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Mutual Exclusion
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Mutual Exclusion

 “We simply do not have a synchronization mechanism that 
can enforce mutual exclusion”

True or false?
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Example Application
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Example Application

Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)
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Example Application: Schrödinger's Cat

Author: ADA&Neagoe  This file is licensed under the Creative Commons Attribution-ShareAlike license versions 3.0, 2.5, 2.0, and 1.0.
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Example Application

Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu
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Example Application

Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

Will holding this lock prevent the cat from dying?
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Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX,  1024 hash buckets

Why the dropoff???



© 2009 IBM Corporation11

Varying Number of Hash Buckets

2GHz Intel Xeon Westmere-EX 

Still a dropoff...



© 2009 IBM Corporation12

NUMA Effects???

 /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index1/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index3/shared_cpu_list:
–0-7,32-39

Two hardware threads per core, eight cores per socket

Try using only one CPU per socket: CPUs 0, 8, 16, and 24
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Bucket-Locked Hash Performance: 1 CPU/Socket

2GHz Intel Xeon Westmere-EX: This is not the sort of 
scalability Schrödinger requires!!! 
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Performance of Synchronization Mechanisms
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Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

And these are best-case values!!!  (Why?)And these are best-case values!!!  (Why?)
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Why All These Low-Level Details???

Would you trust a bridge designed by someone who did not 
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy 
transition temperatures?

–Or a house designed by someone who did not understand that 
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion 
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the 
temperature limitations of O-rings?

So why trust algorithms from someone ignorant of the 
properties of the underlying hardware???
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But What Do The Operation Timings Really Mean???
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But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

So, what does this mean?

Acquire

Release

Critical
Section
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But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

258 CPUs to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!
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But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

256.7 cycles

1
cycle

256.7 cycles

Contended,
Spinning

??? cycles

258 CPUs  to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!
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Reader-Writer Locks Are Even Worse!
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Reader-Writer Locks Are Even Worse!

266.4 cycles

1
cycle

266.4 cycles

1
cycle

200.0 cycles

266.4 cycles266.4 cycles

CPU 0

CPU 1

Acquire Release

Acquire

800 CPUs to
break even with
a single CPU!!!Spin Critical

Section

Critical
Section

Wait for
Lock Data
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But What About Scaling With Atomic Operations?
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If You Think Single Atomic is Expensive, Try Lots!!!

2GHz Intel Xeon Westmere-EX 
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Why So Slow???
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System Hardware Structure and Laws of Physics

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU
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Interconnect MemoryMemory
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Store
Buffer

Store
Buffer
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Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting.  3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting.  3D???
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CPU CPU CPU CPU
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Atomic Increment of Global Variable

Lots and Lots of Latency!!!Lots and Lots of Latency!!!
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Atomic Increment of Per-CPU Counter

CPU CPU CPU CPU
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Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate
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Can't The Hardware Do Better Than This???
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CPU CPU CPU CPU
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HW-Assist Atomic Increment of Global Variable

SGI systems used this approach in the 1990s, expect modern micros to pick it up.
Still not as good as per-CPU counters.
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Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike
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Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike
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How Can Software Live With This Hardware???
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Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.
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Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

But NUMA effects defeated this for per-bucket locking!!!But NUMA effects defeated this for per-bucket locking!!!
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16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Design Principle: Avoid Expensive Operations

Typical synchronization 
mechanisms do this a lot

Heavily 
optimized 

reader-writer 
lock might get 

here for readers 
(but too bad 
about those 

poor writers...)

Need to be here!
(Partitioning/RCU)
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Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket CAS costs about 260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical 

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which 
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!



© 2009 IBM Corporation38

Spin

Design Principle: Avoid Mutual Exclusion!!!

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader
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Design Principle: Avoiding Mutual Exclusion
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UpdaterReader Reader

Reader

Reader

Reader

Reader

Reader

Reader
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But How Can This Possibly Be Implemented???
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Implementing RCU

Lightest-weight conceivable read-side primitives
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Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()
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Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time response, 
wait-freedom, and energy efficiency
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Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time response, 
wait-freedom, and energy efficiency

But how can these possibly be useful???
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Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time response, 
wait-freedom, and energy efficiency

But how can these possibly be useful???

How can something that does not affect machine state be 
used as a synchronization primitive???
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What Is RCU?

Publishing of new data

Subscribing to the current version of data

Waiting for pre-existing RCU readers: Avoid disrupting 
readers by maintaining multiple versions of the data

–Each reader continues traversing its copy of the data while a new copy 
might be being created concurrently by each updater

• Hence the name read-copy update, or RCU
–Once all pre-existing RCU readers are done with them, old versions of 

the data may be discarded
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Publication of And Subscription to New Data
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Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp
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Memory Ordering: Mischief From Compiler and CPU
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Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
    goto retry;
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Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
    goto retry;

But don't take my word for it on HW value speculation:
http://www.openvms.compaq.com/wizard/wiz_2637.html
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Preventing Memory-Order Mischief

Updater uses rcu_assign_pointer() to publish pointer:
#define rcu_assign_pointer(p, v) \
({ \
        smp_wmb(); /* SMP Write Memory Barrier */ \
        (p) = (v); \
})

Reader uses rcu_dereference() to subscribe to pointer:
#define rcu_dereference(p) \
({ \
        typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
        smp_read_barrier_depends(); \
        _p1; \
})

The Linux-kernel definitions are more ornate: Debugging code
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Preventing Memory-Order Mischief

 “Memory-order-mischief proof” updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
rcu_assign_pointer(cptr, p);

 “Memory-order-mischief proof” reader code:
p = rcu_dereference(cptr);
foo(p->a, p->b, p->c);
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Publication of And Subscription to New Data
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Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!



© 2009 IBM Corporation54

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())
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RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())
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But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we 
possibly tell when they are done???possibly tell when they are done???
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How Can RCU Tell When Readers Are Done???



© 2009 IBM Corporation57

How Can RCU Tell When Readers Are Done???

That is, without re-introducing all of the overhead and latency inherent to other That is, without re-introducing all of the overhead and latency inherent to other 
synchronization mechanisms...synchronization mechanisms...
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But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain 

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state
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But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain 

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state

OK, names are nice, but how can you possibly implement this???
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Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks
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Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t  
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Grace Period

RCU re
ad

er

remove cat free cat
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Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections
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Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections

RCU is therefore synchronization via social engineering
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Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections

RCU is therefore synchronization via social engineering

Just as is the case for most synchronization mechanisms
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”
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Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
        smp_read_barrier_depends(); \
        _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
        smp_wmb(); \
        (p) = (v); \
})
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}
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Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
        smp_read_barrier_depends(); \
        _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
        smp_wmb(); \
        (p) = (v); \
})
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}

Only 9 of which are needed on SC systems...
And some people still insist that RCU is complicated...  ;-)
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Complex Atomic-To-Reader Updates



© 2009 IBM Corporation68

RCU Replacement Of Item In Linked List
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RCU Grace Periods: Conceptual and Graphical Views
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RCU Grace Periods: A Conceptual View

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain 

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread is in at least one quiescent state
– Ends when all pre-existing readers complete
– Guaranteed to complete in finite time iff all RCU read-side critical sections are of 

finite duration

But what happens if you try to extend an RCU read-side critical section 
across a grace period?
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RCU Grace Periods: A Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()RCU readers 
concurrent with 

updates

synchronize_rcu()
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RCU Grace Period: A Self-Repairing Graphical View

Grace Period         Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()
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RCU Grace Period: A Lazy Graphical View

Grace Period                Grace Period
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to All Readers
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But it is OK for RCU to be lazy and allow a grace period to extend longer than necessary

synchronize_rcu()
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RCU Grace Period: A Really Lazy Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader
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And it is also OK for RCU to be even more lazy and start a grace period later than necessary
But why is this useful?

synchronize_rcu()



© 2009 IBM Corporation75

RCU Grace Period: A Usefully Lazy Graphical View

Change Visible
to All Readers

Change Visible
to All Readers

Reader

Change
Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

Starting a grace period late can allow it to serve multiple updates, decreasing
the per-update RCU overhead. But...

synchronize_rcu()
Change

synchronize_rcu()
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The Costs and Benefits of Laziness

Starting the grace period later increases the number of 
updates per grace period, reducing the per-update overhead

Delaying the end of the grace period increases grace-period 
latency

 Increasing the number of updates per grace period increases 
the memory usage

–Therefore, starting grace periods late is a good tradeoff if memory is 
cheap and communication is expense, as is the case in modern 
multicore systems

• And if real-time threads avoid waiting for grace periods to complete
–However...
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RCU Grace Period: A Too-Lazy Graphical View

Change Visible
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Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is OK for the system to complain (or even abort) if a grace period extends too long.
Too-long of grace periods are likely to result in death by memory exhaustion anyway.

synchronize_rcu()

Reader

!!!
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RCU Asynchronous Grace-Period Detection
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RCU Asynchronous Grace-Period Detection

The call_rcu() function registers an RCU callback, which is invoked 
after a subsequent grace period elapses

API:
call_rcu(struct rcu_head head,
         void (*func)(struct rcu_head *rcu));

The rcu_head structure:
struct rcu_head {
        struct rcu_head *next;
        void (*func)(struct rcu_head *rcu);
};

The rcu_head structure is normally embedded within the RCU-
protected data structure
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RCU Grace Period: An Asynchronous Graphical View
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Reader
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Reader
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func(&p->rcu);func(&p->rcu);call_rcu(&p->rcu, func);call_rcu(&p->rcu, func);
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Performance
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Theoretical Performance
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Uncontended

73 CPUs to
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a single CPU!

144 CPUs to
break even with
a single CPU!!!

71.2 cycles

1
cycle

71.2 cycles

Contended,
No Spinning
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cycle

RCU (wait-free)

Full performance,
linear scaling,
real-time response

Lo
ck

in
g  

(b
lo

ck
in

g)



© 2009 IBM Corporation83

Measured Performance
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Schrödinger's Zoo: Read-Only

RCU and hazard pointers scale quite well!!! 
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Schrödinger's Zoo: Read-Only Cat-Heavy Workload

RCU handles locality quite well, hazard pointers not bad, bucket locking horribly
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Real-Time Response to Changes
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RCU vs. Reader-Writer-Lock Real-Time Latency

rwlock reader

rwlock reader

rwlock reader

spin

spin

rwlock writer

spin

spin

rwlock reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU updater

RCU reader

RCU reader

RCU reader

External Event

RCU Latency

rwlock Latency
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RCU Performance: “Free is a Very Good Price!!!”
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RCU Performance: “Free is a Very Good Price!!!”
And Nothing Is Faster Than Doing Nothing!!!
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RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born
or dies anyway!  Plus, no lock you can hold will prevent an animal's death...
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RCU Applicability to the Linux Kernel
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Summary
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Summary

Synchronization overhead is a big issue for parallel programs

Straightforward design techniques can avoid this overhead
–Partition the problem: “Many instances of something good!”
–Avoid expensive operations
–Avoid mutual exclusion

RCU is part of the solution
–Excellent for read-mostly data where staleness and inconsistency OK
–Good for read-mostly data where consistency is required
–Can be OK for read-write data where consistency is required
–Might not be best for update-mostly consistency-required data
–Used heavily in the Linux kernel

Much more information on RCU is available...
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To Probe Further:
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination”
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and 

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)



© 2009 IBM Corporation95

Legal Statement

 This work represents the view of the author and does not necessarily represent 
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International 
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks 
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant 

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged 

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold and Mingming Cao.
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Questions?
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