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■ Classical distributed file systems 

■ NFS: Sun Network File System 

■ AFS: Andrew File System 

■ Parallel distributed file systems 

■ Case study: The Google File System 

■ Scalability 

■ Fault tolerance 

■ Other approaches
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Simplified idea: 
Forward all file system 
operations to server via 
network RPC.
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Multiple servers possible, 
but cooperation and 
consistency become 
difficult.
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SUN NFS (V2, V3)
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API As close to UNIX as possible

Names/Lookup Message to file server for each path element

Open/Close Unique NFS handle per file, no state on server

Read/Write Messages to read/write blocks, small block size

Caching (client) Metadata (e.g., NFS handle), data blocks

Consistency Consistency messages exchanged regularly, 
clients might see stale data/metadata

Replication Multiple read-only servers (if synced manually)

Fault Handling Write through on server (v2), idempotent 
client writes, clients block if server crashed
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ANDREW FILE SYSTEM
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API As close to UNIX as possible

Names/Lookup Name resolution on client, uses dir caches

Open/Close Local file, might need to transmit from/to server

Read/Write Local file, but some work in open/close phase

Caching (client) Complete files, LRU replacement if needed

Consistency Callback promises: server informs client, if 
another client wants to modify a cached file

Replication Pool of servers, may improve performance

Fault Handling Some (e.g., client can still access files in 
local cache if network or servers fail)
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DFS SCALABILITY

■ Work well for home directories (e.g., AFS) 

■ POSIX consistency causes complexity: 

■ Cache coherency traffic (e.g., AFS callbacks) 

■ Write semantics (e.g., may need distributed 
locks for concurrent writes to same file) 

■ One-to-one mapping: 

■ File in DFS is file on server (higher load?)  

■ Servers must cache both metadata+data
7
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INCOMING DAILY
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ATLAS Experiment © 2012 CERN, Image source: 
http://www.atlas.ch/photos/full-detector-photos.html

Scientific Computing: 

Approximately 1 GB/s of data 
generated at the Worldwide 
LHC Computing Grid. This is 
after two filtering stages ... [3]

Social Media: 
„Facebook serves over one million images per second at 
peak. [...] our previous approach [...] leveraged network 
attached storage appliances over NFS. Our key observation is 
that this traditional design incurs an excessive number of 
disk operations because of metadata lookups.“ [4]

Image source: 
http://facebook.com
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PARALLEL FILE SYSTEMS

12

Local FS

File Server

DFS 
(Client)

Application

Client Machine

DFS 
(Client)

Application

Client Machine

DFS (Metadata)

Coordination, 
Consistency

DFS 
(Server)

DFS 
(Server, data only)Data transfer

Coordination 
Heartbeat

M
et

ad
at

a 
  o

pe
ra

tio
ns



TU Dresden Distributed File Systems

LARGER DESIGN SPACE

■ Better load balancing: 

■ Few servers handle metadata only 

■ Many servers serve (their) data 

■ More flexibility, more options: 

■ Replication, fault tolerance built in 

■ Specialized APIs for different workloads 

■ Lower hardware requirements per machine 

■ Client and data server on same machine
13
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PARALLEL FILE SYSTEMS

■ Lustre 

■ GFS 

■ GPFS 

■ PVFS 

■ HadoopFS 

■ TidyFS 

■ ...

14
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GFS KEY DESIGN  GOALS
■ Scalability: 

■ High throughput, parallel reads/writes 

■ Fault tolerance built in: 

■ Commodity components might fail often 

■ Network partitioning can happen 

■ Re-examine standard I/O semantics: 

■ Complicated POSIX semantics vs. scalable 
primitives vs. common workloads 

■ Co-design file system and applications
16
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GFS ARCHITECTURE
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• Chunkservers store data as 
chunks, which are files in 
local Linux file system 

• Master manages metadata 
(e.g., which chunks belong to 
which file, etc.)
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MASTER & METADATA
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■ Master is process on separate machine 

■ Manages all metadata: 

■ File namespace 

■ File-to-chunk mappings 

■ Chunk location information 

■ Chunk version information  

■ Access control information 

■ Does not store/read/write any file data!
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FILES & CHUNKS
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■ Files are made of (multiple) chunks: 

■ Chunk size: 64 MiB 

■ Stored on chunkserver, in Linux file system 

■ Referenced by chunk handle (i.e., filename 
in Linux file system) 

■ Replicated across multiple chunkservers 

■ Chunkservers located in different racks
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FILES & CHUNKS
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C4 C6 C8 C9

File /some/dir/f: 
   Chunk C4: (S1,S2,S3) 
   Chunk C6: (S1,S2,S3) 
   Chunk C8: (S1,S3,S4) 
   Chunk C9: (S1,S2,S4) C4 C6 C8 C9

Chunks, replicated on chunk servers (S1,S2,S3,...)

Logical view of file

Metadata describing file
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ACCESSING FILES
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■ Client accesses file in two steps: 

(1) Contact Master to retrieve metadata 

(2) Talk to chunkservers directly 

■ Benefits: 

■ Metadata is small (one master can handle it) 

■ Metadata can be cached at client 

■ Master not involved in data operations 

■ Note: clients cache metadata, but not data



TU Dresden Distributed File Systems

READ ALGORITHM
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(2) GFS client translates request from 
(filename, byte range) to (filename, 
chunk index) and sends it to 
master 

(3) Master responds with (chunk 
handle, replica locations)
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READ ALGORITHM
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(4) (chunk handle, 
     byte range)

(5) data

(4) GFS client picks location and sends 
(chunk handle, byte range) request 
to that location 

(5) Chunkserver sends requested data 
to client 

(6) Client forwards data to application
(6) data
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READ PERFORMANCE
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■ Division of work reduces load: 

■ Master provides metadata quickly (in RAM) 

■ Multiple chunkservers available 

■ One chunkserver (e.g., the closest one) is 
selected for delivering requested data 

■ Chunk replicas equally distributed across 
chunkservers for load balancing 

■ Can we do this for writes, too?
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WRITE ALGORITHM
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HOW TO WRITE DATA?
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send data 3x to 3 locations?

• Data needs to be pushed to all 
chunkservers to reach required 
replication count 

• Client could send a copy to each 
chunkserver on its own, but that could 
cause contention on its network link 

• This might not scale ...
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PIPELINING WRITES
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■ Sending data over client’s network card 
multiple times is inefficient, but ... 

■ ... network cards can send and receive at 
the same time at full speed (full duplex) 

■ Idea: Pipeline data writes 

■ Client sends data to just one chunkserver 

■ Chunkserver starts forwarding data to next 
chunkserver, while still receiving more data 

■ Multiple links utilized, lower latency
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WRITE ALGORITHM
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Write algorithm, continued: 

(1) GFS Client sends data to first chunkserver 

(2) While receiving: first chunkserver forwards 
received data to second chunkserver, second 
chunkserver forwards to third replica location, 
...

(4) (data)
(5)
(data)

Data buffered on servers at 
first, but not applied to chunks 
immediately. 

Open questions: 
• How to coordinate  

concurrent writes? 
• What if a write fails?

(5)
(data)

Source [6]
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REPLICA TYPES
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■ Primary: 
■ Determines serial order of pending writes 
■ Forwards write command + serial order 

■ Secondary: 
■ Execute writes as ordered by primary 
■ Replies to primary (success or failure) 

■ Replica roles determined by Master: 

■ Tells client in step (2) of write algorithm 

■ Decided per chunk, not per chunkserver
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WRITE ALGORITHM
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Write algorithm, continued: 

(6) GFS Client sends write command to primary 

(7) Primary determines serial order of writes, then 
writes buffered data to its chunk replica 

(8) Primary forwards (write command, serial order) to 
secondaries 

(9) Secondaries execute writes, respond to primary 

(10) Primary responds to GFS client

(7)

(11) write done

(10) (response) Source [6]

(6) (write command)
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WRITE SEMANTICS
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■ Multiple clients can write concurrently 

■ Things to consider: 

■ Clients determine offset in chunk 

■ Concurrent writes to overlapping byte 
ranges possible, may cause overwrites 

■ Last writer wins, as determined by primary 

■ Problem: what if multiple clients want to 
write to a file and no write must be lost?
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ATOMIC RECORD APPEND
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■ Append is common workload (at Google): 

■ Multiple clients merge results in single file 

■ Must not overwrite others’ records, but 
specific order not important 

➡ Use file as consumer-producer queue! 

■ Primary + secondary chunkservers agree 
on common order of records 

■ Client library provides record abstraction
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APPEND ALGORITHM
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(1) Application originates append request 

(2) GFS client translates, sends it to master 

(3) Master responds with (chunk handle, 
primary+secondary replica locations) 

(4) Client pushes data to locations (pipelined) 

(5) Primary check, if record fits into chunk

Case (B): Does not fit, primary does: 

(6) Pads chunk 

(7) Tells secondaries to do the same 

(8) Informs client about padding 

(9) Client retries with next chunk

Case (A): It fits, primary does: 

(6) Appends record to end of chunk 

(7) Tells secondaries to do the same 

(8) Receives responses from all 
secondaries 

(9) Sends final response to client

Source [6]
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HANDLING RECORDS

■ GFS guarantees: 
■ Records are appended atomically (not 

fragmented, not partially overwritten) 

■ Each record is appended at least once 

■ Failed append: may lead to “undefined 
regions” (partial records, no data) 

■ Retries: may lead to duplicate records in 
some chunks 

■ Client: handles broken/duplicate records

34
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EXAMPLE: RECORDS
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„Record Header“ 
(contains checksum)

Record 
Data

Duplicate 
Records

Partial 
Record

■ Client library: 
Generic support for per-
record checksums 

■ Application: 
May add unique IDs to 
record to help detect 
duplicates

Chunk boundaries

Note: the example offers a conceptual view, 
as the paper [5] does not have details on the 
real data layout for records
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FILE NAMESPACE
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crawls

/

map_tiles

foo

abc
xyz

...

51N13E

40N74E

43,0,s0

...

43,0,s1

81,23,s3

...

■ Hierarchical namespace 

■ In Master’s memory 

■ Master is multi-threaded: 
concurrent access 
possible (read/writer lock) 

■ No “real” directories: 
(+)  Read-lock parent dirs, 
   write-lock file’s name 

(-)  No readdir()
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EFFICIENT SNAPSHOTS
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■ Copy-on-write snapshots are cheap: 

■ Master revokes leases on chunks to be 
snapshotted to temporarily block writes 

■ Master acquires write locks on all 
directories / files be snapshotted 

■ Master creates new metadata structures 
pointing to original chunks 

■ Upon write access to chunks, master 
delays client reply until chunkservers 
duplicated respective chunks



TU Dresden Distributed File Systems

DELETING FILES
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■ Deleting a file: 
■ Renamed to hidden filename + timestamp 
■ Can still be accessed under hidden name 
■ Undelete possible via rename 
■ Chunkservers not involved (yet) 

■ Background scan of namespace: 

■ Find deleted file based on special filename 

■ Erase metadata if timestamp is older than 
grace period
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GARBAGE COLLECTION

■ Garbage collection is background activity 

■ Master: 

■ Scans chunk namespace regularly 

■ Chunks not linked from any file are obsolete 

■ Chunkservers: 

■ Send heartbeat messages to master 

■ Receive list of obsolete chunks in reply 

■ Delete obsolete chunks when convenient
39
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■ AFS: Andrew File System 

■ Parallel distributed file systems 

■ Case study: The Google File System 
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■ Other approaches
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MASTER & METADATA
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■ Master is process on separate machine 

■ Manages all metadata: 

■ File namespace 

■ File-to-chunk mappings 

■ Chunk location information 

■ Access control information 

■ Chunk version information 

■ Does not store/read/write any file data!

Cached in RAM

Persistently 
stored on disk
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LOG + CHECKPOINTS
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Client Master

Metadata
GFS 

Client

(1) GFS client sends modifying 
request 

(2) Master logs requested 
operation to its disk 

(3) Master applies modification 
to in-memory metadata 

(4) Master sends reply to GFS 
client

(4) reply

(1) request

Volatile memory

Persistent storage 
(local file system)

Chkpt

Log of operations 
since checkpoint

Chkpt

(2) new log entry written 
     for requested operation

(3) updated metadata
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MASTER FAILURES
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■ Fast restart from checkpoint+log, if 
Master process dies, but ... 

■ ... the Master’s machine might still fail! 

■ Master replication: 
■ Log + checkpoints replicated on multiple 

machines 

■ Changes considered committed after being 
logged both locally and remotely 

■ Clients are sent reply only after full commit



TU Dresden Distributed File Systems

SHADOW MASTERS
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■ Only one (real) master is in charge, performs 
background jobs (e.g., garbage collection)  

■ For better read availability: Shadow Masters 

■ Read replicated logs, apply observed 
changes to their own in-memory metadata 

■ Receive heartbeat messages from all 
chunkservers, like real master 

■ Can serve read-only requests, if real master 
is down
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GFS: KEY TECHNIQUES

■ Scalability: metadata + data separated 
■ Large chunk size, less coordination overhead 

■ Simple, in-memory metadata (namespace,…) 

■ Fault tolerant: 
■ Replication: Master + chunks 

■ More in paper [5]: checksums for chunks, 
chunk replica recovery, ... 

■ Non-POSIX: application use primitives that 
suit their workload (e.g., record append)

45
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OTHER APPROACHES

■ Distributed metadata servers: 

■ Replicated state machine handles metadata 

■ TidyFS, GPFS, ... 

■ Distributed key–value stores: 

■ Data stored as binary objects (blobs) 

■ Read / write access via get() / put() 

■ Multiple nodes store replicas of blobs 

■ Consistent hashing determines location
47



TU Dresden Distributed File Systems

EXAMPLE: DYNAMO[7]
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A
B

C

D
E

F

G

H

Key K (uniform 
hash of name)

• N=3, node A is coordinator 
for key K 

• Nodes B, C, and D store 
replicas in range (A,B) 
including K 

Example:

• Blobs replicated to N-1 neighboring nodes 

• Gossip protocol used to inform neighbors 
about key-range assignment 

• First node (determined by position in key 
range) is coordinator responsible for 
replication to its N-1 sucessor nodes 

• Coordinator node manages get() / put() 
requests on N-1 sucessor nodes 

• To account for node failures, more than N 
adjacent nodes form a preference list 

• Node failures may temporarily redirect 
writes to nodes further down in the 
preference list (in example on the left: D 
may receive writes if A failed)

Overview: (details in paper [7])Nodes organized 
in circle, handle 
range of keys
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