THE MATHEMATICS OF OBSCURITY

HERMANN HÄRTIG,
CLAUDE-JOACHIM HAMANN,
MICHAEL ROITZSCH

I will tell about...

- the process of finding security errors
- our mathematical model for it
- the comparison of open and closed source

I will not tell about...

- whether open or closed source is better

Open Source

everyone has access to source code
everyóne can search for bugs

A
more defenders find more bugs
easier to find bugs

Closed Source

only the company has the source code

attackers have a harder time

bugs are prevented from being exploited
harder to find bugs

Attackers only need only one error. Defenders need to find all errors.

3 Errors:

$e=3$

No Error:

p, q

$$
a=3
$$

$$
P A=(-\quad=1-1)^{a}
$$

$d=5$

$$
p_{D}=e!\cdot \sum_{i=0}^{d-e}\binom{d}{i} q^{d-i}(1-e q)^{i} S_{d-i, e}
$$

- 20 errors

$$
e=20
$$

- 1\% probability to find an error

$$
p=q=0.01
$$

- 75\% desired winning chance

$$
p_{A}=p_{D}=0.75
$$

- How many attackers?

$$
a=7
$$

- How many defenders?
$d=424$
- What happens if both sides lose?
- ... or win?
- Do the defenders really lose if they do not find all errors?
- They just have to find the errors first.
- Instead of a snapshot, model a race.

Defenders need to find any error earlier than the attackers.

p
m steps
q
n steps

$$
p_{m, n}=(1-p)^{m-1} p \cdot(1-q)^{n-1} q
$$

$$
p_{m, n}=(1-p)^{m-1} p \cdot(1-q)^{n-1} q
$$

defenders win for $n<m$

$$
p_{W}=\sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} p_{m, n}=\frac{q(1-p)}{q(1-p)+p}
$$

$$
p_{W}=\sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} p_{m, n}=\frac{q(1-p)}{q(1-p)+p}
$$

open source

closed source
more defenders
harder for attackers

higher q

lower p

- 1 million lines of code, 15 security errors

$$
e=15
$$

- probability for a single defender to find an error

$$
q_{\text {single }}=0.002 \%
$$

- the same for attackers in open source case

$$
p_{\text {single,open }}=0.002 \%
$$

- closed source factor 2 harder

$$
p_{\text {single, closed }}=0.001 \%
$$

- 500 attackers
- How many defenders do we need?

$$
p w=0.6 \quad p w=0.9
$$

closed source

7815

62088

17133
 impossible

No matter how many defenders, there's always a window for attackers.

- urn model for discovery of security errors
- race between attackers and defenders
- there is an upper bound for the defenders
- this bound may be hit in reality

