
1

Distributed Operating Systems

Synchronization in Parallel Systems

Marcus Völp
2015

Distributed Operating Systems 2013 Marcus Völp 2

Topics

 Synchronization

 Locks

 Performance

Distributed Operating Systems 2013 Marcus Völp 3

Overview
 Introduction

 Hardware Primitives

 Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

 Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 4

Introduction

Example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail

Distributed Operating Systems 2013 Marcus Völp 5

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head

Distributed Operating Systems 2013 Marcus Völp 6

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer

Distributed Operating Systems 2013 Marcus Völp 7

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer

Distributed Operating Systems 2013 Marcus Völp 8

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer

Distributed Operating Systems 2013 Marcus Völp 9

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer

Distributed Operating Systems 2013 Marcus Völp 10

Introduction

First Solution

Locks

coarse grained: lock entire list

 lock(list);
list->insert_element;

unlock(list);

fine grained: lock list elements

 retry:
lock(head);
if (trylock(head->next)) {
head->insert_element;
unlock(head->next);

} else {
unlock(head);
goto retry;

}

L L

Distributed Operating Systems 2013 Marcus Völp 11

Mutual Exclusion
without Locks / Atomic Read-Modify-Write Instructions

Last lecture: Decker / Peterson

requires:

 atomic stores, atomic loads

 sequential consistency (or memory fences)

bool flag[2] = {false, false};

int turn = 0;

void entersection(int thread) {

int other = 1 - thread; /* id of other thread; thread in {0,1}*/

flag[thread] = true; /* show interest */

turn= other; /* give precedence to other thread */

while (turn == other && flag[other]) {}; /* wait */

}

void leavesection(int thread) {

flag[thread] = false;

}

Distributed Operating Systems 2013 Marcus Völp 12

Atomic Hardware Instructions

[Lipton 95] a, b are atomic if A || B = A;B or B;A

Read-Modify-Write Instructions are typically not atomic:

 A B
add &x, 1 || mov &x, 2 (x = 0)

are typically executes as:

 load &x → Reg

add Reg + 1 || store 2 → &x

store Reg → &x

Distributed Operating Systems 2013 Marcus Völp 13

Atomic Hardware Instructions

[Lipton 95] a, b are atomic if A || B = A;B or B;A

Read-modify-write Instructions are typically not atomic:

 A B
add &x, 1 || mov &x, 2 (x = 0)

are typically executes as:

 load &x → Reg

add Reg + 1 || store 2 → &x

store Reg → &x

 Above interleaving for A || B => x = 1

 but A;B => x = 2,

B;A => x = 3

Distributed Operating Systems 2013 Marcus Völp 14

Atomic Hardware Instructions

How to make instructions atomic
Bus lock
Lock memory bus until all memory accesses of an RMW instruction have completed (e.g., Intel
Pentium 3 and older x86 CPUs)

lock; add [eax], 1

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

retry:
load_linked &x → R;

modify R;
if (! store_conditional(R → &x))

goto retry:

 HW Transactional Memory

 watchdog for multiple cachelines

 discard changes on concurrent access

Distributed Operating Systems 2013 Marcus Völp 15

Atomic Hardware Instructions

How to make instructions atomic

Observe Cache

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

S | x

CPU 1

S | x
RFO(&x)

Distributed Operating Systems 2013 Marcus Völp 16

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

E | x

CPU 1

I |

Distributed Operating Systems 2013 Marcus Völp 17

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

E | x

read / write &x

CPU 1

I |
request &x

Distributed Operating Systems 2013 Marcus Völp 18

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

E | x

read / write &x

CPU 1

I |
request &x

delay reply until store completes

Distributed Operating Systems 2013 Marcus Völp 19

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x [E → M]

CPU 0

M | x

read / write &x

CPU 1

I |
request &x

Distributed Operating Systems 2013 Marcus Völp 20

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x [E → M]

[M → S / I] [I → S / M]
CPU 0

S / I | x

read / write &x

CPU 1

S / M | x
reply

Distributed Operating Systems 2013 Marcus Völp 21

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S | x

CPU 1

S | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

load_linked

Distributed Operating Systems 2013 Marcus Völp 22

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

CPU 1

I |

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

load_linked

Distributed Operating Systems 2013 Marcus Völp 23

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

&x is only in local cache
=> store_conditional succeeds

Distributed Operating Systems 2013 Marcus Völp 24

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

CPU 1

S / M | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

read / write &x

request &x

Distributed Operating Systems 2013 Marcus Völp 25

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

read / write &x

&x can be in remote caches
=> store_conditional fails

Distributed Operating Systems 2013 Marcus Völp 26

Atomic Hardware Instructions

Read-Modify-Write Instructions
bit test and set - bts (bit)

 if (bit clear) { set bit ; return true; } else { return false; }

Exchange - swap (mem, R)

 &mem → tmp; R → &mem; tmp → R;

fetch and add - xadd (mem, R)

 &mem → tmp; &mem += R; return tmp;

compare and swap - cas (mem, expected, desired)

 if (&mem == expected) {

desired → &mem; return true;

} else {

return false;

}

double “address” compare and swap –
cas (mem1, mem2, exp1, exp2, des1, des2)

 swap mem1 ↔ des1, mem2 ↔ des2 iff

mem1 == exp1 & mem2 == exp2

Distributed Operating Systems 2013 Marcus Völp 27

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 28

Synchronization with Locks

Properties

 overhead

 fine-grained locking => critical sections are short

 minimize overhead to take the lock if it is free

 fairness

 every thread should obtain the lock after a finite amount of time

 (real-time:) … latest after x * |CS| seconds

 timeouts / abort lock() operation

 kill threads that compete for the lock

 run fixup code if thread fails to acquire the lock before timeout

 reader / writer locks

 concurrent readers may enter the lock at the same time

 lockholder preemption

 avoid blocking other threads on a descheduled lockholder

 priority inversion

 ! Not covered in this lecture (RTS / MKK)

 spinning vs. blocking

 release CPU while others hold the lock

Distributed Operating Systems 2013 Marcus Völp 29

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

Distributed Operating Systems 2013 Marcus Völp 30

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

Lock holder

CPU 0 CPU 1 CPU 2 CPU 3

L [M] L [I] L [I] L [I]

Distributed Operating Systems 2013 Marcus Völp 31

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

Lock holderSwap

CPU 0 CPU 1 CPU 2 CPU 3

L [I] L [M] L [I] L [I]

Distributed Operating Systems 2013 Marcus Völp 32

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

Lock holder Swap

CPU 0 CPU 1 CPU 2 CPU 3

L [I] L [I] L [I] L [M]

Distributed Operating Systems 2013 Marcus Völp 33

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

do { } while (L == 1);

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

L [I] L [I] L [M] L [I]

Lock holder

Spin locally while lock is held
=> reduces bus traffic

Distributed Operating Systems 2013 Marcus Völp 34

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

do { } while (L == 1);

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

L [S] L [S] L [S] L [I]

Lock holder

Spin locally while lock is held
=> reduces bus traffic

1st rd 1st rd

Distributed Operating Systems 2013 Marcus Völp 35

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

do { } while (L == 1);

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

L [S] L [S] L [S] L [I]

Lock holder

Spin locally while lock is held
=> reduces bus traffic

2nd + rd 2nd + rd

Distributed Operating Systems 2013 Marcus Völp 36

Synchronization with Locks

Fairness

lock

test
test

unlock

test
lock

unlock

test

test
lock

test

free

free

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 37

Synchronization with Locks

Fairness: Ticket Lock

fetch and add (xadd)

lock_struct {

next_ticket,

current_ticket

}

ticket_lock (lock_struct & l) {

my_ticket = xadd (&l.next_ticket, 1)

do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

current_ticket ++;

}

[my_ticket] current next

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 38

Synchronization with Locks

Fairness: Ticket Lock

fetch and add (xadd)

lock_struct {

next_ticket,

current_ticket

}

ticket_lock (lock_struct & l) {

my_ticket = xadd (&l.next_ticket, 1)

do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

current_ticket ++;

}

[my_ticket] current next
0 0

L.CPU0 [0]: 0 1 => Lockholder = CPU0
L.CPU1 [1]: 0 2
L.CPU2 [2]: 0 3

U.CPU0 [0]: 1 3 => Lockholder = CPU1

L.CPU3 [3]: 1 4
L.CPU0 [4]: 1 5

U.CPU1 [1]: 2 5 => Lockholder = CPU 2

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 39

Synchronization with Locks

Fairness: Ticket Lock

fetch and add (xadd)

lock_struct {

next_ticket,

current_ticket

}

ticket_lock (lock_struct & l) {

my_ticket = xadd (&l.next_ticket, 1)

do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct &l) {

current_ticket ++;

}

Spin on global variable

write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU 0 CPU 1 CPU 2 CPU 3

However:
- Signal all CPUs not only next
- Abort / timeout of competing threads

Distributed Operating Systems 2013 Marcus Völp 40

parallel readswrite

More Local Spinning

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to forward write on Bus 2-3

CPU 0 CPU 1

CPU 2 CPU 3

msg

3 Network Messages

16 core AMD Opteron:
4 chips with 4 cores + partitioned RAM
internal crossbar to access L1 / L2 on local chip

source: [corey08]

Distributed Operating Systems 2013 Marcus Völp 41

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 42

Synchronization without Locks

prev

new

next

insert(new_elem, prev) {
retry:
new_elem.next = prev.next;
if (not CAS(prev.next == prev.next, new_elem)) goto retry;

}

prev

new

next

insert(new_elem, prev) {
retry:
next = prev.next;
new_elem.next = prev.next;
new_elem.prev = prev;
if (not DCAS(prev.next == next && next.prev ==prev,

prev.next = new_elem, next.prev = new_elem))
goto retry;

}

A quick intermezzo to lock-free synchronization

Distributed Operating Systems 2013 Marcus Völp 43

Synchronization without Locks

Load Linked, Store Conditional

insert (prev, new_elem) {

retry:

load_linked (prev.next);

new_elem.next = prev.next;

if (! store_conditional (prev.next, new_elem)) goto retry;

}

Distributed Operating Systems 2013 Marcus Völp 44

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 45

MCS-Lock
Fairness + Local Spinning
by Mellor-Crummey and Scott

nextL

nextL

nextL

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 46

MCS-Lock
Fairness + Local Spinning
by Mellor-Crummey and Scott

next1

next1

next1

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 47

MCS-Lock
Fairness + Local Spinning
by Mellor-Crummey and Scott

next1

next1

next1

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 48

MCS-Lock

Fair Lock with Local Spinning

next1

next1

next1

Tail T

next1

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 49

MCS-Lock

Fair Lock with Local Spinning

next1

next1

next1

Tail T

next1

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 50

MCS-Lock

Fair Lock with Local Spinning

next1

next0

next1

Tail T

next1

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 51

MCS Locks

Fair, local spinning
atomic compare exchange:

cmpxchg (T == Expected, Desired)

lock(Node * & T, Node * I) {

I->next = null;

I->Lock = false;

Node * prev = swap(T, I);

if (prev) {

prev->next = I;

do {} while (I->Lock == false);

}

}

unlock (Node * & T, Node * I) {

if (!I->next) {

if (cmpxchg (T == I, 0)) return; // no waiting cpu

do { } while (!I->next); // spin until the following process

updates the next pointer

}

I->next->Lock = true;

}

Distributed Operating Systems 2013 Marcus Völp 52

Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory through log4(depth) switched network
Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]: “Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”

Distributed Operating Systems 2013 Marcus Völp 53

Performance

16 core AMD Opteron

Source: [corey 08]

Distributed Operating Systems 2013 Marcus Völp 54

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 55

Special Issues

No longer apply for lock

 after timeout

 to kill / signal competing thread

Spin Lock: (trivial: stop spinning)

Ticket Lock: my_ticket current

0 0

1 1

2

3 spin forever

MCS Lock: (see Exercises)

 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2013 Marcus Völp 56

Special Issues

No longer apply for lock

 after timeout

 to kill / signal competing thread

Spin Lock: (trivial: stop spinning)

Ticket Lock: my_ticket current

0 0

1 +1 => lock is unsafe

2

3

MCS Lock: (see Exercises)

 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2013 Marcus Völp 57

Special Issues

No longer apply for lock

 after timeout

 to kill / signal competing thread

Spin Lock: (trivial: stop spinning)

Ticket Lock: my_ticket current

0 0

1

2

3

MCS Lock: (see Exercises)

 dequeue nodes of competing threads

adjust my_ticket of others:
tricky (my_ticket is local)

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2013 Marcus Völp 58

Special Issues

Reader Writer Locks

Lock differentiates two types of lock holders:

 Readers:

 Don't modify the lock-protected object

 Multiple readers may hold the lock at the same time

 Writers:

 Modify the protected object

 Writers must hold the lock exclusively

Fairness

 Improve reader latency by allowing readers to

overtake writers (=> unfair lock)

Distributed Operating Systems 2013 Marcus Völp 59

Special Issues

Fair Ticket Reader-Writer Lock

co-locate reader tickets and writer tickets

lock read (next, current) {
my_ticket = xadd (next, 1);
do {} while (current.write != my_ticket.write);

}

lock write (next, current) {
my_ticket = xadd (next.write, 1);
do {} while (current != my_ticket);

}

unlock_read () {
xadd (current.read, 1);

}

unlock write () {
current.write ++;

}

readwrite

current next R0 R1 W2 R3
0 0 0 0 0 0

0 1 0 1
0 2 0 2
1 2 1 2

Distributed Operating Systems 2013 Marcus Völp 60

Special Issues

Fair Ticket Reader-Writer Lock

combine read, write ticket in single word

Correctness of Lock:

1) no counter must overflow:
=>

max count value >=
max #threads that simultaneously

attempt to acquire the lock

2) no overflow from read to write:

e.g., 8-bit counter: read = 0xff, write = 5

xadd(next, 1) => read = 0, write = 6

=> 1-bit to separate read from write field
always clear this bit before xadd

readwrite

readwrite

readwrite

xadd => overflow

1

0

clear flag before next xadd

Read won't overflow again unless 2^n CPUs
are preempted after clear flag (i.e. 2^n
xadds in sequence)

=> Condition (1) prevents this

Distributed Operating Systems 2013 Marcus Völp 61

Special Issues

Source: [corey 08]

Source: [johnson 10]

Distributed Operating Systems 2013 Marcus Völp 62

Special Issues

Lockholder preemption

Spinning-time of other CPUs increase by the time the lockholder is
preempted

 worse for ticket lock / MCS

 grant free lock to preempted thread

=> do not preempt lock holders

spin_lock(lock_var) {

pushf; // store whether interrupts were already closed

do {

popf;

reg = 1;

do {} while (lock_var == 1); spin_unlock(lock_var) {

pushf; lock_var = 0;

cli; popf;

swap(lock_var, reg); }

} while (reg == 1);

}

Distributed Operating Systems 2013 Marcus Völp 63

Special Issues

Monitor, Mwait

Stop CPU / HT while waiting for lock (signal)

Saves power

Frees up processor resources (HT)

Monitor: watch cacheline

Mwait: stop CPU / HT until:

cacheline has been written, or

interrupt occurs

while (trigger[0] != value) {

monitor (&trigger[0])

if (trigger[0] != value) {

mwait

}

}

CPU 0 CPU 1

mwait

write to trigger

t

Distributed Operating Systems 2013 Marcus Völp 64

References

Scheduler-Conscious Synchronization

LEONIDAS I. KONTOTHANASSIS, ROBERT W. WISNIEWSKI, MICHAEL L.
SCOTT

Scalable Reader- Writer Synchronization for Shared-Memory Multiprocessors

John M. Mellor-Crummey, Michael L. Scottt

Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors

JOHN M. MELLOR-CRUMMEY, MICHAEL L.

Concurrent Update on Multiprogrammed Shared Memory Multiprocessors

Maged M. Michael, Michael L. Scott

Scalable Queue-Based Spin Locks with Timeout

Michael L. Scott and William N. Scherer III

Distributed Operating Systems 2013 Marcus Völp 65

References

Reactive Synchronization Algorithms for Multiprocessors

B. Lim, A. Agarwal

Lock Free Data Structures

John D. Valois (PhD Thesis)

Reduction: A Method for Proving Properties of Parallel Programs

R. Lipton - Communications of the ACM 1975

Decoupling Contention Management from Scheduling (ASPLOS 2010)

F.R. Johnson, R. Stoica, A. Ailamaki, T. Mowry

Corey: An Operating System for Many Cores (OSDI 2008)

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang

Distributed Operating Systems 2013 Marcus Völp 66

MESI

