
© 2009 IBM Corporation

What Is RCU?

Distributed OS Lecture, TU Dresden

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

3 June 2013

© 2009 IBM Corporation2

Overview

Mutual Exclusion

Example Application

Performance of Synchronization Mechanisms

Making Software Live With Current (and Future) Hardware

 Implementing RCU

RCU Grace Periods: Conceptual and Graphical Views

Performance

RCU Area of Applicability

Summary

© 2009 IBM Corporation3

Mutual Exclusion

© 2009 IBM Corporation4

Mutual Exclusion

 “We simply do not have a synchronization mechanism that
can enforce mutual exclusion”

True or false?

© 2009 IBM Corporation5

Example Application

© 2009 IBM Corporation6

Example Application

Schrödinger wants to construct an in-memory database for
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

© 2009 IBM Corporation7

Example Application: Schrödinger's Cat

Author: ADA&Neagoe This file is licensed under the Creative Commons Attribution-ShareAlike license versions 3.0, 2.5, 2.0, and 1.0.

© 2009 IBM Corporation8

Example Application

Schrödinger wants to construct an in-memory database for
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

© 2009 IBM Corporation9

Example Application

Schrödinger wants to construct an in-memory database for
the animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

Will holding this lock prevent the cat from dying?

© 2009 IBM Corporation10

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX, 1024 hash buckets

Why the dropoff???

© 2009 IBM Corporation11

Varying Number of Hash Buckets

2GHz Intel Xeon Westmere-EX

Still a dropoff...

© 2009 IBM Corporation12

NUMA Effects???

 /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index1/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index3/shared_cpu_list:
–0-7,32-39

Two hardware threads per core, eight cores per socket

Try using only one CPU per socket: CPUs 0, 8, 16, and 24

© 2009 IBM Corporation13

Bucket-Locked Hash Performance: 1 CPU/Socket

2GHz Intel Xeon Westmere-EX: This is not the sort of
scalability Schrödinger requires!!!

© 2009 IBM Corporation14

Performance of Synchronization Mechanisms

© 2009 IBM Corporation15

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

© 2009 IBM Corporation16

Why All These Low-Level Details???

Would you trust a bridge designed by someone who did not
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy
transition temperatures?

–Or a house designed by someone who did not understand that
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the
temperature limitations of O-rings?

So why trust algorithms from someone ignorant of the
properties of the underlying hardware???

© 2009 IBM Corporation17

But What Do The Operation Timings Really Mean???

© 2009 IBM Corporation18

But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

So, what does this mean?

Acquire

Release

Critical
Section

© 2009 IBM Corporation19

But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

258 CPUs to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!

© 2009 IBM Corporation20

But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

256.7 cycles

1
cycle

256.7 cycles

Contended,
Spinning

??? cycles

258 CPUs to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!

A
rb

itr
a

ril
y

la
rg

e
nu

m
be

r
of

 C
P

U
s

to
 b

re
ak

 e
ve

n
w

ith
 s

in
gl

e
C

P
U

!!
!

© 2009 IBM Corporation21

Reader-Writer Locks Are Even Worse!

© 2009 IBM Corporation22

Reader-Writer Locks Are Even Worse!

266.4 cycles

1
cycle

266.4 cycles

1
cycle

200.0 cycles

266.4 cycles266.4 cycles

CPU 0

CPU 1

Acquire Release

Acquire

800 CPUs to
break even with
a single CPU!!!Spin Critical

Section

Critical
Section

Wait for
Lock Data

© 2009 IBM Corporation23

But What About Scaling With Atomic Operations?

© 2009 IBM Corporation24

If You Think Single Atomic is Expensive, Try Lots!!!

2GHz Intel Xeon Westmere-EX

© 2009 IBM Corporation25

Why So Slow???

© 2009 IBM Corporation26

System Hardware Structure and Laws of Physics

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???

S
O

L
 R

T
 @

 2
G

H
z

S
O

L
 R

T
 @

 2
G

H
z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s

© 2009 IBM Corporation27

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Atomic Increment of Global Variable

Lots and Lots of Latency!!!Lots and Lots of Latency!!!

© 2009 IBM Corporation28

Atomic Increment of Per-CPU Counter

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate

© 2009 IBM Corporation29

Can't The Hardware Do Better Than This???

© 2009 IBM Corporation30

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

HW-Assist Atomic Increment of Global Variable

SGI systems used this approach in the 1990s, expect modern micros to pick it up.
Still not as good as per-CPU counters.

© 2009 IBM Corporation31

Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2009 IBM Corporation32

Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2009 IBM Corporation33

How Can Software Live With This Hardware???

© 2009 IBM Corporation34

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.

© 2009 IBM Corporation35

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

But NUMA effects defeated this for per-bucket locking!!!But NUMA effects defeated this for per-bucket locking!!!

© 2009 IBM Corporation36

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Design Principle: Avoid Expensive Operations

Typical synchronization
mechanisms do this a lot

Heavily
optimized

reader-writer
lock might get

here for readers
(but too bad
about those

poor writers...)

Need to be here!
(Partitioning/RCU)

© 2009 IBM Corporation37

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket CAS costs about 260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!

© 2009 IBM Corporation38

Spin

Design Principle: Avoid Mutual Exclusion!!!

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader

© 2009 IBM Corporation39

Design Principle: Avoiding Mutual Exclusion

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Reader

Reader

Reader

Reader

Reader

Reader

No Dead Time!No Dead Time!

Reader Reader

Reader

Reader

ReaderReader

© 2009 IBM Corporation40

But How Can This Possibly Be Implemented???

© 2009 IBM Corporation41

Implementing RCU

Lightest-weight conceivable read-side primitives

© 2009 IBM Corporation42

Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

© 2009 IBM Corporation43

Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time response,
wait-freedom, and energy efficiency

© 2009 IBM Corporation44

Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time response,
wait-freedom, and energy efficiency

But how can these possibly be useful???

© 2009 IBM Corporation45

Implementing RCU

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time response,
wait-freedom, and energy efficiency

But how can these possibly be useful???

How can something that does not affect machine state be
used as a synchronization primitive???

© 2009 IBM Corporation46

What Is RCU?

Publishing of new data

Subscribing to the current version of data

Waiting for pre-existing RCU readers: Avoid disrupting
readers by maintaining multiple versions of the data

–Each reader continues traversing its copy of the data while a new copy
might be being created concurrently by each updater

• Hence the name read-copy update, or RCU
–Once all pre-existing RCU readers are done with them, old versions of

the data may be discarded

© 2009 IBM Corporation47

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

cp
tr

 =
 t

m
p

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 c
pt

r

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

© 2009 IBM Corporation48

Memory Ordering: Mischief From Compiler and CPU

© 2009 IBM Corporation49

Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
 goto retry;

© 2009 IBM Corporation50

Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
 goto retry;

But don't take my word for it on HW value speculation:
http://www.openvms.compaq.com/wizard/wiz_2637.html

© 2009 IBM Corporation51

Preventing Memory-Order Mischief

Updater uses rcu_assign_pointer() to publish pointer:
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); /* SMP Write Memory Barrier */ \
 (p) = (v); \
})

Reader uses rcu_dereference() to subscribe to pointer:
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

The Linux-kernel definitions are more ornate: Debugging code

© 2009 IBM Corporation52

Preventing Memory-Order Mischief

 “Memory-order-mischief proof” updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
rcu_assign_pointer(cptr, p);

 “Memory-order-mischief proof” reader code:
p = rcu_dereference(cptr);
foo(p->a, p->b, p->c);

© 2009 IBM Corporation53

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
(c

pt
r,

p)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
c e

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!

© 2009 IBM Corporation54

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

© 2009 IBM Corporation55

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we
possibly tell when they are done???possibly tell when they are done???

© 2009 IBM Corporation56

How Can RCU Tell When Readers Are Done???

© 2009 IBM Corporation57

How Can RCU Tell When Readers Are Done???

That is, without re-introducing all of the overhead and latency inherent to other That is, without re-introducing all of the overhead and latency inherent to other
synchronization mechanisms...synchronization mechanisms...

© 2009 IBM Corporation58

But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state

© 2009 IBM Corporation59

But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state

OK, names are nice, but how can you possibly implement this???

© 2009 IBM Corporation60

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

© 2009 IBM Corporation61

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat

© 2009 IBM Corporation62

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

© 2009 IBM Corporation63

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

RCU is therefore synchronization via social engineering

© 2009 IBM Corporation64

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

RCU is therefore synchronization via social engineering

Just as is the case for most synchronization mechanisms
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”

© 2009 IBM Corporation65

Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); \
 (p) = (v); \
})
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

© 2009 IBM Corporation66

Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); \
 (p) = (v); \
})
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

Only 9 of which are needed on SC systems...
And some people still insist that RCU is complicated... ;-)

© 2009 IBM Corporation67

Complex Atomic-To-Reader Updates

© 2009 IBM Corporation68

RCU Replacement Of Item In Linked List

Aboa

cat

km
al

lo
c(

)

A

C

boa

cat

cat

1 Version

co
py

A

C

boa

cat

cat

1 Version

up
da

te

A

C

cat

cat

1 Version

lis
t_

re
pl

ac
e_

rc
u(

)

A

C

boa

cat

cat

2 Versions

sy
nc

hr
on

i z
e_

rc
u(

)

A

C

boa

cat

cat

1 Version

A

B

boa

cat

1 Version

boa

cat

? cat cat' cat' cat' cat'

Readers? Readers? Readers? Readers? Readers? Readers?X

1 Version

kf
re

e(
)

© 2009 IBM Corporation69

RCU Grace Periods: Conceptual and Graphical Views

© 2009 IBM Corporation70

RCU Grace Periods: A Conceptual View

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread is in at least one quiescent state
– Ends when all pre-existing readers complete
– Guaranteed to complete in finite time iff all RCU read-side critical sections are of

finite duration

But what happens if you try to extend an RCU read-side critical section
across a grace period?

© 2009 IBM Corporation71

RCU Grace Periods: A Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()RCU readers
concurrent with

updates

synchronize_rcu()

© 2009 IBM Corporation72

RCU Grace Period: A Self-Repairing Graphical View

Grace Period Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()

© 2009 IBM Corporation73

RCU Grace Period: A Lazy Graphical View

Grace Period Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

ReaderReader

But it is OK for RCU to be lazy and allow a grace period to extend longer than necessary

synchronize_rcu()

© 2009 IBM Corporation74

RCU Grace Period: A Really Lazy Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is also OK for RCU to be even more lazy and start a grace period later than necessary
But why is this useful?

synchronize_rcu()

© 2009 IBM Corporation75

RCU Grace Period: A Usefully Lazy Graphical View

Change Visible
to All Readers

Change Visible
to All Readers

Reader

Change
Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

Starting a grace period late can allow it to serve multiple updates, decreasing
the per-update RCU overhead. But...

synchronize_rcu()
Change

synchronize_rcu()

© 2009 IBM Corporation76

The Costs and Benefits of Laziness

Starting the grace period later increases the number of
updates per grace period, reducing the per-update overhead

Delaying the end of the grace period increases grace-period
latency

 Increasing the number of updates per grace period increases
the memory usage

–Therefore, starting grace periods late is a good tradeoff if memory is
cheap and communication is expense, as is the case in modern
multicore systems

• And if real-time threads avoid waiting for grace periods to complete
–However...

© 2009 IBM Corporation77

RCU Grace Period: A Too-Lazy Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is OK for the system to complain (or even abort) if a grace period extends too long.
Too-long of grace periods are likely to result in death by memory exhaustion anyway.

synchronize_rcu()

Reader

!!!

© 2009 IBM Corporation78

RCU Asynchronous Grace-Period Detection

© 2009 IBM Corporation79

RCU Asynchronous Grace-Period Detection

The call_rcu() function registers an RCU callback, which is invoked
after a subsequent grace period elapses

API:
call_rcu(struct rcu_head head,
 void (*func)(struct rcu_head *rcu));

The rcu_head structure:
struct rcu_head {
 struct rcu_head *next;
 void (*func)(struct rcu_head *rcu);
};

The rcu_head structure is normally embedded within the RCU-
protected data structure

© 2009 IBM Corporation80

RCU Grace Period: An Asynchronous Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

func(&p->rcu);func(&p->rcu);call_rcu(&p->rcu, func);call_rcu(&p->rcu, func);

© 2009 IBM Corporation81

Performance

© 2009 IBM Corporation82

Theoretical Performance

71.2 cycles

1
cycle

Uncontended

73 CPUs to
break even with
a single CPU!

144 CPUs to
break even with
a single CPU!!!

71.2 cycles

1
cycle

71.2 cycles

Contended,
No Spinning

1
cycle

RCU (wait-free)

Full performance,
linear scaling,
real-time response

Lo
ck

in
g

(b
lo

ck
in

g)

© 2009 IBM Corporation83

Measured Performance

© 2009 IBM Corporation84

Schrödinger's Zoo: Read-Only

RCU and hazard pointers scale quite well!!!

© 2009 IBM Corporation85

Schrödinger's Zoo: Read-Only Cat-Heavy Workload

RCU handles locality quite well, hazard pointers not bad, bucket locking horribly

© 2009 IBM Corporation86

Real-Time Response to Changes

© 2009 IBM Corporation87

RCU vs. Reader-Writer-Lock Real-Time Latency

rwlock reader

rwlock reader

rwlock reader

spin

spin

rwlock writer

spin

spin

rwlock reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU updater

RCU reader

RCU reader

RCU reader

External Event

RCU Latency

rwlock Latency

© 2009 IBM Corporation88

RCU Performance: “Free is a Very Good Price!!!”

© 2009 IBM Corporation89

RCU Performance: “Free is a Very Good Price!!!”
And Nothing Is Faster Than Doing Nothing!!!

© 2009 IBM Corporation90

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born
or dies anyway! Plus, no lock you can hold will prevent an animal's death...

© 2009 IBM Corporation91

RCU Applicability to the Linux Kernel

© 2009 IBM Corporation92

Summary

© 2009 IBM Corporation93

Summary

Synchronization overhead is a big issue for parallel programs

Straightforward design techniques can avoid this overhead
–Partition the problem: “Many instances of something good!”
–Avoid expensive operations
–Avoid mutual exclusion

RCU is part of the solution
–Excellent for read-mostly data where staleness and inconsistency OK
–Good for read-mostly data where consistency is required
–Can be OK for read-write data where consistency is required
–Might not be best for update-mostly consistency-required data
–Used heavily in the Linux kernel

Much more information on RCU is available...

© 2009 IBM Corporation94

To Probe Further:
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination”
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

© 2009 IBM Corporation95

Legal Statement

 This work represents the view of the author and does not necessarily represent
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold and Mingming Cao.

© 2009 IBM Corporation96

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

