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Purpose of this Lecture

 Assurance
 Can you trust the system you intend to use

 to protect your private / valuable data?
 to grant only those programs access to your data that you 

trust?
 to grant your programs access to data when they need it?

 Formal methods
 as a precise description of system behavior
 as a tool to reason about security properties
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What makes you believe that
your system is secure

 Trust in the developer / company
 I've built it so I know whats wrong!
 I trust the guys at <add your favorite company here> 

(at least I can sue them)!
 Quality Assurance Processes

 ISO 9000
 There is a QA team that runs tests on the SW of the 

development team; QA- and SW teams are disjoint

 Security Evaluation
 Common Criteria
 DO 178b (Airplanes)
 GISA (BSI) IT Security Evaluation Critera 

(old '89 proposal for CC)
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What makes you believe that 
your system is secure

 because the system is described in a way that is
 precise, 
 sufficiently small to be captured in its entirety and 
 easy to understand

 Abstract Mathematical Model

 because all security claims of the system follow 
from this description

 Mathematical Proofs

 because the description and the actual system 
correspond

 Refinement Proofs
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Security Evaluation

 Common Criteria (EAL 7)
 Formal top level specification
 Informal (through tests) correspondence of source code to 

abstract specification 

 GISA IT Security Evaluation Criteria (Q7) 
(a proposal for CC-EAL 7 - 1st version from '89)

 “The machine language of the processor used shall to a great 
extent be formally defined.”

 “The consistency between the lowest specification level and 
the source code shall be formally verified.”

 “The source code will be examined for the existence of covert 
channels, applying formal methods. It will be checked that all 
covert channels detected which cannot be eliminated are 
documented. [...]”
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Overview

 Introduction
 Security Policies
 Policy Enforcement
 Decidability of Leakage
 Take Grant Protection Model
 Covert Channels
 Compiler-Based Information Flow Control
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Security Policies

 Example:
 Only the owner of a file and root can have write privileges 

to this file. 

 Security Policy 
 Defines what is allowed / secure and what is not allowed / 

unsecure

 Secure System 
 System that enforces a security policy
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Notation
 iff = if and only if
 Definition := 

 Sets: S, O, R, L 
 Elements: s, o, r, l

 States: 
 Subject: s S

 Object: o O

 Entity: e E with E = S u O

 Right:  r R
 Access rights:

 S x O → (R)
 R(s,o)

 State Transition (command c): 

               ' 

     with result state: '

               '

if u is the current user in  that 
invokes c

 Secrecy / Integrity Levels: l L
 Dominates relation: 

l
1
   l

2
     

Information flow: from l
1
 to l

2

l
1
             l

2
   

    no IF: l
1 
 ~/~>  l

2
 

c

u.c
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Security Policies – 
A first abstract system Model

 Example:
 No user except the owner of a file and root can have write 

privileges to this file. 
 A first abstract system model: 

(Abstracts from real-life system; keeps necessary 
information to reason about the above example)

 State: 
 Users: set of all possible users

Files: set of all possible files: 
 = {(U

life
, F

life
, owner, rights, u

current
)}

 U
life

  Users, F
life

  Files, u
current

  U
life

, 

owner: F
life

->U
life

, rights: U
life

x F
life

→ (R)

  = ({root, myself, hermann}, {foo.txt, bar.txt}, root, 
     {(foo.txt, myself), (bar.txt, hermann)}, {(root, foo.txt, {rw})})



Distributed Operating Systems 2009 Marcus Völp, Hermann Härtig 10

Security Policies – 
A first abstract system Model

 A first abstract system model: 
 State transitions: 

c C; C := {read(file), write(file), create(user), delete(file),chmod(u,f,R),...}
  = ({root, myself, hermann}, {foo.txt, bar.txt}, root, 

     {(foo.txt, myself), (bar.txt, hermann)}, {(root, foo.txt, {rw})})

        
c
       '

 Example:

                        ' with ' := 

                           ' with
   ' := ({root, myself, hermann}, {foo.txt, bar.txt}, root, 

     {(foo.txt, myself), (bar.txt, hermann)}, {(root, foo.txt, {rw})})

if u
current

 = root v owner(bar.txt, u
current

)

' :=  otherwise

read(bar.txt)

delete(bar.txt)
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Security Policies – 
A first abstract system Model

 A first abstract system model: 
 Initial State: 



 Reachable States: 
C

 Set 
C

 of states that are reachable from 
0 

through a sequence of transitions c in C 

 

            *  iff   

C
 

 Example: (if we require that the creator of a file becomes its owner)

' := ({root, myself}, {foo.txt, bar.txt, orphan.txt}, root, 
          {(foo.txt, myself), (bar.txt, hermann)}, {})
 ' is a state (i.e., '  ), however ' is not reachable

 System := (C, 

)
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Security Policies – 
A first abstract system Model

 Example Policy:
 No user except the owner of a file and root can have write 

privileges to this file. 

 Does the system (, C, 
0
) enforce the example policy P?

 P() := ∀ u,f. w  rights(u,f) => owner(f,u) v u = root 

'

 without further constraints: u = hermann =>  P(')

=> the system is insecure

 but, the system is secure if we replace chmod with chmod':

chmod'(u,f,R)() := if (u = root v owner(file, u)) chmod(u,f,R)(else 

myself.chmod(u, foo.txt, {w})
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 Definition (Bishop – Computer Security Art and Science):
 A security policy P is a statement that partitions the states 

( of a system into a set of authorized (or secure) states 
(

sec
= {P()}) and a set of unauthorized (or nonsecure) 

states.

 A secure system is a system that starts in an authorized 
state and that cannot enter an unauthorized state. 

all reachable states must be secure: 
C

  
sec

Security Policies - Definition
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Introduction:
Confidentiality, Integrity, Availability

 Confidentiality:
 Prevent unauthorized disclosure of information 

 Definition: 

Information I is confidential with respect to set of entities X if no member 
of X can obtain information about I.

 Example: My EC-Card Pin is XXXX
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Introduction:
Confidentiality, Integrity, Availability

 Integrity:
 Correctness of data and information

 Definition 1: 

Information is current, correct and complete.
 prevent damage

 Definition 2: (fundamentally different to Def 1)

Either information is current, correct, and complete (Def 1.), or it is 
possible to detect that these properties do not hold.

 detect damage

 Example: balance of my bank account

 Recoverability:
 Definition: 

Information that has been damaged can be recovered eventually. 
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Introduction:
Confidentiality, Integrity, Availability

 Availability:
 Accessibility of information and services

 Definition 1: 

Resource I is available with respect to X if all members of X can access I.

 In practice, availability has also quantitative aspects:
 real-time systems: 

 I is available within t clock ticks
 I is available t clock ticks after a certain event

 fault-tolerant systems:
 In 1 - 10-6 % of all cases I is available to X
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Security Policies

 Classification
 Concern:

 Confidentiality e.g., Bell La Padula (Document Mgmt)
 Integrity    e.g., Biba, (Inventory System)
 Availability 
 Hybrid    e.g., Chinese Wall, 

        (Clinical Information System)

 Types of Access Controls
 discretionary (identity based)

 A user can configure the access control mechanism to allow or 
deny access to an object (it owns). 

 mandatory (rule based)
 A system-wide mechanism controls access to objects based on a 

set of rules; individual users cannot alter these rules.
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Security Policies

 Types of Access Controls
 discretionary (identity based)

 Example: 

 A user is allowed to create new entities; it becomes the owner 
of these entities.

 A user can change the access rights and the ownership of the 
files it owns.

 mandatory (rule based)
 Example: 

Only system administrators are allowed to create new users.

=> A user attempt to create a new user will fail although
users can create new entities.
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Bell-LaPadula Model '73 (simple version)

 Confidentiality Policy
 Totally ordered (by ) set of secrecy levels (L)

 Higher secrecy level 
=> more sensitive information
=> greater need to keep it confidential

 Each subject has a security clearance 
(dom(s) L)

 Each object has a security classification 
(dom(o) L)

 Bell-LaPadula and the following security policies can 
be described as: (L, dom, 

Top secret

Secret

Confidential

Unclassified
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Bell-LaPadula Model (simple version)

 Security Policy: (L, dom, 

 Simple Security Condition
 a subject s can only read lower or equally classified objects o
 s can read o iff dom(o) dom(s)

 *-Property
 a subject s can only write higher or equally classified objects o
 S can write o iff dom(s) dom(o)

Top secret

Confidential

read

write

s

s o

o
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Bell-LaPadula Model (MLS)

 Security clearance comprised of hierarchical level 
and set of nonhierarchical categories

 Partial order (); (L, ) form a lattice

 German law (Bundesverfassungsschutzgesetz §17 - §26): 
In general, no information exchange between BND and Police.

Top secret (TS)

Unclassified (UC)
Categories: {Police, BND}

TS {Pol, BND}

UC {Pol, BND}
TS {Pol} TS {BND}

TS {} UC {Pol} UC {BND}

UC {}
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Bell-LaPadula Model (MLS)

 Security clearance comprised of hierarchical level 
and set of nonhierarchical categories

 Partial order (); (L, ) form a lattice

Incompatible / Incomparable Classifications

TS {Pol, BND}

UC {Pol, BND}
TS {Pol} TS {BND}

TS {} UC {Pol} UC {BND}

UC {}
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Biba '77: Integrity Policies

(to prevent damage on integer data (Def. 1))

 Strict Integrity Policy (Biba Model)
 Set of hierarchical integrity levels L
 Integrity policy as triple (L, dom, )

 s can read o iff dom(s)  dom(o)
 s can write o iff dom(o)  dom(s)

 Strict Integrity Policy is dual to MLS

 It prevents subjects from reading less integer objects
 Alternative: allow subjects to read less integer data but 

prevent the consequences such a read may have on other 
objects => Low Water Mark.
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Biba: Integrity Policies

 Low Water Mark
 s can write to o if and only if dom(o)  dom(s)
 If s reads o then dom’(s) = min(dom(s), dom(o))

 Problem: label creep
 decrease of subjects integrity level and thus the integrity level 

of the subject's results.

 (dual for confidentiality policies: 
increase object's confidentiality level)
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D.Denning '76: Lattice Model
(+ R. Sandhu '93)

 Most security policies can be expressed by the triple 
(L, dom, ) where (L, ) is a lattice.

 Confidentiality and integrity are dual properties; they can be 
combined into a single lattice, which describes the flow of 
information between the classified objects and subjects. 

Confidentiality: l
conf

 ≤ h
conf

Integrity:       h
int

 ≤ l
int

h
conf

,l
int

l
conf

,l
int

l
conf

,h
int

h
conf

,h
int
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Chinese Wall (Brewer '89)

 Conflict of Interest
 E.g., British law for stock exchange

 Trader must not represents two competitors. Otherwise, the trader 
could help one to gain an advantage at the expense of the other.

 Company Dataset (CD): 
set of objects (files) related to a single company

 Conflict of Interest Class (COI): 
datasets of companies in competition

 Sanitized Objects: objects cleared to the public
 Subjects: s (the traders, not the companies)

CD(AMD) CD(Intel)
CD(Mercedes) CD(BMW)

CD(BMW)
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Chinese Wall

 Chinese Wall Security Policy

 Simple Security
 s can read o iff 

 s has already access to an object of this company:
 o’ accessed by s with CD(o’) = CD(o), 

 or
 no object o' that s has read is in conflict to o:

 o’ read by s => COI(o’) ≠  COI(o)
 or

 o is sanitized

CD(AMD) CD(Intel)
CD(Mercedes) CD(BMW)
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Chinese Wall

 Chinese Wall Security Policy

 * property
 s can write o iff 

 s can read o, 
 and

 If s can read an unsanitized object o', then o' must belong to the 
same company as o:

 o’. s can read o' => CD(o’) = CD(o)

 That is, s must not leak data to another company unless this release is explicitly 
allowed (by sanitizing the data).

CD(AMD) CD(Intel)
CD(Mercedes) CD(BMW)
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Chinese Wall

 Chinese Wall Security Policy

 * property
 s can write o iff 

 s can read o, 
 and

 If s can read an unsanitized object o', then o' must belong to the same 
company as o:

 o’. s can read o' => CD(o’) = CD(o)

 That is, s must not leak data to another company unless this release is explicitly 
allowed (by sanitizing the data).

CD(AMD) CD(Intel)
CD(Mercedes) CD(BMW)
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Chinese Wall

 Chinese Wall Security Policy

 NDAs: a real-life example for OS developers
 MS needs early access to hardware to adjust Windows
 Intel and AMD need to protect their IP from respective competitor

 Chinese Wall in Practice:
 1 Group of MS Developers with Intel
 1 Group of MS Developers with AMD
 NO information exchange between these groups

CD(AMD) CD(Intel)

Micro-
soft
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Overview

 Introduction
 Security Policies
 Policy Enforcement
 Decidability of Leakage
 Take Grant Protection Model
 Covert Channels
 Compiler-Based Information Flow Control
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Policy Enforcement Mechanisms: 

 Access Control Matrix (ACM):
 Subjects S, Objects O, Entities E = S u O, Rights R
 Matrix: S x E x R

 any operation c from s on o (or s') checks the respective 
cell R(s,o) of the ACM for sufficient rights for this operation c.

 Operations: C
 read entity, write entity
 create subject, create object
 destroy subject, destroy object
 enter right r into cell R(s,o), delete right r from cell R(s,o)

o1 o2 s1 s2

s1 rd,wr rd rd,wr rd

s2 rd,wr - wr rd,wr
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Policy Enforcement Mechanisms: 

 Access Control List:
 Each entity has a list of tuples: Subjects S x Rights R
 e.g., foo.txt: (MV, {rd,wr}), (root, {rd})

 Abbreviations:
 Owner, Groups: Unix, AIX (e.g., [user;group;all])
 Wildcards: foo.txt: (sysadmin_*, {rd,wr})

 Conflicts:
 two opposing rights in ACL: u – r; g + r

 order of occurrence in ACL: u – r; g + r => access
(e.g., Cisco Router) g + r; u – r => denied

 deny rule has precedence over allow rule (e.g., AIX)
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Policy Enforcement Mechanisms: 

 Problem: Who is allowed to modify the ACM / ACLs?
 Ownership:  foo.txt: (MV, {rd,wr,own}), (HH, {rd})

 Principle of Attenuation:
(in German: Abschwächung, Verminderung)

 A subject s must not give away rights it does not possess!

 In principle, cannot be enforced with above ACM operations:
any subject i can invoke enter r into R(s,o) 

 Solution: replace enter r into R(s,o) with:
 i.grant r into R(s,o) :=

if r  R(i,o) then enter r into R(s,o)

(Notation: s.c = the command c invoked by subject s)
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Policy Enforcement Mechanisms: 

 Capabilities:
 Capability = unforgeable token (e,R)

 with e Entity, R  Rights
 Possession of a Capability is necessary and sufficient to 

access the referenced entity.
 Operations

 on the referenced object:
 read, write, create, destroy

 on the capability itself:
 take, grant
 diminish, remove

s
Alice

s
Bob

o
grant
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Policy Enforcement Mechanisms: 

 Capabilities:
 Capability = unforgeable token (e,R)

 with e Entity, R  Rights
 Possession of a Capability is necessary and sufficient to 

access the referenced entity.
 Operations

 on the referenced object:
 read, write, create, destroy

 on the capability itself:
 take, grant
 diminish, remove

s
Alice

s
Bob

grant
o
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Policy Enforcement Mechanisms: 

 Capabilities:
 Capability = unforgeable token (e,R)

 with e Entity, R  Rights
 Possession of a Capability is necessary and sufficient to 

access the referenced entity.
 Operations

 on the referenced object:
 read, write, create, destroy

 on the capability itself:
 take, grant
 diminish, remove

s
Alice

s
Bob

o
take
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Policy Enforcement Mechanisms: 

 Capabilities:
 Capability = unforgeable token (e,R)

 with e Entity, R  Rights
 Possession of a Capability is necessary and sufficient to 

access the referenced entity.
 Operations

 on the referenced object:
 read, write, create, destroy

 on the capability itself:
 take, grant
 diminish, remove

s
Alice

s
Bob

take
o
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Policy Enforcement Mechanisms: 

 Capabilities:
 Capability = unforgeable token (e,R)

 with e Entity, R  Rights
 Possession of a Capability is necessary and sufficient to 

access the referenced entity.
 Operations

 on the referenced object:
 read, write, create, destroy

 on the capability itself:
 take, grant
 diminish, remove

s
Alice

diminish

o
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Policy Enforcement Mechanisms: 

 Capabilities:
 Implementation:

 Software: OS protected segment / memory page
 Hardware: Cambridge CAP / TLB
 Cryptography: Amoeba

 Problems: 
 How to control the propagation of capabilities?
 How to revoke capabilities?
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Capability Propagation

 Controlling Propagation
 Dual to controlling modification of ACM / ACL

 Permissions on channel capability: 
 take-permission (t), grant-permission (g)

 Copy permission on the to be transferred capability

 Right-diminishing channels: (an extension of TG)
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Capability Propagation

 Controlling Propagation
 Right-diminishing channels: (an extension of TG)

 s may take from s' but the caps taken are diminished
 diminished-take perm. (dt) on channel
 diminished take (s,c) := diminish(take(s,c), {w,t,g,dg})
 Can be used to ensure that 

s can only ever receive information  from s'

s
Alice

diminished take

o

s
Bob

dt
{r,w,t,g,dt}

{r,dt}
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Capability Propagation

 Controlling Propagation
 Right-diminishing channels: (an extension of TG)

 s may grant to s' but the caps granted are diminished
 Diminished-grant perm. (dg) on channel
 Diminished grant (s,c) := diminish(grant(s,c), {w,t,g,dg})
 Can be used to ensure that

s can only ever send information to s'

s
Alice

diminished grant

o

s
Bob

dg
{r,w,t,g,dt,dg}

{r,dt}
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Capability Revocation

 Find and invalidate all 
direct and indirect copies

 Indirection Object:
 Stores capabilities
 Allows stored caps to be used

but not to be taken out
 Revoke by destruction of 

indirection object

b
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 Reference Monitor: 
        EM: suppress, pass Edit

 Schneider [98] / Bauer [02]: 
Which security policies are enforceable by reference 
monitors that are modeled as:

 EM automata
 Edit automata

 !!! results are based on a different system model !!!

BA

Policy Enforcement Mechanisms

stop

x x

stop

x yReference
Monitor

BA Reference
Monitor
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(More) Enforceable Security Policies
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(More) Enforceable Security Policies

Security policies

More general security policies

System remains operational
Nothing bad happens
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Policy Enforcement Mechanisms

 Compile-time analyzes to enforce security policies
 Problem: 

 OS-based (“peripheral”) policy enforcement mechanisms 
cannot control process-internal information flows.

 Solutions:
1) Reinstantiate server for differently classified clients

not possible / feasible for all servers
(device drivers, buffer cache, OS kernel)

app
1

app
2

s
1

s
2server server

1
server

2
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Policy Enforcement Mechanisms

 Compile-time analyzes to enforce security policies
 Problem: 

 OS-based (“peripheral”) policy enforcement mechanisms 
cannot control process-internal information flows.

 Solutions:
2) Trust server to enforce security policy

(without enforcement mechanism)

app
1

app
2server
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Policy Enforcement Mechanisms

 Compile-time analyzes to enforce security policies
 Problem: 

 OS-based (“peripheral”) policy enforcement mechanisms 
cannot control process-internal information flows.

 Solutions:
3) Check policy enforcement with static (compile-time)

 analysis of server program
  Run only successfully checked servers on differently

classified confidential data

app
1

app
2server
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Policy Enforcement Mechanisms

 Example of server internal information flow:
 Server State:

int h; // in red part of server state
 // possibly contains secret data

int l;  // eventually becomes visible to green 
 // e.g., located in shared memory

 Server Function:
void foo(int c) { 
   if (c < 5) 

l = h; // possible information leak from red to green
}

 Check program at compile time for the occurrence of expressions 
such as l = h

 Note: static analysis cannot decide whether certain input will ever 
occur in reality – here: server is secure if c >= 5

app
1

app
2server
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Overview

 Introduction
 Security Policies
 Policy Enforcement
 Decidability of Leakage
 Take Grant Protection Model
 Covert Channels
 Compiler-Based Information Flow Control
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Decidability of Leakage

 Given 
 a security policy P 
 an enforcement mechanism (e.g., the ACM)

 initial state 
0

 Can we decide before the system runs (i.e., by considering only the 
initial state 

0 
) whether it will reach a state in which P does not hold?

If P is a security policy based on access rights
 Can we decide before the system runs whether the system can reach a 

state in which a subject s has r rights over an object o 
(i.e., r is leaked to R(s,o))?

 Theorem:
 It is undecidable for generic ACM-enforced systems whether they 

will reach a state in which a subject s has a generic right r over an 
object o!
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Decidability of Leakage: ACM

 Definition:
 Leakage: r is entered in R(s,o) 

 Does not take into account whether the security policy P
authorizes r ∈R(s,o).

 Decidability of Leackage:
 Is there an algorithm that is able to decide before the system 

runs whether the system will leak a generic right r on an object 
o to a subject s 

 Theorem: 
 Leakage is undecidable for ACMs.
 Proof: by reduction to the halting problem of a turing machine
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Decidability of Leakage: ACM

 Theorem: 
 It is undecidable whether a system, which evolves from an initial 

state s
0
, will leak a generic right r on o to s.

 Proof by contradiction: 
Reduction to halting problem of Turing machine.

 Simulate a Turing Machine with the help of an ACM
 Relate the state of the ACM in which r is leaked to R(s,o) 

to the state of the TM in which a corresponding program halts

=> - because the specific ACM implements the TM such that
the ACM leaks whenever the TM program halts

- if leakage is decidable so would be the TM halting problem

 Leakage is decidable (in linear time) for the 
Take-Grant Protection Model 
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Turing Machine 

 http://wiki…

 Turing Machine
 infinite tape
 tape symbols M : A,B,C,...
 state automaton K: x,y,z,...
 head

 TM transition: δ
 read symbol from tape (at position of head)
 perform an automaton transition dependent on this symbol
 write a new symbol to the tape
 move head one step to the left or to the right

δ : K x M -> K x M x {L,R}

A ...B A C D A E

x

z
y

A

B

C

http://wiki/
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Halting Problem

 http://wiki…
Halting Problem:
Given a TM and a Program P, find a program of the TM that 
decides whether P will terminate (halt).

 (TM  universal TM  while)

 Proof by contradiction: assume such a program exists
does_P_terminate_on_E (P, E) := test(P) :=
  if P(E) terminates while(does_P_terminate_on_E(P, P)) {}

return true

   return false

 if does_P_terminate(test, test) returns true => test(test) must 
terminate (if condition)

 but then the condition of the while loop is true 
=> test(test) does not terminate

=> there can be no test such as P(E) terminates for all P, E

http://wiki/
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Proof: 
Leakage is undecidable with ACM

1) Formally define ACM and the ACM operations.

2) Construct a specific ACM, which simulates a generic TM.
a) Construct a mapping between states of a generic TM 
    and states of a specific ACM
b) Simulate TM transitions with ACM programs such that

     each program yields a valid state that corresponds to
    a state of the TM

4) Correlate the state in which the ACM leaks r into R(s,o) to
    the state in which the TM halts given P(E)

TM:

ACM:

x,A

ACM prog.

c
x,A
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Access Control Matrix

 ACM operations: C
 create subject s
 create object o
 destroy subject s
 destroy object o
 enter right r into R(s,o)
 delete right r from R(s,o)

o1 o2 s1 s2

s1 rd,wr rd rd,wr rd

s2 rd,wr - wr rd,wr
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Access Control Matrix

 create subject s
Pre: s ∉ S, 
Post: S’ = S ∪ {s},  // new subject

E’ = E ∪ {s}, // subject also object
∀ x ∈ E’: R’(s, x) = ∅, // new subject has no rights
∀ y ∈ S’: R’(y, s) = ∅, // no rights on new subject
∀ x ∈ E, y ∈ S : // no change of old ACM cells
     R’(x, y) = R(x, y)

 enter r into R(s,o)
Pre: s ∈ S , o ∈ E
Post: S’ = S, E’ = E, // only R(s,o) changes

∀ x ∈ E’, y ∈ S’: 
     (s,o) ≠  (x, y) => R’(x,y) = R(x, y)  
R’(s, o) = R(s, o) ∪ {r} // add r to R(s,o)
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Leakage is undecidable with ACM

 Proof Sketch:
A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

A,x

s
4

D

x

z
y

head

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

δ : (x, A) -> (y, B, L)

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

A,x

s
4

D

x

z
y

s
1

s
2

s
3

s
4

s
1

A

s
2

C,y

s
3

B

s
4

D

c
x,A

             A/B

A C B D
1 2 3 4    …

head

…

z
y

             A/B
x
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Leakage is undecidable with ACM

 Proof Sketch:

 δ : (x, A) -> (y, B, L)

c
x, A

 (s
head

,s
left

) := 
if  x ∈ R(shead, shead) and 

A ∈ R(shead, shead) then
  ...

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

A,x

s
4

D

x

z
y

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

 δ : (x, A) -> (y, B, L)

c
x, A

 (s
head

,s
left

) := 
if  x ∈ R(shead, shead) and 

A ∈ R(shead, shead) then
  delete x from R(shead, shead) 

  ...
  

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

A

s
4

D

x

z
y

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

 δ : (x, A) -> (y, B, L)

c
x, A

 (s
head

,s
left

) := 
if  x ∈ R(shead, shead) and 

A ∈ R(shead, shead) then
  delete x from R(shead, shead) 
  delete A from R(shead, shead) 

  ...
  

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

s
4

D

x

z
y

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

 δ : (x, A) -> (y, B, L)

c
x, A

 (s
head

,s
left

) := 
if  x ∈ R(shead, shead) and 

A ∈ R(shead, shead) then
  delete x from R(shead, shead) 
  delete A from R(shead, shead) 
  enter B into R(shead, shead) 

  ...
  

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

B

s
4

D

x

z
y

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

 δ : (x, A) -> (y, B, L)

c
x, A

 (s
head

,s
left

) := 
if  x ∈ R(shead, shead) and 

A ∈ R(shead, shead) then
  delete x from R(shead, shead) 
  delete A from R(shead, shead) 
  enter B into R(shead, shead) 
  enter y into R(sleft, sleft) 

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A

s
2

C,y

s
3

B

s
4

D

x

z
y

             A/B
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Leackage is undecidable with ACM

 Proof Sketch:

 Problem 1: 
 δ : (x, D) -> (y, B, R) if head is in last cell (s

4
,s

4
)

 distinguished right end to mark last cell
 insert new subject s

5

 propagate end right to s
5

A C A D
1 2 3 4    …

head

…

x

z
y

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

A

s
4

D,x,end

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

 Problem 2:  δ : (x, A) -> (y, B, L) c
x, A

 (s
head

,s
left

)  

 Non-trivial problem:
 Finite states + tape symbols but infinite many tape cells

=> subjects must remain parameters
(otherwise infinite many ACM programs)

 ACM has no way to express neighborhood (e.g., s
left

 is left of s
head

 )

A C A D
1 2 3 4    …

head

…

x

z
y

s
1

s
2

s
3

s
4

s
1

A

s
2

C

s
3

A,x

s
4

D,end

             A/B
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Leakage is undecidable with ACM

 Proof Sketch:

 Problem 2:  δ : (x, A) -> (y, B, L) c
x, A

 (s
head

,s
left

)  

 Non-trivial problem:
 Finite states + tape symbols but infinite many tape cells

=> subjects must remain parameters
(otherwise infinite many ACM programs)

 ACM has no way to express neighborhood (e.g., s
left

 is left of s
head

 )

 Solution: own  R(s
head

,s
left

)

A C A D
1 2 3 4    …

head

…

x

z
y

s
1

s
2

s
3

s
4

s
1

A own

s
2

C own

s
3

A,x own

s
4

D,end

             A/B



Distributed Operating Systems 2009 Marcus Völp, Hermann Härtig 71

Leakage is undecidable with ACM

 Proof Sketch:

 δ : (x, A) -> (y, B, L)
 c

x, A
 (s

head
,s

left
) := 

if own ∈ R(s
left

, s
head

) and

        x ∈ R(s
head

, s
head

) and 

          A ∈ R(s
head

, s
head

) then

      delete x from R(s
head

, s
head

)  

      delete A from R(s
head

, s
head

) 

      enter B into R(s
head

, s
head

)

      enter y into R(s
left

, s
left

) 

A C A D
1 2 3 4    …

head

…

s
1

s
2

s
3

s
4

s
1

A own

s
2

C own

s
3

A,x own

s
4

D,end

x

z
y

=> TM (executing P(E)) halts at
      tape cell n in automaton state
      x with head tape symbol A iff
      A,x is leaked to R(s

n
,s

n
).

=> if leakage would be decidable
      so is the halting problem 

             A/B
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Overview

 Introduction
 Security Policies
 Policy Enforcement
 Decidability of Leakage
 Take Grant Protection Model
 Covert Channels
 Compiler-Based Information Flow Control
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Take-Grant Protection Model 

 Directed Graph
 Vertices:      object,      subject (     either object or subject)
 Edges:                 subject has capability with r right on object

 Transition Rules:
 Take

 Grant

 Create

 Remove

 Diminish

r

t

β

β t β

g

β

β g β

α

β β-α

x y z

x y z x y z

x y z

x y

x yx y

x

β

β-α

x yx y

β
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Take-Grant Protection Model
 3 Lemmas: 

 Take Rule:

 Lemma 1:

 Grant Rule:

 Lemma 2:

t

  β

β t β
x y z x y z

*

g

  β

β g β
x y z x y z

*

t

β

β t β

g

β

β g β

x y z

x y z x y z

x y z
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Take-Grant Protection Model
 3 Lemmas: 

 Lemma 3: t tg

x y z x y
g

z

g t

*
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 Proof of Lemma 1:

 Proof: 
x.create v (tg) ; y.take g ; y.grant β to v ; x.take β from v

 See exercises for the proof of Lemmas 2, 3

Take-Grant Protection Model

t

β

β t β
x y z x y z

*
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Take-Grant Protection Model
 Leakage is decidable in linear time in the 

Take-Grant Protection model.

 Proof Sketch for decidability: (not: decidability in linear time)
 construct potential-access graph (worst case rights propagation)
 apply take + grant transition rules + the 3 lemmas until the no more 

rights can be added (i.e., the resulting potential-access graph no 
longer changes)

 (delete, diminish, remove only reduce access rights)
 (create establishes a new entity which cannot get no more

 privileges than its creator)

 a right r on an object o can be leaked to a subject s if the potential 
access graph contains                         with r 

β
s o
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Take-Grant Protection Model
 Creating an Entity gives all rights to Creator

 The creator s of an object o gets all permissions on o. In 
particular, s gets take permissions on o.

 Assume a right r on e is leaked to o 
(i.e., o holds a capability (e,R) with r  R)

 Then s can take this capability from o.
=> s can get all of o's rights

t
s o

e



t
s o

e
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Take-Grant Protection Model
 Example: propagation of b on z to u 

(towards a potential access graph)

t β
x y z

t
u v

g
w

t

* by Lemma 1
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Take-Grant Protection Model
 Example: propagation of b on z to u 

(towards a potential access graph)

t β
x y z

t
u v

g
w

t

t β
x y z

t
u v

g
w

t

* by Lemma 1
g β

* by Lemma 3
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Take-Grant Protection Model
 Example: propagation of b on z to u 

(towards a potential access graph)

t β
x y z

t
u v

g
w

t

t β
x y z

t
u v

g
w

t

* by Lemma 1
g β

* by Lemma 3

t β
x y z

t
u v

g
w

t

t,g β

* x.grant  on z to h
u.take  on t from h

g

t,g g
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Take-Grant Protection Model
 Example: propagation of b on z to u 

(towards a potential access graph)

t β
x y z

t
u v

g
w

t

t β
x y z

t
u v

g
w

t

* by Lemma 1
g β

* by Lemma 3

t β
x y z

t
u v

g
w

t

t,g β

* x.grant  on z to h
u.take  on t from h

g

t β
x y z

t
u v

g
w

t

t,g βg

β

β
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Overview

 Introduction
 Security Policies
 Policy Enforcement
 Decidability of Leakage
 Take Grant Protection Model
 Covert Channels
 Compiler-Based Information Flow Control



Distributed Operating Systems 2009 Marcus Völp, Hermann Härtig 84

Covert Channels 

 Covert Channel:
 Lampson [73]: 

 Overt channel: 
 means of communication in the interface 

(e.g., read, write, error code)
 Covert channel: 

 channel not intended for communication 

 TCSEC (Canadian predecessor of Common Criteria)
 Covert channel: 

 Information flow in violation to the system's security policy

 Noise:
 noiseless - only sender writes to covert channel
 noisy - also other writers
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Covert Channels: Cache 

set

n-way associative: n cache lines

• Certain memory locations map 
   to the same set of cache lines
• Cache replacement policy is 
   set internal

receiver sender

prepare cache: 
  by accessing n memory locations that map to the same set

access certain cacheline of same set
(e.g., AES – key dependent table lookups [Osvik])

probe timing of n memory locations:
short: sender did not access CL of this set
long: sender has evicted one (or more) of the n 
         memory locations
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Covert Channels: Disk [Wray]

Elevator algorithm:
 - cylinders in head movement direction
    are accessed first

55

53

58

52

55

57
58

52

Prepare: 
  read cyl. 55 ; 
  wait for completion

Send: 
   read cyl. 53 to send 0 or
   read cyl. 57 to send 1
   wait for completion

Probe:
   read cyl. 52 and 58
   observer order of completion

Send 0: Send 1:

head
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Covert Channels: in Programs

int l; // eventually becomes observable by an l-classified observer
int h; // stores a secret to which the l-classified observer is not cleared

// explicit flow
  l = h;

// implicit flow
  if (h % 2){ 
      l = 1; 
  } else {
      l = 0;
  }

// probabilistic
  if (h % 2) {
     l = random (0, ..., 1);
  } else {
     l = 1;
  }

app
1

app
2server

// internal timing channel
  if (h % 2) {
     l = 1 ; spin (10ms);
  } else {
     spin (10ms) ; l = 1;
  }
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Covert Channels: in Programs

int l; // eventually becomes observable by an l-classified observer
int h; // stores a secret to which the l-classified observer is not cleared

// external timing channel
  if (h % 2) {
    // long op
    for (int i = 0; i < 10000; i++) {}
  } else {
    // short op
  }

also h-dependent blocking:
sleep(n ms)

// termination
  if (h % 2) while (true) {}

// power, heat, …
  if (h % 2) 
      float_ops() 
  else  
      int_ops()
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Noninterference

 Noninterference 
 Prevailing formalization for the complete absence of covert 

channels in deterministic systems (e.g., programs)

 An l-classified observer sees the same output of a program p 
despite variations in secret (i.e., l'-classified) inputs (with l  l'). 

s ~
l
 s' => p(s) ~

l
 p(s')

 s ~
l
 s' stands for s, s' are indistinguishable by an l-classified 

observer.
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Information Flow

 A new (more general?) formalism:

 Confidentiality (Denning [67])
 A ~/~> B => 

B cannot deduce information on A (A’s data), A is confidential with 
respect to B

 Integrity (Denning [67])
 A ~/~> B => 

B’s integrity is independent of information / results from A, B is 
integer with respect to A

 Availability (Myers [05])
 A ~/~> B => 

B’s availability is independent of information / results from A, B’s 
availability cannot be affected by A

 Open Question: Is it possible to express any interesting access-
control policy in terms of information flow?
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Compile-Time 
Information-Flow Analysis

 Flow Insensitive (Denning, Volpano)
 Flow Sensitive (Hunt, Warnier)

 Abstract from concrete system state:
 Start with:

 clearance of output variables
 classification of input variables / initially stored secrets

 Abstract from concrete values; 
 maintain only secrecy levels of stored information

 Abstractly interpret program
 side-effect free expression: f(in

0
, ..., in

1
) = out

 out can only encode secrets of in
i 
:

dom(out) = least_upper_bound(dom(in
i
))

 control flow: 
 secrecy level env for the instruction pointer: 

wr(a, h) => dom(a) = lub(dom(h), env)
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Compile-Time 
Information-Flow Analysis

 Example: if (h) { l = 0; } l = 1;

rd h

 if 

l = 0;

l = 1;

    l          h      res     env  
  Low High

  Low   High    High

  Low   High               High

  High  High

  Low   High
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Questions

 References
 B. Lampson: A note on the confinement problem
 Matt Bishop – Text Book: Computer Security – Art and Science
 P. Gallagher: A Guide to Understanding the Covert Channel Analysis

of Trusted Systems [TCSEC – CC Guide] 
 Proctor, Neumann: Architectural Implications of Covert Channels
 Sabelfeld, Myers: Language-based information-flow security
 Karger, Wray: Storage Channels in Disk Arm Optimizations
 Alpern, Schneider 87: Recognizing safety and lifeness
 Alves, Schneider: Enforceable security policies
 Walker, Bauer, Ligatti: More enforcable security policies
 Osvik, Shamir, Tromer: Cache Attacks and Countermeasures: the Case of AES
 Denning 67: A Lattice Model of Secure Information Flow
 Denning: Certification of programs for secure information flow.
 Hunt, Sands: On flow-sensitive security types
 Volpano, Irvine, Smith: A sound type system for secure inform. flow analysis
 Warnier: Statically checking confidentiality via dynamic labels
 Zheng, Myers: End-to-End Availability Policies and Noninterference
 Shapiro, Smith, Farber: EROS: A Fast Capability System
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Security Policies – Safety / Lifeness

 System:
 Commands C := {c

1
,c

2
,...,c

n
}

 Set of action traces 
T := { <c

1
c

2
c

1
>,<c

3
c

1
c

6
c

4
>,...}

 Security Policy: 
 Predicate on subsets of T

 Security Property:
 Predicate on a single trace 

   P(T) :=  t  T. P'(t)
 Security Property: 

 Decission whether system is secure can be made by just observing a 
single execution of the system

 Security Policy: 
 Can also compare multiple executions of the system
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Security Policies – Safety / Lifeness

 System:
 Commands C := {c

1
,c

2
,...,c

n
}

 Set of action traces 
T := { <c

1
c

2
c

1
>,<c

3
c

1
c

6
c

4
>,...}

 Example: Noninterference
 Indistinguishable despite variations in 

high inputs

 H  C actions c
i
(h) on high input (h)

 c
3
c(h)

6
c

4 
and c

3
c(h')

6
c

4 

produce l-similar results 

=> Noninterference is Security Policy but not a Security Property!
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Security Policies – Safety / Lifeness

 Safety property:
 “Rules out bad things”
 P(t) states that the system is 

insecure because 
0
 –t–>' and 

something “bad” is going on in '
 P(t) =>  t'.  P(t t')

 A system that is insecure will remain 
insecure when it continues to execute.

 Lifeness property:
 “A system can stay good”

  .  '.  →*' => P(')

 Alpern, Schneider [87]: “Recognizing safety and lifeness”
 Any security property can be expressed as a conjunct of 

safety and lifeness properties.
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Security Policies – Safety / Lifeness

 Alves, Schneider: “Enforceable Security Policies”
 EM automata can only enforce safety properties

 Walker, Bauer, Ligatti: “More enforceable Sec. Policies”
 Edit automata can also enforce some safety+lifeness properties
 Neither EM nor Edit automata can enforce pure lifeness properties
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