
Department of Computer Science Institute of System Architecture, Operating Systems Group

HERMANN HÄRTIG,
CLAUDE-JOACHIM HAMANN,
MICHAEL ROITZSCH

THE MATHEMATICS
OF OBSCURITY

TU Dresden The Mathematics of Obscurity

DISCLAIMER

2

I will tell about…

■ the process of finding security errors

■ our mathematical model for it

■ the comparison of open and closed source

I will not tell about…

■ whether open or closed source is better

TU Dresden The Mathematics of Obscurity

BATTLE ROYALE

3

Open Source Closed Source

easier to find bugs harder to find bugs

everyone can search
for bugs

everyone has access
to source code

more defenders find
more bugs

only the company has
the source code

attackers have a
harder time

bugs are prevented
from being exploited

TU Dresden The Mathematics of Obscurity

PROPOSITION

4

Attackers only need only one error.
Defenders need to find all errors.

TU Dresden The Mathematics of Obscurity

MODEL

5

TU Dresden The Mathematics of Obscurity

MODEL

6

3 Errors:

No Error:

e = 3

p,q

TU Dresden The Mathematics of Obscurity

ATTACKERS

7

a = 3

TU Dresden The Mathematics of Obscurity

ATTACKERS

8

trackers and most importantly, its code. On the other hand,
the attackers can fully concentrate on finding exploitable
errors with no quality requirements. The defenders also deal
with all the other non-security bugs, tying up a portion of
their resources. To make the model feasible, we assume an
independent and uniform error finding process.

In the closed source world, attackers only have access to
the binary, not to source code. We therefore do not consider
evil insiders, who work with malicious intent within the com-
pany and thus would have source code access. We further
assume that everyone outside the company is an attacker or
a passive bystander, who is of no relevance. We ignore de-
fenders working with the binary only, like in black-box fuzz
testing [27].

Influences on the Probability
The defenders receive a contribution from the outside,
though. People submit bug reports, which helps to guide
the error finding. Analysis tools, both static [20] and dy-
namic [26] point in the same direction. They help to find
errors but cannot automatically and exhaustively find all
of them. Similarly, attackers may have better intuition or
heuristics to guide their search for vulnerabilities. We con-
sider this as part of the error finding probabilities, but not
as a fundamental piece of the model.

With open source, all tools are available to attackers and
defenders, whereas closed source limits the attacker to the
tools compatible with binaries. Thus, attacking an open
source project is strictly easier, because all tools that work
on binaries can be used by compiling the code first. In
addition to that, you can use tools requiring source code.
The attacker’s error finding probability is therefore lower
in the closed source scenario. How much lower is debat-
able, though. Current research has already demonstrated
that exploits can be generated automatically when only a
patched and an unpatched binary are available [3]. Fuzzing
[27] is another potent technology attackers can leverage to
find errors in binaries. During the Month of Browser Bugs
[25], fuzzing impressively demonstrated its usefulness to find
lots of vulnerabilities fast. Additionally, the developers may
have access to in-house tools not publicly available, but this
can happen in the open and closed source scenario.

It is challenging to express all these influences with a sin-
gular error finding probability. We will therefore vary this
probability in our evaluations (see Tables 1 and 2) to demon-
strate the sensitivity and substantiate our conclusions.

3.2 The Static Model
To help digesting the assumptions from the preceding sec-

tion we use them here by creating a simple introductory urn
model3 [16], which we call the static model. We will use
the structure of this model as a foundation of the more so-
phisticated model in Section 4. Figure 1 provides a running
illustration to support the understanding of this section.

• Each artifact (source code block, input to the bi-
nary, . . .) of the software is represented by one ball
in the urn. Unique colors of those balls represent the
individual vulnerabilities.

3Urn Model: a thought experiment common to probability
theory, where elementary events are represented by colored
balls in an opaque urn. The stochastic process is represented
by drawing one or multiple balls from the urn, with or with-
out putting the balls back after they have been drawn.

The software contains three errors represented by di�erently

colored balls. Each individual attacker and defender draws

one ball from the urn. Three example outcomes are illustrated

for both teams. The attackers are successful when finding any

error (any colored ball). The defenders need to find every error

(one ball of every color) to beat the attackers.

Figure 1: The Static Model

• Non-vulnerable artifacts are represented by white
(non-colored) balls. The total number of balls deter-
mines the probability to find a ball with one specific
color, i.e. one specific error.

• Attackers and defenders draw from separate urns.
Each individual attacker and each individual defender
is allowed to draw from the respective urn once. After
drawing, the ball is immediately put back before the
next individual draws. This ensures independence of
the individuals and means that two individuals might
independently find the same error, which we consider
an e�ect justified in reality.

This model uses the following parameters:

p prob. for one attacker to find a specific error
q prob. for one defender to find a specific error
a number of individual attackers
d number of individual defenders
e number of errors in the software

After executing the process and allowing each individual
attacker and defender to draw once from the group’s urn, we
end up with each individual having a ball assigned. We can
now consider, which of the potential outcomes are favorable
for the attackers or the defenders.

Favorable for the Attackers
Any exploit in the wild is a failure for the security of the soft-
ware. Favorable outcomes for the attackers are those, where
any attacker has drawn a colored ball of any color. Hence,
the probability of an outcome favorable for the attacker is:

pA = 1� (1� ep)a

Favorable for the Defenders
The defenders have only secured the software sustainably
when they find all vulnerabilities. This simple verbal defi-
nition turns out di⌅cult to formulate mathematically. Fa-
vorable outcomes for the defenders are those, where at least
one ball of each color has been drawn:

pD = e! ·
d�eX

i=0

d
i

!
qd�i (1� eq)i Sd�i,e

TU Dresden The Mathematics of Obscurity

DEFENDERS

9

d = 5

TU Dresden The Mathematics of Obscurity

DEFENDERS

10

trackers and most importantly, its code. On the other hand,
the attackers can fully concentrate on finding exploitable
errors with no quality requirements. The defenders also deal
with all the other non-security bugs, tying up a portion of
their resources. To make the model feasible, we assume an
independent and uniform error finding process.

In the closed source world, attackers only have access to
the binary, not to source code. We therefore do not consider
evil insiders, who work with malicious intent within the com-
pany and thus would have source code access. We further
assume that everyone outside the company is an attacker or
a passive bystander, who is of no relevance. We ignore de-
fenders working with the binary only, like in black-box fuzz
testing [27].

Influences on the Probability
The defenders receive a contribution from the outside,
though. People submit bug reports, which helps to guide
the error finding. Analysis tools, both static [20] and dy-
namic [26] point in the same direction. They help to find
errors but cannot automatically and exhaustively find all
of them. Similarly, attackers may have better intuition or
heuristics to guide their search for vulnerabilities. We con-
sider this as part of the error finding probabilities, but not
as a fundamental piece of the model.

With open source, all tools are available to attackers and
defenders, whereas closed source limits the attacker to the
tools compatible with binaries. Thus, attacking an open
source project is strictly easier, because all tools that work
on binaries can be used by compiling the code first. In
addition to that, you can use tools requiring source code.
The attacker’s error finding probability is therefore lower
in the closed source scenario. How much lower is debat-
able, though. Current research has already demonstrated
that exploits can be generated automatically when only a
patched and an unpatched binary are available [3]. Fuzzing
[27] is another potent technology attackers can leverage to
find errors in binaries. During the Month of Browser Bugs
[25], fuzzing impressively demonstrated its usefulness to find
lots of vulnerabilities fast. Additionally, the developers may
have access to in-house tools not publicly available, but this
can happen in the open and closed source scenario.

It is challenging to express all these influences with a sin-
gular error finding probability. We will therefore vary this
probability in our evaluations (see Tables 1 and 2) to demon-
strate the sensitivity and substantiate our conclusions.

3.2 The Static Model
To help digesting the assumptions from the preceding sec-

tion we use them here by creating a simple introductory urn
model3 [16], which we call the static model. We will use
the structure of this model as a foundation of the more so-
phisticated model in Section 4. Figure 1 provides a running
illustration to support the understanding of this section.

• Each artifact (source code block, input to the bi-
nary, . . .) of the software is represented by one ball
in the urn. Unique colors of those balls represent the
individual vulnerabilities.

3Urn Model: a thought experiment common to probability
theory, where elementary events are represented by colored
balls in an opaque urn. The stochastic process is represented
by drawing one or multiple balls from the urn, with or with-
out putting the balls back after they have been drawn.

The software contains three errors represented by di�erently

colored balls. Each individual attacker and defender draws

one ball from the urn. Three example outcomes are illustrated

for both teams. The attackers are successful when finding any

error (any colored ball). The defenders need to find every error

(one ball of every color) to beat the attackers.

Figure 1: The Static Model

• Non-vulnerable artifacts are represented by white
(non-colored) balls. The total number of balls deter-
mines the probability to find a ball with one specific
color, i.e. one specific error.

• Attackers and defenders draw from separate urns.
Each individual attacker and each individual defender
is allowed to draw from the respective urn once. After
drawing, the ball is immediately put back before the
next individual draws. This ensures independence of
the individuals and means that two individuals might
independently find the same error, which we consider
an e�ect justified in reality.

This model uses the following parameters:

p prob. for one attacker to find a specific error
q prob. for one defender to find a specific error
a number of individual attackers
d number of individual defenders
e number of errors in the software

After executing the process and allowing each individual
attacker and defender to draw once from the group’s urn, we
end up with each individual having a ball assigned. We can
now consider, which of the potential outcomes are favorable
for the attackers or the defenders.

Favorable for the Attackers
Any exploit in the wild is a failure for the security of the soft-
ware. Favorable outcomes for the attackers are those, where
any attacker has drawn a colored ball of any color. Hence,
the probability of an outcome favorable for the attacker is:

pA = 1� (1� ep)a

Favorable for the Defenders
The defenders have only secured the software sustainably
when they find all vulnerabilities. This simple verbal defi-
nition turns out di⌅cult to formulate mathematically. Fa-
vorable outcomes for the defenders are those, where at least
one ball of each color has been drawn:

pD = e! ·
d�eX

i=0

d
i

!
qd�i (1� eq)i Sd�i,e

TU Dresden The Mathematics of Obscurity

EXAMPLE

11

■ 20 errors
 e = 20

■ 1% probability to find an error
 p = q = 0.01

■ 75% desired winning chance
 pA = pD = 0.75

■ How many attackers?
 a = 7

■ How many defenders?
 d = 424

TU Dresden The Mathematics of Obscurity

FLAWS

■ What happens if both sides lose?

■ … or win?

■ Do the defenders really lose if they do not
find all errors?

■ They just have to find the errors first.

■ Instead of a snapshot, model a race.

12

TU Dresden The Mathematics of Obscurity

PROPOSITION

13

Defenders need to find any error
earlier than the attackers.

TU Dresden The Mathematics of Obscurity

RACE

14

TU Dresden The Mathematics of Obscurity

PROBABILITY

15

p q
m steps n steps

One specific error (black ball) in the software is considered.

Time progresses downwards. In each step, every attacker and

defender draws once from the urn. Three steps are illustrated.

Whichever group finds the error (black ball) first is successful.

Here, the attackers find the error in the third step, the defend-

ers in the second. Thus, this particular outcome is favorable

for the defenders.

Figure 3: The Dynamic Model

• Selecting an artifact, you can tell, whether it represents
a vulnerability.

• Scanning over the artifacts is the only way to discover
a vulnerability, there is no way to directly calculate
which artifacts are vulnerable.

• Individual attackers and defenders independently
search for errors.

• In the open case, attackers and defenders are assigned
the same finding probability. In the closed case, the
attackers’ probability is lower.

The uniform distribution of errors is missing from the list
and will be discussed later.

The race we have to model is that of finding one particu-
lar error. If the attackers find error A, the defenders must
have found error A earlier to achieve a favorable outcome.
Whether the defenders have found errors B and C in the
meantime does not matter here, only finding or not finding
error A before the attackers matters. Therefore, we now
limit our discussion to one arbitrary but fixed error, ignor-
ing all the other errors. For this one error, the question
is: What are the odds for the defenders to find exactly this
error before the attackers find it? We represent this situa-
tion with an urn configuration similar to the static model.
Figure 3 provides a running illustration.

• Each artifact of the software is represented by one ball
in the urn. The ball representing the error of concern
is black, all other balls—non-vulnerable artifacts as
well as vulnerable ones di�erent from the error being
considered—are white. The number of white balls in
relation to the one black ball describes the probability
to find this one specific error.

• Attackers and defenders draw from separate urns, be-
cause the groups independently work on di�erent arti-
facts. The number of white balls in the two urns may
be di�erent, representing di�erent error-finding prob-
abilities.

• Individual attackers and individual defenders draw in-
dependently from their respective urn, meaning they
put the drawn ball back into the urn before the next
individual’s turn.

We use the same parameters and symbols as described in
Section 3.2 for the static model.

Time is modeled by attackers and defenders drawing from
the urn repeatedly. The drawing steps are synchronized and
can be imagined as days in the real world. In each step,
each individual attacker and defender is allowed one turn
at the urn and thus one chance to find the black ball. If
no one has found the ball, no one has found the error, so
the process continues with the next turn. We model the
probability to find the ball as constant across all turns. Even
if the software evolves in the meantime, we assume the error
density as constant. This is supported by literature [10, 36].

As soon as anyone draws the black ball, the error is dis-
covered, either by an attacker or by a defender. At this
instance, we stop and see, which group has found the error.
The defenders would now fix the error, the attackers would
exploit it. Thus, any further drawing is irrelevant, because
any further findings would be of no consequence. We there-
fore account the outcome as favorable for the group claiming
the first discovery.

But how do we break the tie of both groups finding the
error in the same step? Allowing this to be a neutral out-
come would violate the partition requirement pW + pL = 1.
Thus, we consider this outcome favorable for the attackers.
They have to develop an exploit, but this can be partially
automated [3]. They do not have to worry about quality
testing, they can a�ord to deploy a half-baked exploit that
is only e�ective on half the machines and they will still cause
harm. The defenders on the other hand have to make sure
their fix does not cause unwanted side-e�ects, they have to
manage patch distribution and they rely on the end users
to actually download and install the patch. We think the
attackers have the upper hand here, so we account the tie
as a win for the attackers.

4.3 Enumerating the Possible Outcomes
Due to the concept of time, this dynamic model has a more

complex set of outcomes compared to the static model. We
present the ideas behind our approach to enumerate them
here and give the resulting formulas. The mathematical de-
tails can be found in Appendix B.

Firstly, imagine only one attacker and one defender, re-
peatedly drawing from the urn in an unbounded number of
steps. The attacker’s probability to find the black ball with
one draw is p, the defender’s probability is q. Concentrating
on the attacker, the probability to find the black ball in the
second step is composed of not finding it in the first step
with probability (1� p) and then finding it in the second
step with probability p. The compound probability to find
the ball in the second step is thus (1� p) p. Extending this
to finding the ball in the m’th step means not finding it in the
first m�1 steps, hence the probability is (1� p)m�1 p. This
applies analogously to the defender. Because the attacker
and the defender operate independently, we can calculate
the probability of the attacker finding the ball in the m’th
step and the defender finding the ball in the n’th step as
follows:

pm,n = (1� p)m�1 p · (1� q)n�1 q

TU Dresden The Mathematics of Obscurity

PROBABILITY

16

One specific error (black ball) in the software is considered.

Time progresses downwards. In each step, every attacker and

defender draws once from the urn. Three steps are illustrated.

Whichever group finds the error (black ball) first is successful.

Here, the attackers find the error in the third step, the defend-

ers in the second. Thus, this particular outcome is favorable

for the defenders.

Figure 3: The Dynamic Model

• Selecting an artifact, you can tell, whether it represents
a vulnerability.

• Scanning over the artifacts is the only way to discover
a vulnerability, there is no way to directly calculate
which artifacts are vulnerable.

• Individual attackers and defenders independently
search for errors.

• In the open case, attackers and defenders are assigned
the same finding probability. In the closed case, the
attackers’ probability is lower.

The uniform distribution of errors is missing from the list
and will be discussed later.

The race we have to model is that of finding one particu-
lar error. If the attackers find error A, the defenders must
have found error A earlier to achieve a favorable outcome.
Whether the defenders have found errors B and C in the
meantime does not matter here, only finding or not finding
error A before the attackers matters. Therefore, we now
limit our discussion to one arbitrary but fixed error, ignor-
ing all the other errors. For this one error, the question
is: What are the odds for the defenders to find exactly this
error before the attackers find it? We represent this situa-
tion with an urn configuration similar to the static model.
Figure 3 provides a running illustration.

• Each artifact of the software is represented by one ball
in the urn. The ball representing the error of concern
is black, all other balls—non-vulnerable artifacts as
well as vulnerable ones di�erent from the error being
considered—are white. The number of white balls in
relation to the one black ball describes the probability
to find this one specific error.

• Attackers and defenders draw from separate urns, be-
cause the groups independently work on di�erent arti-
facts. The number of white balls in the two urns may
be di�erent, representing di�erent error-finding prob-
abilities.

• Individual attackers and individual defenders draw in-
dependently from their respective urn, meaning they
put the drawn ball back into the urn before the next
individual’s turn.

We use the same parameters and symbols as described in
Section 3.2 for the static model.

Time is modeled by attackers and defenders drawing from
the urn repeatedly. The drawing steps are synchronized and
can be imagined as days in the real world. In each step,
each individual attacker and defender is allowed one turn
at the urn and thus one chance to find the black ball. If
no one has found the ball, no one has found the error, so
the process continues with the next turn. We model the
probability to find the ball as constant across all turns. Even
if the software evolves in the meantime, we assume the error
density as constant. This is supported by literature [10, 36].

As soon as anyone draws the black ball, the error is dis-
covered, either by an attacker or by a defender. At this
instance, we stop and see, which group has found the error.
The defenders would now fix the error, the attackers would
exploit it. Thus, any further drawing is irrelevant, because
any further findings would be of no consequence. We there-
fore account the outcome as favorable for the group claiming
the first discovery.

But how do we break the tie of both groups finding the
error in the same step? Allowing this to be a neutral out-
come would violate the partition requirement pW + pL = 1.
Thus, we consider this outcome favorable for the attackers.
They have to develop an exploit, but this can be partially
automated [3]. They do not have to worry about quality
testing, they can a�ord to deploy a half-baked exploit that
is only e�ective on half the machines and they will still cause
harm. The defenders on the other hand have to make sure
their fix does not cause unwanted side-e�ects, they have to
manage patch distribution and they rely on the end users
to actually download and install the patch. We think the
attackers have the upper hand here, so we account the tie
as a win for the attackers.

4.3 Enumerating the Possible Outcomes
Due to the concept of time, this dynamic model has a more

complex set of outcomes compared to the static model. We
present the ideas behind our approach to enumerate them
here and give the resulting formulas. The mathematical de-
tails can be found in Appendix B.

Firstly, imagine only one attacker and one defender, re-
peatedly drawing from the urn in an unbounded number of
steps. The attacker’s probability to find the black ball with
one draw is p, the defender’s probability is q. Concentrating
on the attacker, the probability to find the black ball in the
second step is composed of not finding it in the first step
with probability (1� p) and then finding it in the second
step with probability p. The compound probability to find
the ball in the second step is thus (1� p) p. Extending this
to finding the ball in the m’th step means not finding it in the
first m�1 steps, hence the probability is (1� p)m�1 p. This
applies analogously to the defender. Because the attacker
and the defender operate independently, we can calculate
the probability of the attacker finding the ball in the m’th
step and the defender finding the ball in the n’th step as
follows:

pm,n = (1� p)m�1 p · (1� q)n�1 q

defenders win for n < m

Figure 4: Matrix of Possible Outcomes

As illustrated in Figure 4, we can list all possible values
of pm,n in a matrix that is infinite in both row and column
direction (m = 1, 2, . . .; n = 1, 2, . . .). Obviously, the values
pm,n decrease with larger m or n, due to p, q < 1. The
matrix elements therefore become smaller to the right and
the bottom. Because the matrix lists all possible outcomes
of the repeated drawing and these outcomes are trivially
disjoint, the sum of all matrix elements

P
pm,n = 1. A

proof is given in Appendix B.
For any matrix element pm,n the respective outcome is fa-

vorable for the defenders, if they found the black ball before
the attackers. Thus, the number n of the step, in which the
defenders find the black ball must be smaller than the step
number m for the attackers: n < m. Because we account
the tie for the attackers, all other outcomes (n ⇤ m), includ-
ing the diagonal are favorable for the attackers. In Figure 4,
this is represented by the coloring of the matrix elements.

The win probability pW of an outcome favorable for the
defenders can now be calculated by summing up all pm,n

with m > n:

pW =
�X

n=1

�X

m=n+1

pm,n =
q (1� p)

q (1� p) + p
(1)

Due to the construction of the matrix, pL = 1�pW , satis-
fying our model requirement of pL+pW = 1 (see Appendix B
for details).

One might argue now, that we modeled the process of
drawing from the urn to stop, once one group has found the
black ball. But here we are considering the other group to
continuously draw until it too found the black ball. This
appears to be a contradiction, but in fact, it is not. For
example, if the defender finds the black ball in step 5, we
would intuitively use the following description for the related
favorable outcome: “The defender finds the ball in step five
and the attacker not in steps one to five.” What we actually
sum up however is: “The defender finds the ball in step
five and the attacker in any later step.” It turns out that
both formulations are equivalent. With an infinite number
of draws, the attacker will eventually find the ball. Thus,
“not in steps one to five” and “any step later than five” are
the same.

Multiple Individuals
Generalizing from one attacker to multiple attackers is
pretty straightforward. Amongst a attackers, the proba-
bility for at least one attacker to find the black ball in one
draw is p̂ = 1� (1� p)a. Now we can just model a group of

multiple attackers as one more potent attacker. The same is
true for the defenders with q̂ = 1�(1� q)d. Replacing p and
q in Equation 1 with p̂ and q̂ allows us to express multiple
attackers and multiple defenders:

pW =
q̂ (1� p̂)

q̂ (1� p̂) + p̂

with p̂ = 1� (1� p)a , q̂ = 1� (1� q)d (2)

Multiple Errors
The extension to multiple errors is equally easy. If there
are e errors in the software, the defenders have to find every
single one of those before the attackers. Should the attackers
manage to find one error earlier, security is compromised.
Defenders find each individual error with probability pW

before the attackers. The probability to find all errors first
is:

ˆpW = pW
e (3)

Here, we again assume independent and uniformly dis-
tributed errors. But the previous results, including Equa-
tion 2 did not use assumptions on error distribution, because
only one arbitrary but fixed error was considered. For the
comparison of open and closed source, it is su⇥cient to limit
the discussion to one error. If either open or closed source
gets the upper hand for one error, multiple errors do not
change the consequences.

5. EXPLORING THE MODEL
We now leverage our mathematical apparatus to conduct

a comparison between open and closed source. We start
with an analysis of Equation 2 and interpret our findings.
We continue with an example software project, which we
calculate for both the open and closed source cases. This
section ends with possible extensions to our model that serve
as starting points for future work.

5.1 Function Analysis
To get an overview on the behavior of Equation 2, we

provide a graphical representation in Figure 5. The point
p̂ = q̂ = 0 is undefined, which is intuitively clear. If no
group will ever find an error, the probability of the defend-
ers finding an error first makes no sense. Because we assume
that every software has errors and that those can be found
with non-zero probability, this undefined point is no prob-
lem. Other prominent values also match our intuition:

• Along the p̂-axis, where q̂ = 0, the defenders never find
any errors, so the attackers always win. Consequently
pW = 0 for q̂ = 0.

• On the other hand, along the q̂-axis, where p̂ = 0, the
attackers never find errors. Thus, the defenders always
win (pW = 1).

• Crossing the graph at p̂ = 1, pW is always 0. How good
the defenders are does not matter. If the attackers find
all errors immediately, they always win.

• We broke the tie in favor of the attackers, so unsur-
prisingly for p̂ = q̂ = 0.5, pW is lower than 0.5, because
the model is not symmetric. (pW is 1

3 here.)

TU Dresden The Mathematics of Obscurity

PROBABILITY

17

Figure 4: Matrix of Possible Outcomes

As illustrated in Figure 4, we can list all possible values
of pm,n in a matrix that is infinite in both row and column
direction (m = 1, 2, . . .; n = 1, 2, . . .). Obviously, the values
pm,n decrease with larger m or n, due to p, q < 1. The
matrix elements therefore become smaller to the right and
the bottom. Because the matrix lists all possible outcomes
of the repeated drawing and these outcomes are trivially
disjoint, the sum of all matrix elements

P
pm,n = 1. A

proof is given in Appendix B.
For any matrix element pm,n the respective outcome is fa-

vorable for the defenders, if they found the black ball before
the attackers. Thus, the number n of the step, in which the
defenders find the black ball must be smaller than the step
number m for the attackers: n < m. Because we account
the tie for the attackers, all other outcomes (n ⇤ m), includ-
ing the diagonal are favorable for the attackers. In Figure 4,
this is represented by the coloring of the matrix elements.

The win probability pW of an outcome favorable for the
defenders can now be calculated by summing up all pm,n

with m > n:

pW =
�X

n=1

�X

m=n+1

pm,n =
q (1� p)

q (1� p) + p
(1)

Due to the construction of the matrix, pL = 1�pW , satis-
fying our model requirement of pL+pW = 1 (see Appendix B
for details).

One might argue now, that we modeled the process of
drawing from the urn to stop, once one group has found the
black ball. But here we are considering the other group to
continuously draw until it too found the black ball. This
appears to be a contradiction, but in fact, it is not. For
example, if the defender finds the black ball in step 5, we
would intuitively use the following description for the related
favorable outcome: “The defender finds the ball in step five
and the attacker not in steps one to five.” What we actually
sum up however is: “The defender finds the ball in step
five and the attacker in any later step.” It turns out that
both formulations are equivalent. With an infinite number
of draws, the attacker will eventually find the ball. Thus,
“not in steps one to five” and “any step later than five” are
the same.

Multiple Individuals
Generalizing from one attacker to multiple attackers is
pretty straightforward. Amongst a attackers, the proba-
bility for at least one attacker to find the black ball in one
draw is p̂ = 1� (1� p)a. Now we can just model a group of

multiple attackers as one more potent attacker. The same is
true for the defenders with q̂ = 1�(1� q)d. Replacing p and
q in Equation 1 with p̂ and q̂ allows us to express multiple
attackers and multiple defenders:

pW =
q̂ (1� p̂)

q̂ (1� p̂) + p̂

with p̂ = 1� (1� p)a , q̂ = 1� (1� q)d (2)

Multiple Errors
The extension to multiple errors is equally easy. If there
are e errors in the software, the defenders have to find every
single one of those before the attackers. Should the attackers
manage to find one error earlier, security is compromised.
Defenders find each individual error with probability pW

before the attackers. The probability to find all errors first
is:

ˆpW = pW
e (3)

Here, we again assume independent and uniformly dis-
tributed errors. But the previous results, including Equa-
tion 2 did not use assumptions on error distribution, because
only one arbitrary but fixed error was considered. For the
comparison of open and closed source, it is su⇥cient to limit
the discussion to one error. If either open or closed source
gets the upper hand for one error, multiple errors do not
change the consequences.

5. EXPLORING THE MODEL
We now leverage our mathematical apparatus to conduct

a comparison between open and closed source. We start
with an analysis of Equation 2 and interpret our findings.
We continue with an example software project, which we
calculate for both the open and closed source cases. This
section ends with possible extensions to our model that serve
as starting points for future work.

5.1 Function Analysis
To get an overview on the behavior of Equation 2, we

provide a graphical representation in Figure 5. The point
p̂ = q̂ = 0 is undefined, which is intuitively clear. If no
group will ever find an error, the probability of the defend-
ers finding an error first makes no sense. Because we assume
that every software has errors and that those can be found
with non-zero probability, this undefined point is no prob-
lem. Other prominent values also match our intuition:

• Along the p̂-axis, where q̂ = 0, the defenders never find
any errors, so the attackers always win. Consequently
pW = 0 for q̂ = 0.

• On the other hand, along the q̂-axis, where p̂ = 0, the
attackers never find errors. Thus, the defenders always
win (pW = 1).

• Crossing the graph at p̂ = 1, pW is always 0. How good
the defenders are does not matter. If the attackers find
all errors immediately, they always win.

• We broke the tie in favor of the attackers, so unsur-
prisingly for p̂ = q̂ = 0.5, pW is lower than 0.5, because
the model is not symmetric. (pW is 1

3 here.)

open
source

more
defenders

higher q

closed
source

harder for
attackers

lower p

TU Dresden The Mathematics of Obscurity

GRAPH

18

pq

pW

p

pW

TU Dresden The Mathematics of Obscurity

GRAPH

19

p

pW

q

pW,max

TU Dresden The Mathematics of Obscurity

EXAMPLE

20

■ 1 million lines of code, 15 security errors
 e = 15

■ probability for a single defender to find an error
 qsingle = 0.002%

■ the same for attackers in open source case
 psingle,open = 0.002%

■ closed source factor 2 harder
 psingle,closed = 0.001%

■ 500 attackers

■ How many defenders do we need?

TU Dresden The Mathematics of Obscurity

RESULTS

21

pW = 0.6 pW = 0.9

closed
source

open
source

7815 62088

17133 impossible

TU Dresden The Mathematics of Obscurity

CONCLUSION

22

No matter how many defenders,
there’s always a window for attackers.

TU Dresden The Mathematics of Obscurity

SUMMARY

23

■ urn model for discovery of security errors

■ race between attackers and defenders

■ there is an upper bound for the defenders

■ this bound may be hit in reality

