 1); spin_unlock(lock_var) {
      pushf;   lock_var = 0;
      cli;       popf;
      swap(lock_var, reg); }
  } while (reg == 1);
}
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Special Issues

 Monitor, Mwait
 Stop CPU / HT while waiting for lock (signal)

 Saves power
 Frees up processor resources (HT)

 Monitor: watch cacheline
 Mwait: stop CPU / HT until: 

 cacheline has been written, or 
 interrupt occurs

while (trigger[0] != value) {

   monitor (&trigger[0])

   if (trigger[0] != value) {

      mwait

   }

}

CPU 0 CPU 1

mwait

write to trigger

t
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Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory through log4(depth) switched network
Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]: “Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”
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