
Faculty of Computer Science Institute for System Architecture, Operating Systems Group 

Distributed Operating Systems 
Cache Coherence 

SS2014 

Marcus Völp 
 
(slides Julian Stecklina, Marcus Völp) 



TU Dresden, 5.05.2014 Distributed Operating Systems Slide 2 

Concurrent programs 

int i; 
int k; 

global variables: 

i = 1; 
if (i > 1) k = 3; 

i = i + 1; 
if (k == 0) k = 4; 

|| 

mov $1, [%i] 
cmp [%i], $1 
jgt    end 
mov $3, [%k] 
end: 

inc   [%i] 
cmp [%k], $0 
jne   end 
mov $4, [%k] 
end: 

|| 

lock; 
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Symmetric Multiprocessor (SMP) 
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Chip Multiprocessor (CMP), Multicore 
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Symmetric Multithreading (SMT), 
Hyperthreading 
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Non-Uniform Memory Access (NUMA) 
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NUMA Example: Tilera Gx 

Source: http://tilera.com 
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Summary: Memory Organization 

• Multiple processors share memory 

 

• Memory access paths through one or more controllers 

– UMA (Uniform Memory Access) 

– NUMA (Non-Uniform Memory Access) 

 

• Caches / store buffers hold memory content near  
accessing CPUs. 
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Cache Coherency 
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Cache Coherency 

• Caches lead to multiple copies for the content of a 
single memory location 

 

• Cache Coherency keeps copies “consistent” 
– locate all copies 

– invalidate/update content 

 
• Write Propagation 

writes must eventually become visible to all 
processors. 

 
• Write Serialization 

every processor should see writes to the same 
location in the same order. 
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Alternative Definition: SWMR 

 

Single-Writer, Multiple-Reader Invariant 
For any memory location A, at any given time,  

either only a single core may write (or read-modify-
write) the content of A  

or any number of cores may read the content of A. 

 

Data-Value Invariant 
The value of a memory location at the start of an  

operation is the same as the value at the end of its  

last write (read-modify-write) operation. 

 

[based on Sorin et al., 2011] 
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Attempt 1: write through all caches 
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Attempt 2: write back 
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Coherency Problems & Solutions 

Both examples violate SWMR! 

 

Problem 1 
CPU1 used stale value that had already been modified by CPU0. 

– Solution: Invalidate copies before write proceeds! 

 

Problem 2 
Incorrect writeback order of modified cache lines. 

– Solution: Disallow more than one modified copy! 
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Coherency Protocol Design Space 

• Snooping-based 
– All coherency related traffic broadcasted to all CPUs 

– Each processor snoops and acts accordingly: 

• Invalidate lines written by other CPUs 

• Signal sharing for lines currently in cache 

– Straightforward for bus-based systems 

– Suited for small-scale systems 

 

• Directory-based 
– Uses central directory to track cache line owner 

– Update copies in other caches 

• Can update all CPUs at once  
(less traffic for alternating reads and writes) 

• Multiple writes need multiple updates  
(more traffic for subsequent writes) 

– Suited for large-scale systems 
TU Dresden, 5.05.2014 
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Coherency Protocol Design Space 

• Snooping-based vs. Directory-based 
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Invalidation vs. Update Protocols 

• Invalidation-based 
– Only write misses hit bus (suited for WB caches) 

– Subsequent writes are write hits 

– Good for multiple writes to same cache line by same CPU 

• Update-based 
– All shares of a cache line continue to hit in the cache after 

a write by one CPU 

– Otherwise lots of useless updates (wastes bandwidth) → 
Rarely used! 

 

• Hybrid forms are possible! 
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A Basic Coherency Protocol: MSI 

• Modified (M) 
– No copies on other caches; local copy modifed 

– Memory is stale 

• Shared (S) 
– Unmodified copies in one or more caches 

– Memory is up-to-date 

• Invalid (I) 
– Not in cache 

 

• States tracked from the view of the cache controller. 
Sees events from: 
– Local processor   → processor transactions 

– Other processors  → snoop transactions 
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MSI: Processor Transitions 

• State is I, CPU reads (PrRd) 
– Generate bus read request (BusRd) 

– Go to S 

• State is S or M, CPU reads (PrRd) 
– No transition 

• State is S, CPU writes (PrWr) 
– Upgrade cache line for exclusive ownership (BusRdX) 

– Go to M 

• State is M, CPU writes (PrWr) 
– No transition 
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MSI: Snoop Transitions 

• Receiving a read snoop (BusRd) for a cache line 
– If M, write cache line back to memory (WB), transition to S 

– If S, no transition 

• Receiving a exclusive ownership snoop (BusRdX) 
– If M, write cache line back to memory (WB), discard it, 

transition to I 

– If S, discard cache line, transition to I 
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MSI State Transitions 
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Problems in MSI 

A common usecase is to: 
– read variable A: S 

– Modify A:  BusRdX sent, S → M 

 

Invalidation message pointless, if no other cache holds A. 

 

Solved by adding Exclusive (E) state: 
– No copies exist in other caches 

– Memory is up-to-date 

 

Variants of MESI are used by most popular 
microprocessors. 
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MESI State Transitions 
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MOESI: Adding Owned to MESI 

• Similar to MESI, with some extensions 

• Cache-to-Cache transfers of modified cache lines 
– Modified cache lines not written back to memory, but 

supplied by to other CPUs on BusRd 

– CPU  that  had  initial  modified  copy  becomes  “owner” 
• Avoids writeback to memory when another CPU 

accesses cache line 
– Beneficial when cache-to-cache latency/bandwidth is 

better than cache-to-memory latency/bandwidth 

• Used by AMD Opteron 
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MOESI State Transitions 
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Coherency in Multi-Level Caches 

• Bus only connected to last-level cache (e.g. L2) 
– Snoop requests are relevant to inner-level caches (e.g. L1) 

– Modifications in L1 may not be visible to L2 (and the bus) 

• Idea: L2 forwards filters transactions for L1: 
– On BusRd check if line is M/O in L1 (may be S or E in L2) 

– On BusRdX, send invalidate to L1 

• Only easy for inclusive caches! 

 
• Inclusion property 
 Outer cache contains a superset of the content of its inner  
 caches. 
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