

Department of Computer Science Institute of System Architecture, Operating Systems Group

THE MATHEMATICS OF OBSCURITY

HERMANN HÄRTIG, CLAUDE-JOACHIM HAMANN, MICHAEL ROITZSCH

DISCLAIMER

I will tell about...

- the process of finding security errors
- our mathematical model for it
- the comparison of open and closed source
- I will not tell about...
- whether open or closed source is better

BATTLE ROYALE

Open Source

everyone has access to source code

everyone can search for bugs

more defenders find more bugs

easier to find bugs

Closed Source

only the company has the source code

attackers have a harder time

bugs are prevented from being exploited

harder to find bugs

PROPOSITION

Attackers only need only one error.

Defenders need to find all errors.

MODEL

MODEL

3 Errors:

$$e = 3$$

No Error:

p,q

ATTACKERS

$$a = 3$$

ATTACKERS

$$p_A = 1 - (1 - ep)^a$$

DEFENDERS

DEFENDERS

$$p_D = e! \cdot \sum_{i=0}^{d-e} {d \choose i} q^{d-i} (1 - eq)^i S_{d-i,e}$$

EXAMPLE

20 errors

$$e = 20$$

■ 1% probability to find an error

$$p = q = 0.01$$

75% desired winning chance

$$p_A = p_D = 0.75$$

How many attackers?

$$a = 7$$

How many defenders?

$$d = 424$$

- What happens if both sides lose?
- ... or win?
- Do the defenders really lose if they do not find all errors?
- They just have to find the errors first.
- Instead of a snapshot, model a race.

PROPOSITION

Defenders need to find any error earlier than the attackers.

RACE

PROBABILITY

 ρ m steps

q n steps

$$p_{m,n} = (1-p)^{m-1} p \cdot (1-q)^{n-1} q$$

PROBABILITY

$$p_{m,n} = (1-p)^{m-1} p \cdot (1-q)^{n-1} q$$

defenders win for n < m

$$p_W = \sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} p_{m,n} = \frac{q(1-p)}{q(1-p)+p}$$

PROBABILITY

$$p_W = \sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} p_{m,n} = \frac{q(1-p)}{q(1-p)+p}$$

open source more defenders

higher q

closed source

harder for attackers

lower p

GRAPH

TU Dresden

The Mathematics of Obscurity

GRAPH

EXAMPLE

- 1 million lines of code, 15 security errors e = 15
- probability for a single defender to find an error $q_{single} = 0.002\%$
- the same for attackers in open source case $p_{single,open} = 0.002\%$
- closed source factor 2 harder $p_{single,closed} = 0.001\%$
- 500 attackers
- How many defenders do we need?

RESULTS

CONCLUSION

No matter how many defenders, there's always a window for attackers.

SUMMARY

- urn model for discovery of security errors
- race between attackers and defenders
- there is an upper bound for the defenders
- this bound may be hit in reality