
1
Copyright © Amnon Barak 2011

The MOSIX Algorithms for

Managing Cluster, Multi-Clusters,
GPU Clusters and Clouds

Prof. Amnon Barak
 Department of Computer Science

The Hebrew University of Jerusalem

http:// www . MOSIX . Org

2
Copyright © Amnon Barak 2011

Background
Most cluster and cloud packages evolved from batch

dispatchers	

•  View the cluster/Cloud as a set of independent nodes	

•  One user per node, cluster partition for multi-users	

•  Use static allocation of jobs to nodes	

•  Place the burden of management on the users 	

So far a cluster/Cloud OS has not been developed 	

•  Reasons: no industry standards, complexity of development,

massive investment, architecture and OS dependency	

3
Copyright © Amnon Barak 2011

The MOSIX project
R&D of a Multi-computer Operating System (MOS)	

•  Formally: multi-computers are distributed memory

(shared nothing) architectures: clusters, multi-
clusters, Clouds	

•  Geared for HPC	

•  Research emphasis: management algorithms 	

•  Development: infrastructure and tools 	

Goal: a production system that people can use	

4
Copyright © Amnon Barak 2011

The MOS for UNIX (MOSIX)
A multi-computer OS with decentralized management	

•  Based on Unix (Linux)	

•  Provides a single-systems image	

•  As if using one computer with multiple CPUs	

•  Geared to reduce the management complexity to users	

•  The user's "login-node" environment is preserved	

•  Automatic distribution of processes, e.g. load-balancing	

•  No need to "login" or copy files to remote nodes	

•  No need to link applications with special libraries	

•  Limited support for shared-memory	

5
Copyright © Amnon Barak 2011

MOSIX is a unifying management layer

MOSIX - OS

Mostly user-level
 implementation

MOSIX management

All the nodes
run like one
server with
many cores

Applications

SSI

Continuous
feedback about

the state of
resources

Dual
4Core 4Core 2Core

6
Copyright © Amnon Barak 2011

The main software components
1. Preemptive process migration	

•  Can migrate a running processes anytime	

•  Like a course-grain context switch	

•  Implication on caching, scheduling, resource utilization 	

2.  OS virtualization layer	

•  Allows a migrated process to run in remote nodes 	

3. On-line algorithms	

•  Attempt to optimize a given goal function by process migration	

•  Match between required and available resources	

•  Information dissemination – based on partial knowledge	

	

Note: features that are taken for granted in shared-
memory systems, are not easy to support in a cluster	

7
Copyright © Amnon Barak 2011

Process migration - the home node model

•  Process migration – move the process context to a remote node	

•  System context stay at “home” thus providing a single point of entry 	

•  Process partition preserves the user’s run-time environment	

•  Users need not care where their process are running	

Home node

MOSIX Link ���
reroute syscalls	

Remote node

OS Virtualization layer OS Virtualization layer

Linux Linux

A migrated
process

8
Copyright © Amnon Barak 2011

• A software layer that allows a migrated process to run in remote
nodes, away from its home node	

•  All system-calls are intercepted	

•  Site independent sys-calls are performed locally, others are sent home	

•  Migrated processes run in a sandbox	

• Outcome: 	

•  A migrated process seems to be running in its home node	

•  The cluster seems to the user as one computer	

•  Run-time environment of processes are preserved - no need to change or

link applications with any library, copy files or login to remote nodes	

• Drawback: increased (reasonable) communication overhead	

The OS virtualization layer

9
Copyright © Amnon Barak 2011

Reasonable overhead:
Linux vs. migrated MOSIX process times (Sec.), 1Gbit-Ethernet

1.39% 1.16% 1.47% 0.32%

1.67% 1.18% 1.85% 0.5%

621.8 608.3 639.5 727.0 Migrated process to another
cluster (1Km away) slowdown

620.1
476

611.6
BLAT

608.2
206

601.2
JEL

637.1
90
627.9

SW

725.7 Migrated process- same cluster
slowdown

0 Total I/O (MB)
723.4 Local - Linux process (Sec.)

RC Application

Sample applications:

RC = CPU-bound job SW = Proteins sequences
JEL = Electron motion BLAT = Protein alignments

10
Copyright © Amnon Barak 2011

On-line management algorithms
•  Competitive algorithms for initial assignment of processes to the best available���

 nodes (2 papers in IEEE PDS)	

•  Gossip algorithm to support a distributed bulletin board (Concurrency P&E)	

•  Process migration	

•  For load-balancing and from slower to faster nodes (several papers) 	

•  From nodes that run out of free memory, IPC optimizations	

•  Administration of a multi-cluster (CCGrid05) 	

•  Parallel compression of correlated files (Cluster07)	

•  Fair (proportional) share node allocation (CCGrid07)	

•  Cloud economy (AAMAS2008, GECON2008, Grid2008)	

•  Job migration by combining process and VM migration (Cluster08)	

•  Research in progress	

•  GPU cluster computing	

11
Copyright © Amnon Barak 2011

Resource discovery by a “gossip algorithm”
•  All the nodes disseminate information about relevant

resources: CPU speed, load, memory, IPC, I/O local/
remote	

•  Info exchanged in a random fashion - to support scalable

configurations and overcome node failures	

•  Useful for initial allocation and process migration 	

•  Example: a compilation farm - assign the next job to least

loaded node	

•  Main research issues: 	

•  How much/often info should be circulated	

•  How long to use old information (Mitzenmacher)	

•  How it scales up	

12
Copyright © Amnon Barak 2011

Distributed bulletin board

•  An n node cluster/Cloud system
–  Decentralized control
–  Nodes can fail at any time

•  Each node maintains a data structure (vector) with an
entry about selected (or all) the nodes

•  Each entry contains:
–  State of the resources of the corresponding node, e.g. load
–  Age of the information (tune to the local clock)

•  The vector is used by each node as a distributed bulletin
board
–  Provides information about allocation of new processes

13
Copyright © Amnon Barak 2011

Information dissemination algorithm

• Each time unit:	

• Update the local information	

• Find all vector entries that are

up to age t (a window)	

• Choose a random node	

• Send the window to that node	

• Upon receiving a window	

• Update the received entries age	

• Update the entries in which the

newly received information is
newer 	

A:0 B:12 C:2 D:4 E:11

A:0 C:2 D:4

A:0 B:12 C:2 D:4 E:11

B:1 C:3 E:3

Node:Age

14
Copyright © Amnon Barak 2011

Main results

•  The number of entries that poses
information about node N with age
up to T

1)nT/(n

1)nT/(n

e1n
neX(T)

−

−

+−
=

wTXv A
n

A +
−−−

=)())1/(11(1
1

[] ⎭
⎬
⎫

⎩
⎨
⎧

>−−−

≤
− Ttnn

TttX
wAtTX))(()1/(11(1

)(

))1/(11log()(
log

−−

+

nTX
n γ

•  The expected average age of vector
(Aw expected age of the window)

•  The expected maximal age

•  The expected number of entries
with age below t :

For an n node system we showed how to find

Outcome: we can guarantee age properties of the vector entries

15
Copyright © Amnon Barak 2011

Load-balancing

Heuristics: reduce variance between pairs of nodes	

•  Decentralized - pair-wise decisions	

•  Responds to load imbalances	

•  Migrate from over-loaded to under-loaded nodes ���

or form slower to faster nodes	

•  Competitive with the optimal allocation	

•  Near optimal performance	

•  Greedy, can get to a local minimum	

•  Why: placement problem is NP-hard	

16
Copyright © Amnon Barak 2011

Load balancing algorithms

•  When - Load difference between a pair of nodes is
above a threshold value	

•  Which - Oldest process (assumes past-repeat)	

•  Where - To the known node with the lowest load	

•  Many other heuristics ���
	

•  Performance: our online algorithm is only ~2%
slower than the optimal algorithm (which has
complete information about all the processes)	

17
Copyright © Amnon Barak 2011

Memory ushering

•  Heuristics: initiate process migration from a node with
no free memory to a node with available free memory	

•  Useful: when non-uniform memory usage (many users) ���
or nodes with different memory sizes	

•  Overrides load-balancing ���
���
���
���
���
	

	

•  Recall: placement problem is NP-hard	

18
Copyright © Amnon Barak 2011

Memory ushering algorithm

•  When - free memory drops below a threshold	

•  Where - the node with the lowest load, to avoid

unnecessary follow-up migrations	

•  Which - smallest process that brings node under

threshold	

•  To reduce the communication overhead ���
 	

19
Copyright © Amnon Barak 2011

IPC optimizations

•  Reduce the communication overhead by migrating
data intensive processes “near” the data	

•  Reduce IPC by migrating communicating processes
to the same node (IPC via shared-memory) 	

