
1

Parallel Systems Software,
short overview → MosiX

Hermann Härtig
SS 2010

Linux, Small kernels, and Linux‏

SMP (Linux,K42,
...)

 Shared
Memory SMP

 Linux syscall
interface

 Balance Load,
Optimise
locality and
concurrency

MPP (Jaguar,
Blue Gene, ...)

 Distributed
Memory

 Message
Passing
Interface

 Partition

Clusters
(MosiX, ...)

 COTS networks

 Distribute Linux

 Balance Load
dynamically

3

SMP: Shared Memory / Symmetric MP
 Characteristics of SMP Systems:

 Highly optimised interconnect networks
 Shared memory (with several levels of caches)‏
 Sizes: 2 .. ~1024 CPUs

 Successful Applications:
 Large Linux (Windows) machines / servers
 Transaction-management systems

 Not usually used for:
 CPU intensive computation, massively parallel Applications

4

MPP: Massively Parallel
Multiprocessors
 Characteristics of MPP Systems:

 Highly optimised interconnect networks
 Distributed memory
 Size today: up to few 100000 CPUs (cores)

 Successful Applications:
 CPU intensive computation, massively parallel

Applications, small execution/communication ratios

 Not optimal for:
 Transaction-management systems
 Unix-Workstation + Servers

5

“Clusters”

 Characteristics of Cluster Systems:
 Use COTS (common off the shelf) PCs/Servers and

networks
 Size: No principle limits

 Successful Applications:
 CPU intensive computation, massively parallel

Applications, larger execution/communication ratios
 Data Centers, google apps

 Not optimal for:
 Transaction-management systems
 Unix-Workstation + Servers

6

Parallel Programming Models

 Organisation of Work
 Independent, unstructured processes (normally

executing different programs) independently on
nodes (make and compilers, ...), “pile of work”

 SPMD: single program on multiple data
asynchronous handling of partitioned data

“map/reduce” (google)
 Communication

 Shared Memory, shared file system
 Message Passing:

Process cooperation through explicit message passing

7

Usage- and Programming Model

 SPMD

while (true) {
work
exchange data (barrier)‏

}

 Common for many MPP:
All participating CPUs: active / inactive

 Techniques:
 Partitioning (HW)‏
 Gang Scheduling
 Load Balancing

8

MPI, very brief overview

 Library for message-oriented parallel programming.
 Programming-model:

 MPI program is started on all processors
 Static allocation of processes to CPUs .
 Processes have “Rank”: 0 ... N-1
 Each process can obtain its Rank

(MPI_Comm_rank).
 Typed messages
 Communicator: collection of processes that can

communicate, e.g., MPI_COMM_WORLD
 MPI_Spawn (MPI – 2)‏

 Dynamically create and spread processes

9

MPI - Operation

 Init / Finalize

 MPI-Comm-Rank delivers “rank” of calling process,
for example

MPI_Comm_Rank(MPI_COMM_WORLD, &my-rank)

if (my_rank != 0)
...
else

 MPI_barrier(comm) blocks until all processes called it
 MPI_Comm_Size how many processes in comm

MPI – Operations Send, RCV

 MPI_Send (
void* message,
int count,

 MPI-Datatype,
int dest, /*rank of destination process, in */
int tag,
MPI_Comm comm) /* communicator*/

 MPI_RCV(
void* message,
int count,

 MPI-Datatype,
int src, /* rank of source process, in */

/* can be MPI_ANY-SRC */
int tag, / can be MPI_ANY_TAG */
MPI_Comm comm, /* communicator*/
MPI_Status* status); /* source, tag, error*/

MPI – Operations Broadcast

 MPI_BCAST(
void * message,
int count,
MPI-Datatype,
int root,
MPI_Comm comm)‏

 process with rank == root sends,
all others receive message

 implementation optimised for particular interconnect

12

MPI – Operations

 Aggregation:
 MPI_Reduce

 Each process holds partial value,
 All processes reduce partial values to final

result
 Store result in RcvAddress field of Root process

 MPI_Scan
 Combine partial results into n final results and

store them in RcvAddress of all n processes

13

MPI - Operations
root

Compute: a[0] a[1] a[2] a[3]

a

MPI reduce

root

Compute: a[0] a[1] a[2] a[3]

MPI scan

a

MPI – Operations

 MPI_Reduce(
void* operand, /* in*/
void * result, /* out*/
int count, /* in */
MP_Datatype datatype,
MPI_Op operator,
int root,
MPI_Comm comm)

predefined MPI_OPs:
sum, product, minimum, maximum,
logical ops, ...

15

Common MPP Operating-System-
Model (for example Blue Gene)

 PE: compute intensive part of application
 Micro-Kernel
 Start + Synchronisation of Application
 elementary Memory Management (no demand

paging)

 all other OS functionality on separate Servers or
dedicated nodes

 strict space sharing:
only one application active per partition at a time

16

“Space” Allocation in MPP

 Assign partition from field of PEs
 Applications are pair wise isolated
 Applications self responsible for PEs
 shared segments for processes within partition

(Cray)‏
 Problems:

 debugging (relatively long stop-times)‏
 Long-running jobs block shorter jobs

 Isolation of application with respect to:
 Security
 Efficiency

 Buzzword: “eliminate the OS from the critical path"

17

“Space” Allocation in MPP

 Hardware-Supported assignment of nodes to
applications

 Partitions
 static at configuration

Installed by operator for longer period of time
 Variable(Blue Gene/L):

Selections and setup on start of Job
established by “scheduler”

 Very flexible (not in any MPP I know):
 increase and shrink during operation
 Applications need to deal with varying CPU

numbers

18

Alternative: Distribution of Load

 Static
 Place processes at startup, don’t reassign
 Requires a priori knowledge

 Dynamic Balancing
 Process-Migration
 Adapts dynamically to changing loads

 Problems
 Determination of current load
 Distribution algorithm
 Oscillation possible

 successful in SMPs and clusters, not (yet ?) used in MPPs
 Most advanced dynamic load balancing: MosiX

The Limitation of CC

Example: a numerical applicati on th at computes what happens during car crash.
Such simulati ons ty picall y compute one ti me step, require some communicati ons

about th e boundaries and some global variables, and th en next ti me step and so on.
I f you compute bus crash, th e problem is fair ly big, so each ti me step takes a lot of
ti me - e.g. 1 minute . Even if you use 600 compute rs effi ciently, you’ll have 0.1
second per ti me step, which is a usuall y enough in te rms of communicati ons. So
th is is coarse-grain.

Same simulati ons, you check what happens when a hammer left in space impacts a
space ship shield. Th is ti me th e problem is very small , but th e velociti es and th e
m ate rials are higher, so th e ti me step is small er (th e physical ti me) and you need
1,000,000 ti me steps. Each ti me step may take 10msec. I mpossible to parall elize
effi cient even on a 100 nodes CC since comm. cost is large. Th is is fi ne grain, and
you’ll have to wait A LOT unti l it fi nishes.

Oren Laadan/Hermann Härtig

Challenges for Cluster Management

View provided for users/ programming model
How to distr ibute load,
• Th e mechanism to migrate load
• Th e mechanisms to use remote resources
• Opti mal placement (an N P-Hard problem)
• …
I nformati on distr ibuti on, acti ng on parti al knowledge
Cope with additi on of nodes, subcluste rs, …
Administr ati on
Which are th e practi cal details

Special Case: fork()‏

Deputy Remote

Deputy(chil
d)‏ Remote(chil

d)‏

Oren Laadan/Hermann Härtig

Process Migration

Process migdaemon

Deputy

Remot
e

Oren Laadan/Hermann Härtig

Ping Pong and Flooding

p revent
• fl ooding (all processes jump to one new empty node):

decide immediate ly before migrati on commitment (extr a
communicati on, piggy packed)‏

• p ing pong:
if th resholds are very close, processes moved back and forth
=> te ll a litt le higher load th an real

Oren Laadan/Hermann Härtig

The Ping Pong Problem

Node 1 Node 2

One process two nodes

scenario:
compare load on nodes 1 and 2
n ode 1 moves process to equal.
loads
...

soluti ons:
• add one + litt le bit to load
• average over ti me

solves short peaks problem as well
(short cron processes)‏

Oren Laadan/Hermann Härtig

The Flooding Problem

scenario 1: n ew node comes in
scenario 2: n ode becomes unloaded suddenly
=> “everybody joins th e party ”

Soluti on:
• u se expected load (committ ed load) instead of run queue

length
• check again before committ ing

Oren Laadan/Hermann Härtig

IPC

• I PC and load are contr adicti ve
opti mum: N P hard

• apply heuristi cs: exchange locall y

Oren Laadan/Hermann Härtig

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

