
Hermann Härtig

HPC - HIGH PERFORMANCE COMPUTING
(SUPERCOMPUTING)
!
DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2014

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

Understand

■ Systems Software for “High Performance
Computing” (HPC), today & expected

■ MPI as a common programming model

■ What is “noise”?

■ How to use incomplete information for
informed decisions

■ Advanced Load Balancing techniques
(heuristics)

2

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

CLUSTERS & MPP
Characteristics of MPP Systems:

■ Highly optimised interconnect networks

■ Distributed memory

■ Size today: few 100000 CPUs (cores) + XXL GPU

!

Successful Applications:

■ CPU intensive computation, massively parallel Applications, small
execution/communication ratios, weak and strong scaling 

■ Cloud ?

Not used for:

■ Transaction-management systems

■ Unix-Workstation + Servers

3

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

CLUSTERS & MPP
Characteristics of Cluster Systems:

■ Use COTS (common off the shelf) PCs/Servers and COTS networks

■ Size: No principle limits

!

Successful Applications:

■ CPU intensive computation, massively parallel Applications, larger
execution/communication ratios, weak scaling

■ Data Centers, google apps

■ Cloud, Virtual Machines

!

Not used for:

■ Transaction-management system

4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

PROGRAMMING MODEL: SPMD

■ Michael Flynn (1966):  
SISD, SIMD, MIMD, (MISD)SIMD

■ SPMD: Single Program Multiple Data 
Same program runs on “all” nodes 
works on split-up data 
asynchronously but with explicit synch points 
implementations: message passing/shared
memory/...paradigms: “map/reduce” (google) /
GCD (apple) / task queues / ...

■ often: while (true) { work; exchange data
(barrier)}

5

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

6

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1

problem

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

6

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
part 1

part 2

part 3

part 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

6

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
part 1

part 2

part 3

part 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

6

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
result 1

result 2

result 3

result 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

6

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
result 1

result 2

result 3

result 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

6

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1

result

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

IMBALANCES & FAILURES

7

Communication

Computation

Communication

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

IMBALANCES & FAILURES

8

Communication

Computation

Communication

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

IMBALANCES & FAILURES

9

Communication

Computation

Communication

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

AMDAHL’S LAW
Compute; communicate; compute; …

■ Examples (idealized, take with grain of salt !!!):

■ Compute: 10 micro, 100 micro, 1 ms

■ Communicate: 5 micro, 10 micro, 100 micro, 1ms
assuming here: communication cannot be sped up

!

Amdahl's law: 1 / (1-P+P/N)

■ P: section that can be parallelized

■ 1-P: serial section

■ N: number of CPUs
10

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

AMDAHL’S LAW

Compute(= parallel section), 
communicate(= serial section)  
→ 
possible speedup for N=∞

■ 1ms, 100 μs: 1/0.1 → 10

■ 1ms, 1 μs: 1/0.001 → 1000

■ 10 μs, 1 μs: 0.01/0.001 → 10

■ ...

11

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

WEAK VS. STRONG SCALING

Strong:

■ accelerate same problem size

!

Weak:

■ extend to larger problem size

12

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

AMDAHL’S LAW
Jitter, “Noise”, “micro scrabblers":

■ Occasional addition to computation/communication time in
one or more processes

■ Holds up all other processes

!

Compute(= parallel section),  
jitter (→ add to serial section),  
communicate(= serial section):  
possible speedup for N=∞

■ 1ms, 100μs, 100 μs: 1/0.2 → 5 (10)

■ 1ms, 100μs, 1 μs: 1/0.101 → 10 (1000)

■ 10 μs, 10μs, 1 μs: 0.01/0.011 → 1 (10)
13

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

STATE OF THE ART IN HPC

14

Many-core
Node

Application

Application

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

STATE OF THE ART IN HPC
■ dedicate full partition to application  

(variant: “gang scheduling”)

■ load balancing done (tried) by applications or
user-level runtime (Charm++)

■ avoid OS calls

■ “scheduler”:  
manages queue of application processes 
assigns partitions to applications 
supervises run-time

■ applications run from checkpoint to checkpoint
15

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

STATE OF THE ART IN HPC: RDMA

■ nodes access remote memory via load/store
operations

■ busy waiting across nodes (within partition)

■ barrier ops supported by network

■ compare&exchange on remote memory
operation

■ no OS calls for message ops (busy waiting)

16

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI BRIEF OVERVIEW

■ Library for message-oriented parallel
programming

■ Programming model:

■ Multiple instances of same program

■ Independent calculation

■ Communication, synchronization

17

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

18

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1

problem

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

18

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
part 1

part 2

part 3

part 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

18

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
part 1

part 2

part 3

part 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

18

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
result 1

result 2

result 3

result 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

18

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
result 1

result 2

result 3

result 4

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DIVIDE AND CONQUER

18

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1

result

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI STARTUP & TEARDOWN

■ MPI program is started on all processors

■ MPI_Init(), MPI_Finalize()

■ Communicators (e.g., MPI_COMM_WORLD)

■ MPI_Comm_size()

■ MPI_Comm_rank(): “Rank” of process within
this set

■ Typed messages

■ Dynamically create and spread processes
using MPI_Spawn() (since MPI-2)

19

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

20

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

20

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

20

MPI_Send(
 void* buf,
 int count,
 MPI_Datatype,
 int dest,
 int tag,
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

20

MPI_Recv(
 void* buf,
 int count,
 MPI_Datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

20

MPI_Bcast(
 void* buffer,
 int count,
 MPI_Datatype,
 int root,
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

20

MPI_Reduce(
 void* sendbuf,
 void *recvbuf,
 int count
 MPI_Datatype,
 MPI_Op op,
 int root,
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

■ Synchronization

20

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

■ Synchronization

■ Test

20

MPI_Test(
 MPI_Request* request,
 int *flag,
 MPI_Status *status
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

■ Synchronization

■ Test

■ Wait

20

MPI_Wait(
 MPI_Request* request,
 MPI_Status *status
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

■ Synchronization

■ Test

■ Wait

■ Barrier

20

MPI_Barrier(
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

BLOCK AND SYNC

21

blocking call non-blocking call

synchronous
communication

asynchronous
communication

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

BLOCK AND SYNC

21

blocking call non-blocking call

synchronous
communication

asynchronous
communication

returns when message
has been delivered

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

BLOCK AND SYNC

21

blocking call non-blocking call

synchronous
communication

asynchronous
communication

returns when message
has been delivered

returns when send
buffer can be reused

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

BLOCK AND SYNC

21

blocking call non-blocking call

synchronous
communication

asynchronous
communication

returns when message
has been delivered

returns immediately,
following test/wait
checks for delivery

returns when send
buffer can be reused

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

BLOCK AND SYNC

21

blocking call non-blocking call

synchronous
communication

asynchronous
communication

returns when message
has been delivered

returns immediately,
following test/wait
checks for delivery

returns when send
buffer can be reused

returns immediately,
following test/wait

checks for send buffer

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

EXAMPLE

22

int rank, total;
MPI_Init();
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &total);
!
MPI_Bcast(...);
/* work on own part, determined by rank */
!
if (id == 0) {
 for (int rr = 1; rr < total; ++rr)
 MPI_Recv(...);
 /* Generate final result */
} else {
 MPI_Send(...);
}
MPI_Finalize();

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

PMPI
■ Interposition layer between library and

application

■ Originally designed for profiling

23

MPI
Library

Send

Application

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

PMPI
■ Interposition layer between library and

application

■ Originally designed for profiling

23

Profiler

Send
MPI

Library

Send

Application

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

EXA-SCALE: HW+SW ASSUMPTIONS

■ Large number of nodes:

■ Many compute cores

■ 1 or 2 service cores

■ Failure rate exceeds checkpoint rate

■ Fast local persistent storage on each node

■ Not all cores available all the time (dark silicon
due to heat/energy issues)

■ Compute + communication heavy applications,
may not be balanced

■ short term changes of frequency ?
24

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

ROLE OF OPERATING SYSTEM

■ for applications with extreme (bad) computation/
communications ratio:  
NOT MUCH, but  
-> avoid “noise”, use common sense

■ all others:  
handle faults 
use dark silicon  
balance load  
gossip 
over decomposition & over subscription  
predict execution times  
use scheduling tricks  
optimise for network/memory topology

25

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

OPERATING SYSTEM “NOISE”
Use common sense to avoid:

■ OS usually not directly on the critical path,  
BUT OS controls: interference via interrupts, caches,
network, memory bus, (RTS techniques)

■ avoid or encapsulate side activities

■ small critical sections (if any)

■ partition networks to isolate traffic of different
applications (HW: Blue Gene)

■ do not run Python scripts or printer daemons in
parallel

26

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

FFMK@TU-DRESDEN +

+ Hebrew Uni (Mosix team) + ZIB (FS team) 
Fast and Fault-Tolerant Microkernel-based OS

■ get rid of partitions

■ use a micro-kernel (L4)

■ OS supported load balancing

■ use RAID for fast checkpoints  

DFG-supported

27

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

4 TECHNOLOGIES

Microkernels, virtualization, split architectures

MOSIX-style online system management (gossip)

Distributed in-memory (on-node) checkpointing

MPI + applications

28

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

GOAL FOR EXASCALE HPC

29

Many-core
Node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

GOAL FOR EXASCALE HPC

29

Many-core
Node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

GOAL FOR EXASCALE HPC

29

Many-core
Node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

GOAL FOR EXASCALE HPC

29

Many-core
Node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

THIN COMMON SUBSTRATE

30

FFMK-OSFFMK-OSFFMK-OS FFMK-OS FFMK-OS

FFMK-OSFFMK-OSFFMK-OS FFMK-OS FFMK-OS

FFMK-OSFFMK-OSFFMK-OS FFMK-OS FFMK-OS

FFMK-OSFFMK-OSFFMK-OS FFMK-OS FFMK-OS

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

SMALL? PREDICTABLE?

31

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

SMALL? PREDICTABLE?

31

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: LOAD BALANCING

32

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: LOAD BALANCING

33

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: LOAD BALANCING

34

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: LOAD BALANCING

34

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

35

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

35

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

36

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

36

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

37

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

37

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

37

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

38

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

38

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

38

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

39

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

REDUNDANT CHECKPOINT

39

TU Dresden Dealing with Load Imbalances

EXPERIMENTS:
IMBALANCES,
OVERDECOMPOSITION AND
OVERSUBSCRIPTION

40

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

TOWARDS BALANCING

41

MPI ranks

tim
e

Barrier

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

“MESSY” HPC

42

MPI ranks

tim
e

Barrier

Imbalance in application workload

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

FAILURES

43

MPI ranks

tim
e

Barrier

Reassign work to react to node failure

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

SPLITTING BIG JOBS

44

compute jobs

tim
e

Barrier

overdecomposition & “oversubscription”

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

SMALL JOBS (NO DEPS)

45

compute jobs

tim
e

Barrier

Execute small jobs in parallel (if possible)

TU Dresden Dealing with Load Imbalances

IMBALANCES

46

Unbalanced compute
times of ranks per
time step

Balanced compute
times of ranks per
time step

Application: COSMO-SPECS+FD4

Application: COSMO-SPECS+FD4

TU Dresden Dealing with Load Imbalances

IMBALANCES

47

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140 160 180

P
r
o

c
e
s
s

I
D

Timestep

0128_1x1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
o

m
p

u
t
a
t
i
o

n

t
i
m

e

(
f
r
a
c
t
i
o
n

)

Unbalanced compute
times of ranks per
time step

Application: COSMO-SPECS+FD4

TU Dresden Dealing with Load Imbalances

IMBALANCES

48

Application: COSMO-SPECS+FD4

Balanced compute
times of ranks per
time step

-20

 0

 20

 40

 60

 80

 100

 120

 140

-20 0 20 40 60 80 100 120 140 160 180

P
r
o

c
e
s
s

I
D

Timestep

0128_1x1_lb

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
o

m
p

u
t
a
t
i
o

n

t
i
m

e

(
f
r
a
c
t
i
o
n

)

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

49

0 s

500 s

1.000 s

1.500 s

2.000 s

2.500 s

Oversubscription factor (more ranks)

1x 2x 4x 8x

Non-blocking Blocking

Application: COSMO-SPECS+FD4 (no load balancing)

• Taurus 16 nodes w/ 16 Xeon E5-2690 (Sandy Bridge) @ 2.90GHz
• 1x - 8x oversubscription (256 - 2048 MPI ranks, same problem size)

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

49

0 s

500 s

1.000 s

1.500 s

2.000 s

2.500 s

Oversubscription factor (more ranks)

1x 2x 4x 8x

Non-blocking Blocking

Application: COSMO-SPECS+FD4 (no load balancing)

• Taurus 16 nodes w/ 16 Xeon E5-2690 (Sandy Bridge) @ 2.90GHz
• 1x - 8x oversubscription (256 - 2048 MPI ranks, same problem size)

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

49

0 s

500 s

1.000 s

1.500 s

2.000 s

2.500 s

Oversubscription factor (more ranks)

1x 2x 4x 8x

Non-blocking Blocking

Application: COSMO-SPECS+FD4 (no load balancing)

• Taurus 16 nodes w/ 16 Xeon E5-2690 (Sandy Bridge) @ 2.90GHz
• 1x - 8x oversubscription (256 - 2048 MPI ranks, same problem size)

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

50

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

2.000 s

4.000 s

6.000 s

8.000 s

10.000 s

12.000 s

Oversubscription factor (fewer cores)

1x 2x 4x 8x 16x

64 Ranks, 1 node, 16-64 cores
Approximate linear scale

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

50

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

2.000 s

4.000 s

6.000 s

8.000 s

10.000 s

12.000 s

Oversubscription factor (fewer cores)

1x 2x 4x 8x 16x

64 Ranks, 1 node, 16-64 cores
Approximate linear scale

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

50

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

2.000 s

4.000 s

6.000 s

8.000 s

10.000 s

12.000 s

Oversubscription factor (fewer cores)

1x 2x 4x 8x 16x

64 Ranks, 1 node, 16-64 cores
Approximate linear scale

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

51

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

200 s

400 s

600 s

800 s

1.000 s

Oversubscription factor (fewer cores)

1x 2x 4x

256 Ranks, 1-4 nodes, orig
256 Ranks, 1-4 nodes, patched
Approximate linear scale

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

51

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

200 s

400 s

600 s

800 s

1.000 s

Oversubscription factor (fewer cores)

1x 2x 4x

256 Ranks, 1-4 nodes, orig
256 Ranks, 1-4 nodes, patched
Approximate linear scale

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

51

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

200 s

400 s

600 s

800 s

1.000 s

Oversubscription factor (fewer cores)

1x 2x 4x

256 Ranks, 1-4 nodes, orig
256 Ranks, 1-4 nodes, patched
Approximate linear scale

TU Dresden Dealing with Load Imbalances

OVERSUBSCRIPTION

51

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0 s

200 s

400 s

600 s

800 s

1.000 s

Oversubscription factor (fewer cores)

1x 2x 4x

256 Ranks, 1-4 nodes, orig
256 Ranks, 1-4 nodes, patched
Approximate linear scale

TU Dresden Dealing with Load Imbalances

PATCHED: STEP TIME

52

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

0,5 s

1,0 s

1,5 s

2,0 s

2,5 s

3,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

PATCHED: STEP TIME

52

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

0,5 s

1,0 s

1,5 s

2,0 s

2,5 s

3,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

PATCHED: STEP TIME

52

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

0,5 s

1,0 s

1,5 s

2,0 s

2,5 s

3,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

PATCHED: STEP TIME

52

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

0,5 s

1,0 s

1,5 s

2,0 s

2,5 s

3,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

ORIG: STEP TIME

53

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

3,0 s

6,0 s

9,0 s

12,0 s

15,0 s

18,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

ORIG: STEP TIME

53

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

3,0 s

6,0 s

9,0 s

12,0 s

15,0 s

18,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

ORIG: STEP TIME

53

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

3,0 s

6,0 s

9,0 s

12,0 s

15,0 s

18,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

ORIG: STEP TIME

53

Application: COSMO-SPECS+FD4 (no load balancing)

• ATLAS nodes w/ 64 AMD Opteron 6274 cores @ 2.2 GHz
• Number of ranks remained constant, but number of cores was reduced

0,0 s

3,0 s

6,0 s

9,0 s

12,0 s

15,0 s

18,0 s
1x 2x 4x

TU Dresden Dealing with Load Imbalances

EXPERIMENTS:
GOSSIP SCALABILITY

54

TU Dresden Dealing with Load Imbalances

RANDOM GOSSIP

55

Distributed Bulletin Board

• Each node keeps vector
with per-node info (own +
info received from others)

• Once per time step, each
node sends to 1 other
randomly selected node a
subset of its own vector
entries (called “window”)

• Node merges received
window entries into local
vector (if newer)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

56

A:0 B:12 C:2 D:4 E:11 ...
Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

56

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

56

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

56

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

56

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5C:3A:1

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

56

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5

C:3A:1

TU Dresden Dealing with Load Imbalances

WINDOW SIZE

57

Gossip Algorithm:

At a fixed point during each unit of time, each node:

• Updates its own entry in the locally stored vector
with the current state of the local resources and
sets the age of this information to 0;

• For the remaining vector entries, updates the
current age to the age at arrival plus the time
passed since;

• Immediately sends a fixed-size window with the
most recent vector entries to another node,
which is chosen randomly with a uniform dis-
tribution.

When a node receives a window, it:

• Registers the window’s arrival time in all the re-
ceived entries using the local clock;

• Updates each of its vector’s entries with the cor-
responding window entry, if the latter is newer.

Figure 1: The gossip algorithm with fixed window
sizes.

Technologies such as MOSIX are known to perform well
for UNIX clusters. However, the overhead caused by
MOSIX-like gossip algorithms on large-scale HPC machines
is not well understood, as these systems are much more sus-
ceptible to network jitter. Menon and Kalé evaluated the
performance of GrapevineLB [11], a load balancer exploiting
gossip algorithms on top of the Charm++ runtime system.
Their paper showed that the overall performance is improved
substantially, but they do not discuss the overhead caused by
gossip-related messages being exchanged among the nodes.
Soltero et. al. evaluated the suitability of gossip-based infor-
mation dissemination for system services of exascale clus-
ters [12]. Their simulations showed that good accuracy can
be achieved for power management services with up to a
million nodes. However, experiments using their prototype
were emulating only 1000 nodes and did not include mea-
surements of network or gossip overhead on the applications.

Bhatele et al. [13] identify the contention for shared net-
work resources between jobs as the primary reason for run-
time variability of batch jobs in a large Cray system. On
BlueGene systems, however, each job is assigned a private
contiguous partition of the torus network, so that contention
is avoided. In our measurements, we combined two appli-
cations (a gossip program and an application benchmark)
in a single batch job on a BlueGene/Q system, such that
network contention becomes a critical concern. We then
measured the slowdown of the application due to the gossip
activities.

3. THE GOSSIP ALGORITHM
Consider a cluster with a large number of active nodes.

Assume that each node regularly monitors the state of its
relevant resources and also maintains an information vec-
tor with entries about the state of the resources in all the
other nodes. Each such vector entry includes the state of
the resources of the corresponding node and the age of that

 0 5 10 15

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

1024 Nodes

 14.21

 9.77

 8.46

 7.83

 7.49

 7.29

 7.18

 7.09

 7.03

 7.01

W
in

d
o
w

 size (rel. to
 n

o
d
e co

u
n
t)

 0 5 10 15

2048 Nodes

 14.86

 10.46

 9.15

 8.53

 8.19

 7.99

 7.87

 7.78

 7.73

 7.71

Figure 2: Average vector age (relative to the unit of
time) for window sizes ranging from 10% to 100%
of the number of nodes.

information. The gossip algorithm disseminates this infor-
mation among nodes.
The algorithm that is used in this paper was developed

in [1]. Figure 1 shows the pseudo code. Briefly, in this
algorithm, every unit of time, each node monitors the state
of its resources and records it in its vector entry. Each of the
nodes then exchanges a window containing a fixed amount of
the newest information in its vector with another randomly
chosen node. Thus, each node receives, on average, in every
unit of time information about other nodes and each of them
eventually learns about the state of all nodes. Note that
the nodes are not synchronized, i. e. all the nodes use the
same unit of time but run independently using their own
local clocks. One relevant parameter for the algorithm’s
performance is the size of the window, i. e., the amount of
information sent by each node. Another parameter that is
studied in this paper is the unit of time, which determines
the rate of the information dissemination.

4. BENCHMARK SETUP
In a preliminary study, we measured the average age of

the vector vs. the size of the circulated window, for di↵er-
ent cluster sizes. The results are depicted in Figure 2 for
1024 and 2048 nodes. Configurations with 4096 and 8192
nodes show similar behavior. From the figure it can be seen
that the steepest decrease in the average age of the vector is
when increasing the window size from 10% to 20%, whereas
larger windows provide only marginal benefit at the cost of
transmitting significantly more data. As we will show in
Section 5.2, circulating larger gossip messages causes higher
overhead than increasing the gossip rate. We therefore de-
cided to run all experiments with a window size of 20% of
the vector size.

4.1 BlueGene/Q Hardware
We performed measurements on the IBM BlueGene/Q

system JUQUEEN installed at Jülich Supercomputing Cen-
tre, Germany, which is ranked number 8 in the Novem-
ber 2013 Top500 list of the largest supercomputers. The
JUQUEEN system has 28 672 nodes, each equipped with
one 16-core PowerPC A2 1.6GHz processor, resulting in a
total of 458 752 cores. The 5D torus network has a peak
bandwidth of 2GB/s per link, which can send and receive
at that rate simultaneously [14]. Since each node has 10

TU Dresden Dealing with Load Imbalances

NODES: VECTOR AGE

58

16-core PowerPC A2 1.6GHz processor, connected by a 5D Torus network. The network has a

duplex, peak bandwidth of 2GB/s per link [18] with a worst-case latency of 2.6µs per message.

Initially, the program allocated one gossip process to each node using MPI [15]. The unit of

time, i.e., the rate of the gossip was set to 100ms. We note that other than the gossip processes,

no other processes were running in the nodes.

For each colony size, the third row in Table 1 shows the average window size obtained by 5

runs, each lasted 100 units of time after reaching a steady state.

3.2 Average vector age

To approximate the average age of the vectors when colonies circulate windows with entries not

exceeding age T , we first find the average window age and then the average age of the whole vector.

Let Aw(T) denote the average age of the window, which includes all the entries not exceeding

age T . Let Ag(T) denote the average of all the vector entries whose age is greater than T and let

Av(T) denote the average age of the whole vector. Then in Appendix B it is shown that:

Av(T) =
W (T)Aw(T) + (n−W (T))Ag(T)

n
= Aw(T) +

(

1−
W (T)

n

)

(Ag(T)−Aw(T)) , (2)

where W (T) is defined in Equation (1) and Aw(T) =
n ln(W (T))−T (n−W (T))

W (T)−1 .

Note that when circulating the whole vector, i.e., W (T) = n, then Av(∞) = Aw(∞) = n
n−1 lnn.

For each colony size and values of T , the top row in Table 2 shows the approximations of the

average age of the whole vector using Equation (2). Note that the right most column shows the

average age when circulating the whole vector. The corresponding averages from 5 simulations and

5 cluster measurements are shown in the second and third rows respectively.

Table 2: Average age of the whole vector.
Circulating among colony nodes

Colony Method windows not exceeding age whole
nodes 2 4 6 8 10 vector

Approx. 19.15 6.00 4.93 4.89 4.89 4.89
128 Simulation 18.87 6.04 4.97 4.92 4.95

Measured 18.75 5.99 4.94 4.88 4.90
Approx. 36.49 8.49 5.70 5.57 5.57 5.57

256 Simulation 36.33 8.57 5.77 5.63 5.62
Measured 36.06 8.55 5.77 5.60 5.60
Approx. 71.15 13.27 6.70 6.26 6.25 6.25

512 Simulation 71.01 13.34 6.81 6.34 6.32
Measured 70.85 13.37 6.78 6.31 6.28
Approx. 140.44 22.69 8.21 6.99 6.94 6.94

1K Simulation 139.76 22.73 8.33 7.06 7.01
Measured 140.14 22.83 8.32 7.04 6.98
Approx. 279.03 41.47 10.90 7.79 7.63 7.63

2K Simulation 267.82 41.58 11.08 7.89 7.71
Measured 278.94 41.66 11.03 7.84 7.66
Approx. 556.20 78.99 16.06 8.83 8.34 8.32

4K Simulation 479.96 79.10 16.23 8.95 8.42
Measured 556.20 79.39 16.24 8.87 8.33
Approx. 1,110.53 154.02 26.26 10.44 9.07 9.01

8K Simulation 798.97 153.80 26.48 10.59 9.43
Measured 1,102.99 155.16 26.51 10.44 8.98

1M Approx. 141,911 19,209 2,605 360 58 13.86
1G Approx. 145M 19M 2M 360K 48K 20.79

8

TU Dresden Dealing with Load Imbalances

NODES: VECTOR AGE

58

16-core PowerPC A2 1.6GHz processor, connected by a 5D Torus network. The network has a

duplex, peak bandwidth of 2GB/s per link [18] with a worst-case latency of 2.6µs per message.

Initially, the program allocated one gossip process to each node using MPI [15]. The unit of

time, i.e., the rate of the gossip was set to 100ms. We note that other than the gossip processes,

no other processes were running in the nodes.

For each colony size, the third row in Table 1 shows the average window size obtained by 5

runs, each lasted 100 units of time after reaching a steady state.

3.2 Average vector age

To approximate the average age of the vectors when colonies circulate windows with entries not

exceeding age T , we first find the average window age and then the average age of the whole vector.

Let Aw(T) denote the average age of the window, which includes all the entries not exceeding

age T . Let Ag(T) denote the average of all the vector entries whose age is greater than T and let

Av(T) denote the average age of the whole vector. Then in Appendix B it is shown that:

Av(T) =
W (T)Aw(T) + (n−W (T))Ag(T)

n
= Aw(T) +

(

1−
W (T)

n

)

(Ag(T)−Aw(T)) , (2)

where W (T) is defined in Equation (1) and Aw(T) =
n ln(W (T))−T (n−W (T))

W (T)−1 .

Note that when circulating the whole vector, i.e., W (T) = n, then Av(∞) = Aw(∞) = n
n−1 lnn.

For each colony size and values of T , the top row in Table 2 shows the approximations of the

average age of the whole vector using Equation (2). Note that the right most column shows the

average age when circulating the whole vector. The corresponding averages from 5 simulations and

5 cluster measurements are shown in the second and third rows respectively.

Table 2: Average age of the whole vector.
Circulating among colony nodes

Colony Method windows not exceeding age whole
nodes 2 4 6 8 10 vector

Approx. 19.15 6.00 4.93 4.89 4.89 4.89
128 Simulation 18.87 6.04 4.97 4.92 4.95

Measured 18.75 5.99 4.94 4.88 4.90
Approx. 36.49 8.49 5.70 5.57 5.57 5.57

256 Simulation 36.33 8.57 5.77 5.63 5.62
Measured 36.06 8.55 5.77 5.60 5.60
Approx. 71.15 13.27 6.70 6.26 6.25 6.25

512 Simulation 71.01 13.34 6.81 6.34 6.32
Measured 70.85 13.37 6.78 6.31 6.28
Approx. 140.44 22.69 8.21 6.99 6.94 6.94

1K Simulation 139.76 22.73 8.33 7.06 7.01
Measured 140.14 22.83 8.32 7.04 6.98
Approx. 279.03 41.47 10.90 7.79 7.63 7.63

2K Simulation 267.82 41.58 11.08 7.89 7.71
Measured 278.94 41.66 11.03 7.84 7.66
Approx. 556.20 78.99 16.06 8.83 8.34 8.32

4K Simulation 479.96 79.10 16.23 8.95 8.42
Measured 556.20 79.39 16.24 8.87 8.33
Approx. 1,110.53 154.02 26.26 10.44 9.07 9.01

8K Simulation 798.97 153.80 26.48 10.59 9.43
Measured 1,102.99 155.16 26.51 10.44 8.98

1M Approx. 141,911 19,209 2,605 360 58 13.86
1G Approx. 145M 19M 2M 360K 48K 20.79

8

TU Dresden Dealing with Load Imbalances

SCALABILITY LIMITS

59

Problem: average age or window sizes too big for extreme
numbers of nodes

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MASTER: GLOBAL VIEW

60

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MASTER: GLOBAL VIEW

60

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MASTER: GLOBAL VIEW

60

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MASTER: GLOBAL VIEW

60

TU Dresden Dealing with Load Imbalances

SYSTEM
ARCHITECTURE

61

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsHermann Härtig, TU Dresden

L4 MICRO KERNELS

62

apps

commodity OS

L4

displa

L4/Re

critical
application

Auth IO

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsTU Dresden HyoCore

SIMKO 3

63

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsTU Dresden HyoCore

SIMKO 3

63

“ Merkel!
Phone “

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsTU Dresden FFMK 64

Linux Kernel
!
!
!

!!!
L4

TCB

App

Secure
File System

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsTU Dresden FFMK 64

Linux Kernel
!
!
!

!!!
L4

TCB

App

Secure
File System

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

App
(local)

MOSIX MIGRATION

65

OS Virtualization Layer

Linux Kernel

Home Node Remote Node

App
(Guest)

OS Virtualization Layer

Linux Kernel

MOSIX
system call
rerouting

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

RANDOMIZED GOSSIP

66

Distributed Bulletin Board

• Each node keeps vector
with per-node info (own +
info received from others)

• Once per time step, each
node sends to 1 other
randomly selected node a
subset of its own vector
entries (called “window”)

• Node merges received
window entries into local
vector (if newer)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

RANDOMIZED GOSSIP

66

Distributed Bulletin Board

• Each node keeps vector
with per-node info (own +
info received from others)

• Once per time step, each
node sends to 1 other
randomly selected node a
subset of its own vector
entries (called “window”)

• Node merges received
window entries into local
vector (if newer)

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

67

A:0 B:12 C:2 D:4 E:11 ...
Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

67

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

67

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

67

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

67

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5C:3A:1

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

MOSIX: GOSSIP ALGORITHM

67

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

Each time unit:

• Update local info

• Find all vector entries up
to age T (called a window)

• Send window to 1
randomly selected node

Upon receiving a window:

• Update the received entries’
age (+1 for transfer)

• Update entries in local
vector where newer
information has been
received

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5

C:3A:1

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

XTREEMFS ARCHITECTURE

68

���������
	
���

�����������������
�����������������
�����������������
�����������������

MRC

���������
���������

���������
���������

objects

metadata

file content

OSD1

OSD2

...

OSDn

������������������������

������	�����������������

���������������� !"�#

�������$%$��&
�����'�(�

)*�+�,�� ��

��!-����&'$

	�� ����.���������.#

�������
�������

�� !"	#

��
�
��

��
.��
��

���
��
.#

/�
��
��
�0
��

��
�

�
���

��
��
��
�0
��

��
�#

�$����� (�$$

client

1������

1������

2�
��
��
�

Figure 2: File access with XtreemFS

3.2 Security
Security is of paramount importance for storage systems, as it protects the privacy
of individual users and keeps data safe from unauthorized manipulation in the face of
shared resources and inherently insecure environments. Relevant aspects of the security
architecture include the authentication of users, the authorization of accesses and the
encryption of messages and data.

3.2.1 Authentication

XtreemFS clients and servers are not required to run in a trusted environment. Clients
running on any machine may access any XtreemFS installation that is reachable over
the network. Consequently, servers cannot assume that clients are inherently trustwor-
thy, nor can clients assume that servers are trustworthy.

To solve the problem, XtreemFS supports SSL connections between all clients and
servers. When establishing a new server connection, e.g., in the course of mounting
a volume or initially writing a file, clients and servers exchange X.509 certificates to
ensure a mutual authentication. The distinguished name of a client certificate reflects
the identity of the user on behalf of whom subsequent operations are executed. User
and group IDs are thus unforgeable and allow for a secure authentication of individual
users.

3.2.2 Authorization

A complementary issue is the assignment and evaluation of access rights. XtreemFS
offers a common POSIX authorization model with different access flags for the owning
user, the owning group and all other users. An optional extension are POSIX access
control lists (ACLs), which allow the definition of access rights at the granularity of
individual users and groups.

File system calls with path names are directed to the MRC, where they can be au-
thorized locally, as the MRC stores all relevant metadata to perform access control.

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

ARCHITECTURE

69

MPI
Application

MPI Library

L4 Microkernel

Linux

Linux
XtreemFS

Linux
MPI-RT

MosiX
Module

L4
XtreemFS

L4
MPI-RT

MPI
Application

MPI Library

MPI
Application

MPI Library

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

ARCHITECTURE

70

Node

Service
Core

Service
Core

Compute
Core

Compute
Core

Compute
Core

MPI
Application

MPI Library

L4 Microkernel

Linux

Linux
XtreemFS

Linux
MPI-RT

MosiX
Module

L4
XtreemFS

L4
MPI-RT

MPI
Application

MPI Library

MPI
Application

MPI Library

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

XTREEMFS: FAST PATH

71

Client Node

XtreemFS
Client

L4 XtreemFS

Checkpoint Node

XtreemFS
OSD

Checkpoint Store

L4 XtreemFS

H
ig

h
-P

er
fo

rm
an

ce

In
te

rc
o

n
n

ec
t

Establish fast
connection

WriteOpen

MPI
App

LinuxLinux

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsTU Dresden FFMK

NodeNodeCompute Node

SPLIT MPI ARCHITECTURE

72

L4 Microkernel

MPI Rank
(Proxy Part)

Linux
Kernel

P
M

I F
or

w
ar

d

Mgmt
Node

MPI
Process

Mgr

Linux
Kernel

Local MPI
SHM Buffer

MPI Rank
(Compute Part)

MPI Library

libibverbs /
IB Driver

PMI

Hermann Härtig, TU Dresden, Distributed OS, Parallel SystemsTU Dresden FFMK

Compute Node

SPLIT MPI ARCHITECTURE

73

L4 Microkernel

MPI
Process

Mgr

Local MPI
SHM Buffer

MPI Rank
(Compute Part)

MPI Library

PMI

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

DESIGN
CHALLENGES

74

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

 CHALLENGES

75

Fine-grained work splitting for system-supported load
balancing?

How to synchronize? RDMA + polling ./. Block?

Gossip + Heuristics for EXASCALE ?

Application / system interface? “Yell” for help?

Compute processes, how and where to migrate /
reroute communication?

Replication instead of / in addition to checkpoint/
restart?

Reuse Linux (device drivers)?

Hermann Härtig, TU Dresden, Distributed OS, Parallel Systems

HARDWARE-WISHES

■ Perf counters for Network

■ fast redirection of messages

■ flash on node circumventing FTL

■ quick activation of threads without polling

76

