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Linux, Small kernels, and LinuX

SMP (Linux,K42, MPP (Jaguar, Clusters

) Blue Gene, ...) (MosiX, ...)

= Shared = Distributed = COTS networks
Memory SMP Memory

= Linux syscall = Message = Distribute Linux
interface Passing

Interface

= Balance Load, = Partition = Balance Load
Optimise dynamically
locality and

concurrency
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SMP: Shared Memory / Symmetric MP

= Characteristics of SMP Systems:
= Highly optimised interconnect networks

= Shared memory (with several levels of caches)
= Sizes: 2 .. ~1024 CPUs

= Successful Applications:
= Large Linux (Windows) machines / servers
" Transaction-management systems

= Not usually used for:
= CPU intensive computation, massively parallel Applications
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MPP: Massively Parallel
Multiprocessors

= Characteristics of MPP Systemes:
= Highly optimised interconnect networks
= Distributed memory
= Size today: up to few 100000 CPUs (cores)

= Successful Applications:

= CPU intensive computation, massively parallel
Applications, small execution/communication ratios

= Not optimal for:
= Transaction-management systems
= Unix-Workstation + Servers TECHNISCHE
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“Clusters”

= Characteristics of Cluster Systems:
= Use COTS (common off the shelf) PCs/Servers and
networks
= Size: No principle limits

= Successful Applications:

= CPU intensive computation, massively parallel
Applications, larger execution/communication ratios

= Data Centers, google apps

= Not optimal for:
= Transaction-management systems TECHNISCHE
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Parallel Programming Models

= QOrganisation of Work

= Independent, unstructured processes (normally
executing different programs) independently on
nodes (make and compilers, ...), “pile of work”

= SPMD: single program on multiple data
asynchronous handling of partitioned data
“map/reduce” (google)

= Communication
= Shared Memory, shared file system

= Message Passing:
Process cooperation through explicit message passing

TECHNISCHE
UNIVERSITAT
DRESDEN



Usage- and Programming Model

= SPMD

while (true) {
work
exchange data (barrier)

}

= Common for many MPP:
All participating CPUs: active / inactive

= Techniques:
= Partitioning (HW)
= Gang Scheduling
= Load Balancing TECHNISCHE
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MPI, very brief overview

= Library for message-oriented parallel programming.
= Programming-model:
= MPI program is started on all processors
= Static allocation of processes to CPUs .
= Processes have "Rank™ 0 ... N-1

= Each process can obtain its Rank
(MPI_Comm_rank).

= Typed messages

= Communicator: collection of processes that can
communicate, e.g., MPI_COMM_WORLD
= MPI_Spawn (MPI - 2)
= Dynamically create and spread pro®sealm
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MPI - Operation

= Tnit / Finalize

= MPI-Comm-Rank delivers “rank” of calling process,
for example

MPI_Comm_Rank(MPI_COMM_WORLD, &my-rank)
if (my_rank !=0)
else ....

= MPI_barrier(comm) blocks until all processes called it
= MPI_Comm_Size how many processes ‘
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MPI — Operations Send, RCV

= MPI_Send (
void* message,
int count,
MPI-Datatype,
int dest, /*rank of destination process, in */
int tag,
MPI_Comm comm) /* communicator*/

= MPI_RCV(

void* message,

int count,

MPI-Datatype,

int src, /* rank of source process, in */
/* can be MPI_ANY-SRC */

int tag, / can be MPI_ANY_TAG */

MPI_Comm comm, /* communicator*/

MPI_Status™ status); /* source, tag, error*/
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MPI — Operations Broadcast

= MPI_BCAST(
void * message,
int count,
MPI-Datatype,
Int root,
MPI_Comm comm)

= process with rank == root sends,
all others receive message

= implementation optimised for particular interconnect
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MPI — Operations

= Aggregation:
= MPI_Reduce
= Each process holds partial value,

= All processes reduce partial values to final
result

= Store result in RcvAddress field of Root process

= MPI Scan

= Combine partial results into n final results and
store them in RcvAddress of all n processes
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MPI - Operations

root

Compute: av:O] a[1] a[2] a[3]

|_—"  MPIreduce

a

root

v

Compute: a\jO] al[1] a[2] a[3]
m MPI scan
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MPI — Operations

= MPI_Reduce(
void* operand, /* in*/
void * result,  /* out*/
int count, [*in */
MP_Datatype datatype,
MPI_Op operator,
Int root,
MPI_Comm comm)

predefined MPI_OPs:

sum, product, minimum, maximum,
logical ops, ...
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Common MPP Operating-System-
Model (for example Blue Gene)

= PE: compute intensive part of application
= Micro-Kernel
= Start + Synchronisation of Application

" elementary Memory Management (no demand
paging)

= all other OS functionality on separate Servers or
dedicated nodes

= strict space sharing:
only one application active per partition at a time
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“Space” Allocation in MPP

= Assign partition from field of PEs
= Applications are pair wise isolated
= Applications self responsible for PEs

= shared segments for processes within partition

(Cray)
= Problems:

= debugging (relatively long stop-times)
* Long-running jobs block shorter jobs
= Isolation of application with respect to:
= Security
= Efficiency
= Buzzword: “eliminate the OS from the eriticakpath”
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“Space” Allocation in MPP

= Hardware-Supported assignment of nodes to
applications

= Partitions

= static at configuration
Installed by operator for longer period of time

= Variable(Blue Gene/L):
Selections and setup on start of Job
established by “scheduler”

= Very flexible (not in any MPP I know):
* increase and shrink during operation
= Applications need to deal with varying CPU

numbers
TECHNISCHE
UNIVERSITAT
DRESDEN 17



Alternative: Distribution of Load

Static
= Place processes at startup, don't reassign
= Requires a priori knowledge
Dynamic Balancing
= Process-Migration
= Adapts dynamically to changing loads
Problems
= Determination of current load
= Distribution algorithm
= QOscillation possible

successful in SMPs and clusters, not (yet ?) used in MPPs

Most advanced dynamic load balancing: Mos@
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The Limitation of CC

Example: a numerical applicat on b at compue s what happens during car arasn.

Such smulat onst/ pical y compue onet me st p, require some communicat ons
about h eboundaries and some glabal variables, and h en next t mese p and soon.
| f you compuk busaash, h eproblemisfairly big, soeacht mesep takesa lat of
t me- eg. 1 minué. Even if you use600 compuersd dently, you'l have0.1

seoond pea t mese p, which isa usual y enough in £rms of communicat ons. So
b isisooarse-grain.

Same smulat ons, you chedk what happens when a hammer It in spaceimpadsa
gpaceship snidd. i ist meh eprablem isvery smal , but h evdodt esandh e
m aerialsarehighe, soh et mesepissmal  (h ephyscal t me) and you nesd
1,000,000 t me sk ps. Each t me st p may take 10msec. | mpossibleb paral dize

d dent even on a 100 nodes CC sncecomm. cost islarge i isisf negrain, and
you'l haveb wait A LOT unt | it f nishes.
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Challenges for Cluster Management

View provided for users/ programming modd

Howb did ibue load,

* h emechanism b migrat lcad

* h emechanismsb useremoe resources

* Opt mal placement (an N P-Hard problem)

| nformat on dist ibut on, ad ng on part al knowmledge
Copewih addit on of nodes, subdusers, ...

Administ at on

Which areh eprad cal ddails



Special Case: fork()

Deputy Remote
ork( syscall request _ _ _

_____ Establish anew link

Jorkg Deputyenit i T TTTo-
------ 0]/' )]

........... a ., Remote(chi
D porkon ..
_prly from forky T
______________ Reply from Jork())
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Process Migration

Process migdaemon

Oren Laadan/Hermann Hartig



Ping Pong and Flooding

p revent

* f ooding (al prooessesjump ® onenew emply node):
deddeimmediak ly before migrat on commitment (ext a
communicat on, piggy packed)

* ping pong:
If h reshddsarevey dosg prooesses moved badck and forh
=> ¢l alit lehighe load h an real
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The Ping Pong Problem

soenario:
compareload on nodes 1 and 2

n ode 1 moves prooess® equal.
lcads

solut ons:
* add one+ lit lebit b locad
* avaageove t me

Node 1 Node 2 solves short peaks problem as wd

(short cron prooesses)
One process two nodes

Oren Laadan/Hermann Hartig



The Flooding Problem

soenariol: newnodeocomesin
soenario2: n ode becomes unlocaded suddenly
=> "evarybody jonsh epart/ ”

Salut on:
* U seexpeced load (commit ed load) insead of run queue

lengh
* chek again before commit ing

Oren Laadan/Hermann Hartig



IPC

* |PCandload arecont adid ve
opt mum: NP hard

* apply heurig cs: exchangelocal y

O—+—70
O—+—70

Oren Laadan/Hermann Hartig
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