Parallel Systems Software,
short overview — MosiX

Hermann Hartig
SS 2010

TECHNISCHE
UNIVERSITAT
DRESDEN

Linux, Small kernels, and LinuX

SMP (Linux,K42, MPP (Jaguar, Clusters

) Blue Gene, ...) (MosiX, ...)

= Shared = Distributed = COTS networks
Memory SMP Memory

= Linux syscall = Message = Distribute Linux
interface Passing

Interface

= Balance Load, = Partition = Balance Load
Optimise dynamically
locality and

concurrency

TECHNISCHE
UNIVERSITAT
DRESDEN

SMP: Shared Memory / Symmetric MP

= Characteristics of SMP Systems:
= Highly optimised interconnect networks

= Shared memory (with several levels of caches)
= Sizes: 2 .. ~1024 CPUs

= Successful Applications:
= Large Linux (Windows) machines / servers
" Transaction-management systems

= Not usually used for:
= CPU intensive computation, massively parallel Applications

TECHNISCHE
UNIVERSITAT
DRESDEN 3

MPP: Massively Parallel
Multiprocessors

= Characteristics of MPP Systemes:
= Highly optimised interconnect networks
= Distributed memory
= Size today: up to few 100000 CPUs (cores)

= Successful Applications:

= CPU intensive computation, massively parallel
Applications, small execution/communication ratios

= Not optimal for:
= Transaction-management systems
= Unix-Workstation + Servers TECHNISCHE

DRESDEN 4

“Clusters”

= Characteristics of Cluster Systems:
= Use COTS (common off the shelf) PCs/Servers and
networks
= Size: No principle limits

= Successful Applications:

= CPU intensive computation, massively parallel
Applications, larger execution/communication ratios

= Data Centers, google apps

= Not optimal for:
= Transaction-management systems TECHNISCHE

UNIVERSITAT
DRESDEN

® | Iniv-Warketation 4+ Serverc

Parallel Programming Models

= QOrganisation of Work

= Independent, unstructured processes (normally
executing different programs) independently on
nodes (make and compilers, ...), “pile of work”

= SPMD: single program on multiple data
asynchronous handling of partitioned data
“map/reduce” (google)

= Communication
= Shared Memory, shared file system

= Message Passing:
Process cooperation through explicit message passing

TECHNISCHE
UNIVERSITAT
DRESDEN

Usage- and Programming Model

= SPMD

while (true) {
work
exchange data (barrier)

}

= Common for many MPP:
All participating CPUs: active / inactive

= Techniques:
= Partitioning (HW)
= Gang Scheduling
= Load Balancing TECHNISCHE
UNIVERSITAT

DRESDEN

MPI, very brief overview

= Library for message-oriented parallel programming.
= Programming-model:
= MPI program is started on all processors
= Static allocation of processes to CPUs .
= Processes have "Rank™ 0 ... N-1

= Each process can obtain its Rank
(MPI_Comm_rank).

= Typed messages

= Communicator: collection of processes that can
communicate, e.g., MPI_COMM_WORLD
= MPI_Spawn (MPI - 2)
= Dynamically create and spread pro®sealm

UNIVERSITAT
DRESDEN

MPI - Operation

= Tnit / Finalize

= MPI-Comm-Rank delivers “rank” of calling process,
for example

MPI_Comm_Rank(MPI_COMM_WORLD, &my-rank)
if (my_rank !=0)
else

= MPI_barrier(comm) blocks until all processes called it
= MPI_Comm_Size how many processes ‘

UNIVERSITAT
DRESDEN

MPI — Operations Send, RCV

= MPI_Send (
void* message,
int count,
MPI-Datatype,
int dest, /*rank of destination process, in */
int tag,
MPI_Comm comm) /* communicator*/

= MPI_RCV(

void* message,

int count,

MPI-Datatype,

int src, /* rank of source process, in */
/* can be MPI_ANY-SRC */

int tag, / can be MPI_ANY_TAG */

MPI_Comm comm, /* communicator*/

MPI_Status™ status); /* source, tag, error*/

TECHNISCHE
UNIVERSITAT
DRESDEN

MPI — Operations Broadcast

= MPI_BCAST(
void * message,
int count,
MPI-Datatype,
Int root,
MPI_Comm comm)

= process with rank == root sends,
all others receive message

= implementation optimised for particular interconnect

TECHNISCHE
UNIVERSITAT
DRESDEN

MPI — Operations

= Aggregation:
= MPI_Reduce
= Each process holds partial value,

= All processes reduce partial values to final
result

= Store result in RcvAddress field of Root process

= MPI Scan

= Combine partial results into n final results and
store them in RcvAddress of all n processes

TECHNISCHE
UNIVERSITAT
DRESDEN 12

MPI - Operations

root

Compute: av:O] a[1] a[2] a[3]

|_—" MPIreduce

a

root

v

Compute: a\jO] al[1] a[2] a[3]
m MPI scan

—>
a TECHNISCHE
UNIVERSITAT
DRESDEN 13

MPI — Operations

= MPI_Reduce(
void* operand, /* in*/
void * result, /* out*/
int count, [*in */
MP_Datatype datatype,
MPI_Op operator,
Int root,
MPI_Comm comm)

predefined MPI_OPs:

sum, product, minimum, maximum,
logical ops, ...

TECHNISCHE
UNIVERSITAT
DRESDEN

Common MPP Operating-System-
Model (for example Blue Gene)

= PE: compute intensive part of application
= Micro-Kernel
= Start + Synchronisation of Application

" elementary Memory Management (no demand
paging)

= all other OS functionality on separate Servers or
dedicated nodes

= strict space sharing:
only one application active per partition at a time

TECHNISCHE
UNIVERSITAT
DRESDEN 15

“Space” Allocation in MPP

= Assign partition from field of PEs
= Applications are pair wise isolated
= Applications self responsible for PEs

= shared segments for processes within partition

(Cray)
= Problems:

= debugging (relatively long stop-times)
* Long-running jobs block shorter jobs
= Isolation of application with respect to:
= Security
= Efficiency
= Buzzword: “eliminate the OS from the eriticakpath”

UNIVERSITAT
DRESDEN 16

“Space” Allocation in MPP

= Hardware-Supported assignment of nodes to
applications

= Partitions

= static at configuration
Installed by operator for longer period of time

= Variable(Blue Gene/L):
Selections and setup on start of Job
established by “scheduler”

= Very flexible (not in any MPP I know):
* increase and shrink during operation
= Applications need to deal with varying CPU

numbers
TECHNISCHE
UNIVERSITAT
DRESDEN 17

Alternative: Distribution of Load

Static
= Place processes at startup, don't reassign
= Requires a priori knowledge
Dynamic Balancing
= Process-Migration
= Adapts dynamically to changing loads
Problems
= Determination of current load
= Distribution algorithm
= QOscillation possible

successful in SMPs and clusters, not (yet ?) used in MPPs

Most advanced dynamic load balancing: Mos@

TECHNISCHE
UNIVERSITAT
DRESDEN

18

The Limitation of CC

Example: a numerical applicat on b at compue s what happens during car arasn.

Such smulat onst/ pical y compue onet me st p, require some communicat ons
about h eboundaries and some glabal variables, and h en next t mese p and soon.
| f you compuk busaash, h eproblemisfairly big, soeacht mesep takesa lat of
t me- eg. 1 minué. Even if you use600 compuersd dently, you'l have0.1

seoond pea t mese p, which isa usual y enough in £rms of communicat ons. So
b isisooarse-grain.

Same smulat ons, you chedk what happens when a hammer It in spaceimpadsa
gpaceship snidd. i ist meh eprablem isvery smal , but h evdodt esandh e
m aerialsarehighe, soh et mesepissmal (h ephyscal t me) and you nesd
1,000,000 t me sk ps. Each t me st p may take 10msec. | mpossibleb paral dize

d dent even on a 100 nodes CC sncecomm. cost islarge i isisf negrain, and
you'l haveb wait A LOT unt | it f nishes.

Oren Laadan/Hermann Hartig

Challenges for Cluster Management

View provided for users/ programming modd

Howb did ibue load,

* h emechanism b migrat lcad

* h emechanismsb useremoe resources

* Opt mal placement (an N P-Hard problem)

| nformat on dist ibut on, ad ng on part al knowmledge
Copewih addit on of nodes, subdusers, ...

Administ at on

Which areh eprad cal ddails

Special Case: fork()

Deputy Remote
ork(syscall request _ _ _

_____ Establish anew link

Jorkg Deputyenit i T TTTo-
------ 0]/')]

........... a ., Remote(chi
D porkon ..
_prly from forky T
______________ Reply from Jork())

Oren Laadan/Hermann Hartig

Process Migration

Process migdaemon

Oren Laadan/Hermann Hartig

Ping Pong and Flooding

p revent

* f ooding (al prooessesjump ® onenew emply node):
deddeimmediak ly before migrat on commitment (ext a
communicat on, piggy packed)

* ping pong:
If h reshddsarevey dosg prooesses moved badck and forh
=> ¢l alit lehighe load h an real

Oren Laadan/Hermann Hartig

The Ping Pong Problem

soenario:
compareload on nodes 1 and 2

n ode 1 moves prooess® equal.
lcads

solut ons:
* add one+ lit lebit b locad
* avaageove t me

Node 1 Node 2 solves short peaks problem as wd

(short cron prooesses)
One process two nodes

Oren Laadan/Hermann Hartig

The Flooding Problem

soenariol: newnodeocomesin
soenario2: n ode becomes unlocaded suddenly
=> "evarybody jonsh epart/ ”

Salut on:
* U seexpeced load (commit ed load) insead of run queue

lengh
* chek again before commit ing

Oren Laadan/Hermann Hartig

IPC

* |PCandload arecont adid ve
opt mum: NP hard

* apply heurig cs: exchangelocal y

O—+—70
O—+—70

Oren Laadan/Hermann Hartig

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

