
Department of Computer Science Institute of System Architecture, Operating Systems Group

CARSTEN WEINHOLD

DISTRIBUTED
FILE SYSTEMS

TU Dresden Distributed File Systems

OUTLINE

2

■ Classical distributed file systems

■ NFS: Sun Network File System

■ AFS: Andrew File System

■ Parallel distributed file systems

■ Case study: The Google File System

■ Scalability

■ Fault tolerance

■ Other approaches

TU Dresden Distributed File Systems

DFS ARCHITECTURE

3

Local FS

File Server

DFS
(Client)

Application

Client Machine

Network

DFS
(Client)

Application

Client Machine

Network
DFS

(Server)

Simplified idea:
Forward all file system
operations to server via
network RPC.

TU Dresden Distributed File Systems

DFS ARCHITECTURE

4

Local FS

File Server

DFS
(Client)

Application

Client Machine

Network

DFS
(Client)

Application

Client Machine

Network

Storage
Array

DFS
(Server)

Multiple servers possible,
but cooperation and
consistency become
difficult.

TU Dresden Distributed File Systems

SUN NFS (V2, V3)

5

API As close to UNIX as possible

Names/Lookup Message to file server for each path element

Open/Close Unique NFS handle per file, no state on server

Read/Write Messages to read/write blocks, small block size

Caching (client) Metadata (e.g., NFS handle), data blocks

Consistency Consistency messages exchanged regularly,
clients might see stale data/metadata

Replication Multiple read-only servers (if synced manually)

Fault Handling Write through on server (v2), idempotent
client writes, clients block if server crashed

TU Dresden Distributed File Systems

ANDREW FILE SYSTEM

6

API As close to UNIX as possible

Names/Lookup Name resolution on client, uses dir caches

Open/Close Local file, might need to transmit from/to server

Read/Write Local file, but some work in open/close phase

Caching (client) Complete files, LRU replacement if needed

Consistency Callback promises: server informs client, if
another client wants to modify a cached file

Replication Pool of servers, may improve performance

Fault Handling Some (e.g., client can still access files in
local cache if network or servers fail)

TU Dresden Distributed File Systems

DFS SCALABILITY

■ Work well for home directories (e.g., AFS)

■ POSIX consistency causes complexity:

■ Cache coherency traffic (e.g., AFS callbacks)

■ Write semantics (e.g., may need distributed
locks for concurrent writes to same file)

■ One-to-one mapping:

■ File in DFS is file on server (higher load?)

■ Servers must cache both metadata+data
7

TU Dresden Distributed File Systems

INCOMING DAILY

8

ATLAS Experiment © 2012 CERN, Image source:
http://www.atlas.ch/photos/full-detector-photos.html

Scientific Computing:

Approximately 1 GB/s of data
generated at the Worldwide
LHC Computing Grid. This is
after two filtering stages ... [3]

Social Media:
„Facebook serves over one million images per second at
peak. [...] our previous approach [...] leveraged network
attached storage appliances over NFS. Our key observation is
that this traditional design incurs an excessive number of
disk operations because of metadata lookups.“ [4]

Image source:
http://facebook.com

TU Dresden Distributed File Systems

OUTLINE

9

■ Classical distributed file systems

■ NFS: Sun Network File System

■ AFS: Andrew File System

■ Parallel distributed file systems

■ Case study: The Google File System

■ Scalability

■ Fault tolerance

■ Other approaches

TU Dresden Distributed File Systems

DFS ARCHITECTURE

10

Local FS

File Server

DFS
(Client)

Application

Client Machine

Network

DFS
(Client)

Application

Client Machine

Network
DFS

(Server)

Storage
Array

TU Dresden Distributed File Systems

DFS ARCHITECTURE

11

Local FS

File Server

DFS
(Client)

Application

Client Machine

DFS
(Client)

Application

Client Machine

DFS
(Server)

TU Dresden Distributed File Systems

PARALLEL FILE SYSTEMS

12

Local FS

File Server

DFS
(Client)

Application

Client Machine

DFS
(Client)

Application

Client Machine

DFS (Metadata)

Coordination,
Consistency

DFS
(Server)

DFS
(Server, data only)Data transfer

Coordination
Heartbeat

M
et

ad
at

a
 o

pe
ra

tio
ns

TU Dresden Distributed File Systems

LARGER DESIGN SPACE

■ Better load balancing:

■ Few servers handle metadata only

■ Many servers serve (their) data

■ More flexibility, more options:

■ Replication, fault tolerance built in

■ Specialized APIs for different workloads

■ Lower hardware requirements per machine

■ Client and data server on same machine
13

TU Dresden Distributed File Systems

PARALLEL FILE SYSTEMS

■ Lustre

■ GFS

■ GPFS

■ PVFS

■ HadoopFS

■ TidyFS

■ ...

14

TU Dresden Distributed File Systems

OUTLINE

15

■ Classical distributed file systems

■ NFS: Sun Network File System

■ AFS: Andrew File System

■ Parallel distributed file systems

■ Case study: The Google File System

■ Scalability

■ Fault tolerance

■ Other approaches

TU Dresden Distributed File Systems

GFS KEY DESIGN GOALS
■ Scalability:

■ High throughput, parallel reads/writes

■ Fault tolerance built in:

■ Commodity components might fail often

■ Network partitioning can happen

■ Re-examine standard I/O semantics:

■ Complicated POSIX semantics vs. scalable
primitives vs. common workloads

■ Co-design file system and applications
16

TU Dresden Distributed File Systems

GFS ARCHITECTURE

17

Client

Master
Metadata

Chunk
Server

Chunk
Server

Chunk
Server

metadata request

Source [2]

metadata response

read/write request
read/write response

• Chunkservers store data as
chunks, which are files in
local Linux file system

• Master manages metadata
(e.g., which chunks belong to
which file, etc.)

TU Dresden Distributed File Systems

MASTER & METADATA

18

■ Master is process on separate machine

■ Manages all metadata:

■ File namespace

■ File-to-chunk mappings

■ Chunk location information

■ Chunk version information

■ Access control information

■ Does not store/read/write any file data!

TU Dresden Distributed File Systems

FILES & CHUNKS

19

■ Files are made of (multiple) chunks:

■ Chunk size: 64 MiB

■ Stored on chunkserver, in Linux file system

■ Referenced by chunk handle (i.e., filename
in Linux file system)

■ Replicated across multiple chunkservers

■ Chunkservers located in different racks

TU Dresden Distributed File Systems

#4
#4

#4
#4

#4
#4

#4
#4

FILES & CHUNKS

20

C4 C6 C8 C9

File /some/dir/f:
 Chunk C4: (S1,S2,S3)
 Chunk C6: (S1,S2,S3)
 Chunk C8: (S1,S3,S4)
 Chunk C9: (S1,S2,S4) C4 C6 C8 C9

Chunks, replicated on chunk servers (S1,S2,S3,...)

Logical view of file

Metadata describing file

TU Dresden Distributed File Systems

ACCESSING FILES

21

■ Client accesses file in two steps:

(1) Contact Master to retrieve metadata

(2) Talk to chunkservers directly

■ Benefits:

■ Metadata is small (one master can handle it)

■ Metadata can be cached at client

■ Master not involved in data operations

■ Note: clients cache metadata, but not data

TU Dresden Distributed File Systems

READ ALGORITHM

22

Client
Master

Metadata

Source [6]

Application

GFS
Client (1) Application originates read request

(2) GFS client translates request from
(filename, byte range) to (filename,
chunk index) and sends it to
master

(3) Master responds with (chunk
handle, replica locations)

(3) (c
hunk handle,

 re

plica locatio
ns)

(2) (f
ilename,

chunk index)

(1) (filename,
 byte range)

TU Dresden Distributed File Systems

READ ALGORITHM

23

Client

Chunk
Server

Chunk
Server

Chunk
Server

Source [6]

Application

GFS
Client

(4) (chunk handle,
 byte range)

(5) data

(4) GFS client picks location and sends
(chunk handle, byte range) request
to that location

(5) Chunkserver sends requested data
to client

(6) Client forwards data to application
(6) data

TU Dresden Distributed File Systems

READ PERFORMANCE

24

■ Division of work reduces load:

■ Master provides metadata quickly (in RAM)

■ Multiple chunkservers available

■ One chunkserver (e.g., the closest one) is
selected for delivering requested data

■ Chunk replicas equally distributed across
chunkservers for load balancing

■ Can we do this for writes, too?

TU Dresden Distributed File Systems

WRITE ALGORITHM

25

Client
Master

Metadata

Source [6]

Application

GFS
Client (1) Application originates write request

(2) GFS client translates request from
(filename, data) to (filename, chunk
index) and sends it to master

(3) Master responds with (chunk
handle, replica locations)

(3) (c
hunk handle,

 re

plica locatio
ns)

(2) (f
ilename,

chunk index)

(1) (filename,
 data)

TU Dresden Distributed File Systems

HOW TO WRITE DATA?

26

Client

Chunk
Server

Chunk
Server

Chunk
Server

Application

GFS
Client

send data 3x to 3 locations?

• Data needs to be pushed to all
chunkservers to reach required
replication count

• Client could send a copy to each
chunkserver on its own, but that could
cause contention on its network link

• This might not scale ...

TU Dresden Distributed File Systems

PIPELINING WRITES

27

■ Sending data over client’s network card
multiple times is inefficient, but ...

■ ... network cards can send and receive at
the same time at full speed (full duplex)

■ Idea: Pipeline data writes

■ Client sends data to just one chunkserver

■ Chunkserver starts forwarding data to next
chunkserver, while still receiving more data

■ Multiple links utilized, lower latency

TU Dresden Distributed File Systems

WRITE ALGORITHM

28

Client

Chunk
Server

Chunk
Server

Chunk
Server

Application

GFS
Client

Write algorithm, continued:

(1) GFS Client sends data to first chunkserver

(2) While receiving: first chunkserver forwards
received data to second chunkserver, second
chunkserver forwards to third replica location,
...

(4) (data)
(5)
(data)

Data buffered on servers at
first, but not applied to chunks
immediately.

Open questions:
• How to coordinate

concurrent writes?
• What if a write fails?

(5)
(data)

Source [6]

TU Dresden Distributed File Systems

REPLICA TYPES

29

■ Primary:
■ Determines serial order of pending writes
■ Forwards write command + serial order

■ Secondary:
■ Execute writes as ordered by primary
■ Replies to primary (success or failure)

■ Replica roles determined by Master:

■ Tells client in step (2) of write algorithm

■ Decided per chunk, not per chunkserver

TU Dresden Distributed File Systems

WRITE ALGORITHM

30

Client

Chunk
Server
(secondary)

Application

GFS
Client

Chunk
Server
(secondary)

Chunk
Server
(primary)(8) (8)

(9)(9)

Write algorithm, continued:

(6) GFS Client sends write command to primary

(7) Primary determines serial order of writes, then
writes buffered data to its chunk replica

(8) Primary forwards (write command, serial order) to
secondaries

(9) Secondaries execute writes, respond to primary

(10) Primary responds to GFS client

(7)

(11) write done

(10) (response) Source [6]

(6) (write command)

TU Dresden Distributed File Systems

WRITE SEMANTICS

31

■ Multiple clients can write concurrently

■ Things to consider:

■ Clients determine offset in chunk

■ Concurrent writes to overlapping byte
ranges possible, may cause overwrites

■ Last writer wins, as determined by primary

■ Problem: what if multiple clients want to
write to a file and no write must be lost?

TU Dresden Distributed File Systems

ATOMIC RECORD APPEND

32

■ Append is common workload (at Google):

■ Multiple clients merge results in single file

■ Must not overwrite others’ records, but
specific order not important

➡ Use file as consumer-producer queue!

■ Primary + secondary chunkservers agree
on common order of records

■ Client library provides record abstraction

TU Dresden Distributed File Systems

APPEND ALGORITHM

33

(1) Application originates append request

(2) GFS client translates, sends it to master

(3) Master responds with (chunk handle,
primary+secondary replica locations)

(4) Client pushes data to locations (pipelined)

(5) Primary check, if record fits into chunk

Case (B): Does not fit, primary does:

(6) Pads chunk

(7) Tells secondaries to do the same

(8) Informs client about padding

(9) Client retries with next chunk

Case (A): It fits, primary does:

(6) Appends record to end of chunk

(7) Tells secondaries to do the same

(8) Receives responses from all
secondaries

(9) Sends final response to client

Source [6]

TU Dresden Distributed File Systems

HANDLING RECORDS

■ GFS guarantees:
■ Records are appended atomically (not

fragmented, not partially overwritten)

■ Each record is appended at least once

■ Failed append: may lead to “undefined
regions” (partial records, no data)

■ Retries: may lead to duplicate records in
some chunks

■ Client: handles broken/duplicate records

34

TU Dresden Distributed File Systems

EXAMPLE: RECORDS

35

„Record Header“
(contains checksum)

Record
Data

Duplicate
Records

Partial
Record

■ Client library:
Generic support for per-
record checksums

■ Application:
May add unique IDs to
record to help detect
duplicates

Chunk boundaries

Note: the example offers a conceptual view,
as the paper [5] does not have details on the
real data layout for records

TU Dresden Distributed File Systems

FILE NAMESPACE

36

crawls

/

map_tiles

foo

abc
xyz

...

51N13E

40N74E

43,0,s0

...

43,0,s1

81,23,s3

...

■ Hierarchical namespace

■ In Master’s memory

■ Master is multi-threaded:
concurrent access
possible (read/writer lock)

■ No “real” directories:
(+) Read-lock parent dirs,
 write-lock file’s name

(-) No readdir()

TU Dresden Distributed File Systems

EFFICIENT SNAPSHOTS

37

■ Copy-on-write snapshots are cheap:

■ Master revokes leases on chunks to be
snapshotted to temporarily block writes

■ Master acquires write locks on all
directories / files be snapshotted

■ Master creates new metadata structures
pointing to original chunks

■ Upon write access to chunks, master
delays client reply until chunkservers
duplicated respective chunks

TU Dresden Distributed File Systems

DELETING FILES

38

■ Deleting a file:
■ Renamed to hidden filename + timestamp
■ Can still be accessed under hidden name
■ Undelete possible via rename
■ Chunkservers not involved (yet)

■ Background scan of namespace:

■ Find deleted file based on special filename

■ Erase metadata if timestamp is older than
grace period

TU Dresden Distributed File Systems

GARBAGE COLLECTION

■ Garbage collection is background activity

■ Master:

■ Scans chunk namespace regularly

■ Chunks not linked from any file are obsolete

■ Chunkservers:

■ Send heartbeat messages to master

■ Receive list of obsolete chunks in reply

■ Delete obsolete chunks when convenient
39

TU Dresden Distributed File Systems

OUTLINE

40

■ Classical distributed file systems

■ NFS: Sun Network File System

■ AFS: Andrew File System

■ Parallel distributed file systems

■ Case study: The Google File System

■ Scalability

■ Fault tolerance

■ Other approaches

TU Dresden Distributed File Systems

MASTER & METADATA

41

■ Master is process on separate machine

■ Manages all metadata:

■ File namespace

■ File-to-chunk mappings

■ Chunk location information

■ Access control information

■ Chunk version information

■ Does not store/read/write any file data!

Cached in RAM

Persistently
stored on disk

TU Dresden Distributed File Systems

LOG + CHECKPOINTS

42

Client Master

Metadata
GFS

Client

(1) GFS client sends modifying
request

(2) Master logs requested
operation to its disk

(3) Master applies modification
to in-memory metadata

(4) Master sends reply to GFS
client

(4) reply

(1) request

Volatile memory

Persistent storage
(local file system)

Chkpt

Log of operations
since checkpoint

Chkpt

(2) new log entry written
 for requested operation

(3) updated metadata

TU Dresden Distributed File Systems

MASTER FAILURES

43

■ Fast restart from checkpoint+log, if
Master process dies, but ...

■ ... the Master’s machine might still fail!

■ Master replication:
■ Log + checkpoints replicated on multiple

machines

■ Changes considered committed after being
logged both locally and remotely

■ Clients are sent reply only after full commit

TU Dresden Distributed File Systems

SHADOW MASTERS

44

■ Only one (real) master is in charge, performs
background jobs (e.g., garbage collection)

■ For better read availability: Shadow Masters

■ Read replicated logs, apply observed
changes to their own in-memory metadata

■ Receive heartbeat messages from all
chunkservers, like real master

■ Can serve read-only requests, if real master
is down

TU Dresden Distributed File Systems

GFS: KEY TECHNIQUES

■ Scalability: metadata + data separated
■ Large chunk size, less coordination overhead

■ Simple, in-memory metadata (namespace,…)

■ Fault tolerant:
■ Replication: Master + chunks

■ More in paper [5]: checksums for chunks,
chunk replica recovery, ...

■ Non-POSIX: application use primitives that
suit their workload (e.g., record append)

45

TU Dresden Distributed File Systems

OUTLINE

46

■ Classical distributed file systems

■ NFS: Sun Network File System

■ AFS: Andrew File System

■ Parallel distributed file systems

■ Case study: The Google File System

■ Scalability

■ Fault tolerance

■ Other approaches

TU Dresden Distributed File Systems

OTHER APPROACHES

■ Distributed metadata servers:

■ Replicated state machine handles metadata

■ TidyFS, GPFS, ...

■ Distributed key–value stores:

■ Data stored as binary objects (blobs)

■ Read / write access via get() / put()

■ Multiple nodes store replicas of blobs

■ Consistent hashing determines location
47

TU Dresden Distributed File Systems

EXAMPLE: DYNAMO[7]

48

A
B

C

D
E

F

G

H

Key K (uniform
hash of name)

• N=3, node A is coordinator
for key K

• Nodes B, C, and D store
replicas in range (A,B)
including K

Example:

• Blobs replicated to N-1 neighboring nodes

• Gossip protocol used to inform neighbors
about key-range assignment

• First node (determined by position in key
range) is coordinator responsible for
replication to its N-1 sucessor nodes

• Coordinator node manages get() / put()
requests on N-1 sucessor nodes

• To account for node failures, more than N
adjacent nodes form a preference list

• Node failures may temporarily redirect
writes to nodes further down in the
preference list (in example on the left: D
may receive writes if A failed)

Overview: (details in paper [7])Nodes organized
in circle, handle
range of keys

TU Dresden Distributed File Systems

REFERENCES

49

Classical distributed file systems

[1] Text book: „Distributed Systems - Concepts and Design“, Couloris, Dollimore, Kindberg

[2] Basic lecture on distributed file systems from „Operating Systems and Security“ (in German)

Large-scale distributed file systems and applications

[3] Data processing at Worldwide LHC Computing Grid: http://lcg.web.cern.ch/LCG/public/data-
processing.htm

[4] „Finding a Needle in Haystack: Facebook's Photo Storage“, Doug Beaver, Sanjeev Kumar, Harry
C. Li, Jason Sobel, Peter Vajgel, OSDI‘10, Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, 2010

[5] „The Google File System“, Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, SOSP'03
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, 2003

[6] „The Google File System“, Slides presented at SOSP '03, copy provided by the authors mirrored
on DOS lecture website: http://os.inf.tu-dresden.de/Studium/DOS/SS2012/GFS-SOSP03.pdf

[7] „Dynamo: Amazon’s Highly Available Key-value Store“, Giuseppe DeCandia, Deniz Hastorun,
Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels, SOSP'09 Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, 2009

http://lcg.web.cern.ch/LCG/public/data-processing.htm
http://os.inf.tu-dresden.de/Studium/DOS/SS2012/GFS-SOSP03.pdf

