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Linux,    Small kernels, and Linux‏

SMP (Linux,K42, 
...)

 Shared 
Memory SMP

 Linux syscall 
interface

 Balance Load, 
Optimise 
locality and 
concurrency

MPP (Jaguar, 
Blue Gene,  ...)

 Distributed 
Memory

 Message 
Passing 
Interface

 Partition 

Clusters 
(MosiX, ...)

 COTS networks

 Distribute Linux 
  

 Balance Load 
dynamically
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SMP: Shared Memory / Symmetric MP
 Characteristics of SMP Systems:

 Highly optimised interconnect networks
 Shared memory (with several levels of caches)‏
 Sizes: 2 .. ~1024 CPUs

 Successful Applications:
 Large Linux (Windows) machines / servers
 Transaction-management systems

 Not usually used for:
 CPU intensive computation, massively parallel Applications
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MPP: Massively Parallel 
Multiprocessors
 Characteristics of MPP Systems:

 Highly optimised interconnect networks
 Distributed memory
 Size today: up to few 100000 CPUs (cores)

 Successful Applications:
 CPU intensive computation, massively parallel 

Applications, small execution/communication ratios

 Not optimal for:
 Transaction-management systems
 Unix-Workstation + Servers
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“Clusters”

 Characteristics of Cluster Systems:
 Use COTS (common off the shelf) PCs/Servers and 

networks
 Size: No principle limits

 Successful Applications:
 CPU intensive computation, massively parallel 

Applications, larger execution/communication ratios
 Data Centers, google apps

 Not optimal for:
 Transaction-management systems
 Unix-Workstation + Servers
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Parallel Programming Models

 Organisation of Work
 Independent, unstructured processes (normally 

executing different programs)  independently  on 
nodes (make and compilers, ...), “pile of work”

 SPMD: single program on multiple data 
asynchronous handling of partitioned data

“map/reduce” (google) 
 Communication

 Shared Memory, shared file system
 Message Passing:

Process cooperation through explicit message passing
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Usage- and Programming Model

 SPMD

while (true) {
work
exchange data (barrier)‏

}

 Common for many MPP:
All participating CPUs: active / inactive

 Techniques:
 Partitioning (HW)‏
 Gang Scheduling
 Load Balancing
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MPI, very brief overview

 Library for message-oriented parallel programming.
 Programming-model:

 MPI program is started on all processors
 Static allocation of processes to CPUs . 
 Processes have “Rank”: 0 ... N-1
 Each process can obtain its Rank 

(MPI_Comm_rank).
 Typed messages 
 Communicator: collection of processes that can 

communicate, e.g., MPI_COMM_WORLD
 MPI_Spawn (MPI – 2)‏

 Dynamically create and spread processes
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MPI - Operation

 Init / Finalize

 MPI-Comm-Rank delivers “rank” of calling process, 
for example

MPI_Comm_Rank(MPI_COMM_WORLD, &my-rank)

if (my_rank != 0 )
...
else ....

 MPI_barrier(comm) blocks until all processes called it
 MPI_Comm_Size how many processes in comm



MPI – Operations Send, RCV

 MPI_Send (
void* message,
int count,

 MPI-Datatype,
int dest, /*rank of destination process, in */
int tag,
MPI_Comm comm) /* communicator*/

 MPI_RCV(
void* message,
int count,

 MPI-Datatype,
int src,                 /* rank of source process, in */

/* can be MPI_ANY-SRC */
int tag, / can be MPI_ANY_TAG */
MPI_Comm comm, /* communicator*/
MPI_Status*   status); /* source, tag, error*/



MPI – Operations Broadcast

 MPI_BCAST(
void * message,
int count,
MPI-Datatype,
int root,
MPI_Comm comm)‏

 process with rank == root sends, 
all others receive message

 implementation optimised for particular interconnect
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MPI – Operations

 Aggregation:
 MPI_Reduce

 Each process holds partial value,
 All processes reduce partial values to final 

result
 Store result in RcvAddress field of Root process

 MPI_Scan
 Combine partial results into n final results and 

store them in RcvAddress of all n processes
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MPI - Operations
root

Compute: a[0]  a[1]  a[2]  a[3]

a

MPI reduce

root

Compute: a[0]  a[1]  a[2]  a[3]

MPI scan

a



MPI – Operations

 MPI_Reduce(
void* operand, /* in*/
void * result,  /* out*/
int count, /* in */
MP_Datatype datatype,
MPI_Op operator,
int root,
MPI_Comm comm)

predefined MPI_OPs:
sum, product, minimum, maximum,
logical ops,  ...
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Common MPP Operating-System-
Model (for example Blue Gene)

 PE: compute intensive part of application
 Micro-Kernel
 Start + Synchronisation of Application
 elementary Memory Management (no demand 

paging) 

 all other OS functionality on separate Servers or 
dedicated nodes

 strict space sharing: 
only one application active per partition at a time
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“Space” Allocation in MPP

 Assign partition from field of PEs
 Applications are pair wise isolated
 Applications self responsible for PEs
 shared segments for processes within partition 

(Cray)‏
 Problems:

 debugging (relatively long stop-times)‏
 Long-running jobs block shorter jobs

 Isolation of application with respect to:
 Security
 Efficiency

 Buzzword: “eliminate the OS from the critical path"
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“Space” Allocation in MPP

 Hardware-Supported assignment of nodes to 
applications

 Partitions
 static at configuration

Installed by operator for longer period of time
 Variable(Blue Gene/L): 

Selections and setup on start of Job
established by “scheduler”

 Very flexible (not in any MPP I know):
 increase and shrink during operation
 Applications need to deal with varying CPU 

numbers
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Alternative: Distribution of Load

 Static
 Place processes at startup, don’t reassign
 Requires a priori knowledge

 Dynamic Balancing
 Process-Migration
 Adapts dynamically to changing loads

 Problems
 Determination of current load
 Distribution algorithm
 Oscillation possible

 successful in SMPs and clusters, not (yet ?) used in MPPs
 Most advanced dynamic load balancing: MosiX 



The Limitation of CC

Example:  a numerical applicati on th at computes what happens during car crash.
Such simulati ons ty picall y compute  one ti me step, require some communicati ons 

about th e boundaries and some global variables, and th en next ti me step and so on. 
I f you compute  bus crash, th e problem is fair ly big, so each ti me step takes a lot of 
ti me - e.g. 1 minute . Even if you use 600 compute rs effi ciently, you’ll  have 0.1 
second per ti me step, which is a usuall y enough in te rms of communicati ons. So 
th is is coarse-grain.

Same simulati ons, you check what happens when a hammer left in space impacts a 
space ship shield. Th is ti me th e problem is very small , but th e velociti es and th e 
m ate rials are higher, so th e ti me step is small er (th e physical ti me) and you need 
1,000,000 ti me steps. Each ti me step may take 10msec. I mpossible to  parall elize 
effi cient even on a 100 nodes CC since comm. cost is large. Th is is fi ne grain, and 
you’ll  have to  wait A LOT  unti l it fi nishes.

Oren Laadan/Hermann Härtig



Challenges for Cluster Management

View provided for users/ programming model
How to  distr ibute  load, 
• Th e mechanism to  migrate  load
• Th e mechanisms to  use remote  resources
• Opti mal placement (an N P-Hard problem)
• …
I nformati on distr ibuti on, acti ng on parti al knowledge
Cope with  additi on of nodes, subcluste rs, …
Administr ati on
Which are th e practi cal details



Special Case: fork()‏

Deputy Remote

Deputy(chil
d)‏ Remote(chil

d)‏

Oren Laadan/Hermann Härtig



Process Migration

Process migdaemon

Deputy

Remot
e

Oren Laadan/Hermann Härtig



Ping Pong and Flooding

p revent  
• fl ooding (all  processes jump to  one new empty  node):

decide immediate ly before  migrati on commitment (extr a 
communicati on, piggy packed)‏

• p ing pong:
if th resholds are very close, processes moved back and forth
=> te ll  a litt le higher load th an real

Oren Laadan/Hermann Härtig



The Ping Pong Problem

Node 1 Node 2

One process two nodes

scenario: 
compare load on nodes 1 and 2
n ode 1 moves process to  equal. 
loads
...

soluti ons:
•  add one + litt le bit to  load
•  average over ti me

solves short peaks problem as well
(short cron processes)‏

Oren Laadan/Hermann Härtig



The Flooding Problem

scenario 1: n ew node comes in
scenario 2: n ode becomes unloaded suddenly
=> “everybody joins th e party ”

Soluti on:
• u se expected load (committ ed load) instead of run queue 

length
• check again before committ ing  

Oren Laadan/Hermann Härtig



IPC

• I PC and load are contr adicti ve
opti mum: N P hard  

• apply heuristi cs: exchange locall y 

Oren Laadan/Hermann Härtig
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