
1

Distributed Operating Systems

Synchronization in Parallel Systems

Marcus Völp
2015

Distributed Operating Systems 2013 Marcus Völp 2

Topics

 Synchronization

 Locks

 Performance

Distributed Operating Systems 2013 Marcus Völp 3

Overview
 Introduction

 Hardware Primitives

 Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

 Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 4

Introduction

Example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail

Distributed Operating Systems 2013 Marcus Völp 5

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head

Distributed Operating Systems 2013 Marcus Völp 6

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer

Distributed Operating Systems 2013 Marcus Völp 7

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer

Distributed Operating Systems 2013 Marcus Völp 8

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer

Distributed Operating Systems 2013 Marcus Völp 9

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer

Distributed Operating Systems 2013 Marcus Völp 10

Introduction

First Solution

Locks

coarse grained: lock entire list

 lock(list);
list->insert_element;

unlock(list);

fine grained: lock list elements

 retry:
lock(head);
if (trylock(head->next)) {
head->insert_element;
unlock(head->next);

} else {
unlock(head);
goto retry;

}

L L

Distributed Operating Systems 2013 Marcus Völp 11

Mutual Exclusion
without Locks / Atomic Read-Modify-Write Instructions

Last lecture: Decker / Peterson

requires:

 atomic stores, atomic loads

 sequential consistency (or memory fences)

bool flag[2] = {false, false};

int turn = 0;

void entersection(int thread) {

int other = 1 - thread; /* id of other thread; thread in {0,1}*/

flag[thread] = true; /* show interest */

turn= other; /* give precedence to other thread */

while (turn == other && flag[other]) {}; /* wait */

}

void leavesection(int thread) {

flag[thread] = false;

}

Distributed Operating Systems 2013 Marcus Völp 12

Atomic Hardware Instructions

[Lipton 95] a, b are atomic if A || B = A;B or B;A

Read-Modify-Write Instructions are typically not atomic:

 A B
add &x, 1 || mov &x, 2 (x = 0)



are typically executes as:

 load &x → Reg

add Reg + 1 || store 2 → &x

store Reg → &x

Distributed Operating Systems 2013 Marcus Völp 13

Atomic Hardware Instructions

[Lipton 95] a, b are atomic if A || B = A;B or B;A

Read-modify-write Instructions are typically not atomic:

 A B
add &x, 1 || mov &x, 2 (x = 0)



are typically executes as:

 load &x → Reg

add Reg + 1 || store 2 → &x

store Reg → &x

 Above interleaving for A || B => x = 1

 but A;B => x = 2,

B;A => x = 3

Distributed Operating Systems 2013 Marcus Völp 14

Atomic Hardware Instructions

How to make instructions atomic
Bus lock
Lock memory bus until all memory accesses of an RMW instruction have completed (e.g., Intel
Pentium 3 and older x86 CPUs)

lock; add [eax], 1

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

retry:
load_linked &x → R;

modify R;
if (! store_conditional(R → &x))

goto retry:

 HW Transactional Memory

 watchdog for multiple cachelines

 discard changes on concurrent access

Distributed Operating Systems 2013 Marcus Völp 15

Atomic Hardware Instructions

How to make instructions atomic

Observe Cache

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

S | x

CPU 1

S | x
RFO(&x)

Distributed Operating Systems 2013 Marcus Völp 16

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

E | x

CPU 1

I |

Distributed Operating Systems 2013 Marcus Völp 17

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

E | x

read / write &x

CPU 1

I |
request &x

Distributed Operating Systems 2013 Marcus Völp 18

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x

CPU 0

E | x

read / write &x

CPU 1

I |
request &x

delay reply until store completes

Distributed Operating Systems 2013 Marcus Völp 19

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x [E → M]

CPU 0

M | x

read / write &x

CPU 1

I |
request &x

Distributed Operating Systems 2013 Marcus Völp 20

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

Delay snoop traffic until all memory accesses of RMW instruction have completed (e.g., Intel

Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
1. read_for_ownership(&x) [→ E] [→ I]
2. load &x → R
3. add R += 1
4. store R → &x [E → M]

[M → S / I] [I → S / M]
CPU 0

S / I | x

read / write &x

CPU 1

S / M | x
reply

Distributed Operating Systems 2013 Marcus Völp 21

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S | x

CPU 1

S | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

load_linked

Distributed Operating Systems 2013 Marcus Völp 22

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

CPU 1

I |

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

load_linked

Distributed Operating Systems 2013 Marcus Völp 23

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

&x is only in local cache
=> store_conditional succeeds

Distributed Operating Systems 2013 Marcus Völp 24

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

CPU 1

S / M | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

read / write &x

request &x

Distributed Operating Systems 2013 Marcus Völp 25

Atomic Hardware Instructions

How to make instructions atomic
Observe Cache
Install cache watchdog on load

Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

1. load_linked &x → R [→ E] [→ I]
2. add R += 1
3. store_conditional R → &x [if (E) → M else abort]

read / write &x

&x can be in remote caches
=> store_conditional fails

Distributed Operating Systems 2013 Marcus Völp 26

Atomic Hardware Instructions

Read-Modify-Write Instructions
bit test and set - bts (bit)

 if (bit clear) { set bit ; return true; } else { return false; }

Exchange - swap (mem, R)

 &mem → tmp; R → &mem; tmp → R;

fetch and add - xadd (mem, R)

 &mem → tmp; &mem += R; return tmp;

compare and swap - cas (mem, expected, desired)

 if (&mem == expected) {

desired → &mem; return true;

} else {

return false;

}

double “address” compare and swap –
cas (mem1, mem2, exp1, exp2, des1, des2)

 swap mem1 ↔ des1, mem2 ↔ des2 iff

mem1 == exp1 & mem2 == exp2

Distributed Operating Systems 2013 Marcus Völp 27

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 28

Synchronization with Locks

Properties

 overhead

 fine-grained locking => critical sections are short

 minimize overhead to take the lock if it is free

 fairness

 every thread should obtain the lock after a finite amount of time

 (real-time:) … latest after x * |CS| seconds

 timeouts / abort lock() operation

 kill threads that compete for the lock

 run fixup code if thread fails to acquire the lock before timeout

 reader / writer locks

 concurrent readers may enter the lock at the same time

 lockholder preemption

 avoid blocking other threads on a descheduled lockholder

 priority inversion

 ! Not covered in this lecture (RTS / MKK)

 spinning vs. blocking

 release CPU while others hold the lock

Distributed Operating Systems 2013 Marcus Völp 29

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

Distributed Operating Systems 2013 Marcus Völp 30

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

Lock holder

CPU 0 CPU 1 CPU 2 CPU 3

L [M] L [I] L [I] L [I]

Distributed Operating Systems 2013 Marcus Völp 31

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

Lock holderSwap

CPU 0 CPU 1 CPU 2 CPU 3

L [I] L [M] L [I] L [I]

Distributed Operating Systems 2013 Marcus Völp 32

Synchronization with Locks

Spin Lock (Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

Lock holder Swap

CPU 0 CPU 1 CPU 2 CPU 3

L [I] L [I] L [I] L [M]

Distributed Operating Systems 2013 Marcus Völp 33

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

do { } while (L == 1);

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

L [I] L [I] L [M] L [I]

Lock holder

Spin locally while lock is held
=> reduces bus traffic

Distributed Operating Systems 2013 Marcus Völp 34

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

do { } while (L == 1);

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

L [S] L [S] L [S] L [I]

Lock holder

Spin locally while lock is held
=> reduces bus traffic

1st rd 1st rd

Distributed Operating Systems 2013 Marcus Völp 35

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)

atomic swap

lock (lock_var & L) {

do {

reg = 1;

do { } while (L == 1);

swap (L, reg)

} while (reg == 1);

}

unlock (lock_var & L) {

L = 0;

}

CPU 0 CPU 1 CPU 2 CPU 3

L [S] L [S] L [S] L [I]

Lock holder

Spin locally while lock is held
=> reduces bus traffic

2nd + rd 2nd + rd

Distributed Operating Systems 2013 Marcus Völp 36

Synchronization with Locks

Fairness

lock

test
test

unlock

test
lock

unlock

test

test
lock

test

free

free

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 37

Synchronization with Locks

Fairness: Ticket Lock

fetch and add (xadd)

lock_struct {

next_ticket,

current_ticket

}

ticket_lock (lock_struct & l) {

my_ticket = xadd (&l.next_ticket, 1)

do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

current_ticket ++;

}

[my_ticket] current next

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 38

Synchronization with Locks

Fairness: Ticket Lock

fetch and add (xadd)

lock_struct {

next_ticket,

current_ticket

}

ticket_lock (lock_struct & l) {

my_ticket = xadd (&l.next_ticket, 1)

do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

current_ticket ++;

}

[my_ticket] current next
0 0

L.CPU0 [0]: 0 1 => Lockholder = CPU0
L.CPU1 [1]: 0 2
L.CPU2 [2]: 0 3

U.CPU0 [0]: 1 3 => Lockholder = CPU1

L.CPU3 [3]: 1 4
L.CPU0 [4]: 1 5

U.CPU1 [1]: 2 5 => Lockholder = CPU 2

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 39

Synchronization with Locks

Fairness: Ticket Lock

fetch and add (xadd)

lock_struct {

next_ticket,

current_ticket

}

ticket_lock (lock_struct & l) {

my_ticket = xadd (&l.next_ticket, 1)

do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct &l) {

current_ticket ++;

}

Spin on global variable

write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU 0 CPU 1 CPU 2 CPU 3

However:
- Signal all CPUs not only next
- Abort / timeout of competing threads

Distributed Operating Systems 2013 Marcus Völp 40

parallel readswrite

More Local Spinning

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to forward write on Bus 2-3

CPU 0 CPU 1

CPU 2 CPU 3

msg

3 Network Messages

16 core AMD Opteron:
4 chips with 4 cores + partitioned RAM
internal crossbar to access L1 / L2 on local chip

source: [corey08]

Distributed Operating Systems 2013 Marcus Völp 41

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 42

Synchronization without Locks

prev

new

next

insert(new_elem, prev) {
retry:
new_elem.next = prev.next;
if (not CAS(prev.next == prev.next, new_elem)) goto retry;

}

prev

new

next

insert(new_elem, prev) {
retry:
next = prev.next;
new_elem.next = prev.next;
new_elem.prev = prev;
if (not DCAS(prev.next == next && next.prev ==prev,

prev.next = new_elem, next.prev = new_elem))
goto retry;

}

A quick intermezzo to lock-free synchronization

Distributed Operating Systems 2013 Marcus Völp 43

Synchronization without Locks

Load Linked, Store Conditional

insert (prev, new_elem) {

retry:

load_linked (prev.next);

new_elem.next = prev.next;

if (! store_conditional (prev.next, new_elem)) goto retry;

}

Distributed Operating Systems 2013 Marcus Völp 44

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 45

MCS-Lock
Fairness + Local Spinning
by Mellor-Crummey and Scott

nextL

nextL

nextL

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 46

MCS-Lock
Fairness + Local Spinning
by Mellor-Crummey and Scott

next1

next1

next1

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

Distributed Operating Systems 2013 Marcus Völp 47

MCS-Lock
Fairness + Local Spinning
by Mellor-Crummey and Scott

next1

next1

next1

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 48

MCS-Lock

Fair Lock with Local Spinning

next1

next1

next1

Tail T

next1

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 49

MCS-Lock

Fair Lock with Local Spinning

next1

next1

next1

Tail T

next1

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 50

MCS-Lock

Fair Lock with Local Spinning

next1

next0

next1

Tail T

next1

CPU 0 CPU 1 CPU 2 CPU 3

Lock holder

Distributed Operating Systems 2013 Marcus Völp 51

MCS Locks

Fair, local spinning
atomic compare exchange:

cmpxchg (T == Expected, Desired)

lock(Node * & T, Node * I) {

I->next = null;

I->Lock = false;

Node * prev = swap(T, I);

if (prev) {

prev->next = I;

do {} while (I->Lock == false);

}

}

unlock (Node * & T, Node * I) {

if (!I->next) {

if (cmpxchg (T == I, 0)) return; // no waiting cpu

do { } while (!I->next); // spin until the following process

updates the next pointer

}

I->next->Lock = true;

}

Distributed Operating Systems 2013 Marcus Völp 52

Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory through log4(depth) switched network
Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]: “Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”

Distributed Operating Systems 2013 Marcus Völp 53

Performance

16 core AMD Opteron

Source: [corey 08]

Distributed Operating Systems 2013 Marcus Völp 54

Overview
Introduction

Hardware Primitives

Synchronization with Locks (Part I)

 Properties

 Locks

 Spin Lock (Test & Set Lock)

 Test & Test & Set Lock

 Ticket Locks

 Synchronization without Locks

Synchronization with Locks (Part II)

 MCS Locks

 Performance

 Special Issues

 Timeouts

 Reader Writer Locks

 Lockholder Preemption

 Monitor, Mwait

Distributed Operating Systems 2013 Marcus Völp 55

Special Issues

No longer apply for lock

 after timeout

 to kill / signal competing thread

Spin Lock: (trivial: stop spinning)

Ticket Lock: my_ticket current

0 0

1 1

2

3 spin forever

MCS Lock: (see Exercises)

 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2013 Marcus Völp 56

Special Issues

No longer apply for lock

 after timeout

 to kill / signal competing thread

Spin Lock: (trivial: stop spinning)

Ticket Lock: my_ticket current

0 0

1 +1 => lock is unsafe

2

3

MCS Lock: (see Exercises)

 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2013 Marcus Völp 57

Special Issues

No longer apply for lock

 after timeout

 to kill / signal competing thread

Spin Lock: (trivial: stop spinning)

Ticket Lock: my_ticket current

0 0

1

2

3

MCS Lock: (see Exercises)

 dequeue nodes of competing threads

adjust my_ticket of others:
tricky (my_ticket is local)

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2013 Marcus Völp 58

Special Issues

Reader Writer Locks

Lock differentiates two types of lock holders:

 Readers:

 Don't modify the lock-protected object

 Multiple readers may hold the lock at the same time

 Writers:

 Modify the protected object

 Writers must hold the lock exclusively

Fairness

 Improve reader latency by allowing readers to

overtake writers (=> unfair lock)

Distributed Operating Systems 2013 Marcus Völp 59

Special Issues

Fair Ticket Reader-Writer Lock

co-locate reader tickets and writer tickets

lock read (next, current) {
my_ticket = xadd (next, 1);
do {} while (current.write != my_ticket.write);

}

lock write (next, current) {
my_ticket = xadd (next.write, 1);
do {} while (current != my_ticket);

}

unlock_read () {
xadd (current.read, 1);

}

unlock write () {
current.write ++;

}

readwrite

current next R0 R1 W2 R3
0 0 0 0 0 0

0 1 0 1
0 2 0 2
1 2 1 2

Distributed Operating Systems 2013 Marcus Völp 60

Special Issues

Fair Ticket Reader-Writer Lock

combine read, write ticket in single word

Correctness of Lock:

1) no counter must overflow:
=>

max count value >=
max #threads that simultaneously

attempt to acquire the lock

2) no overflow from read to write:

e.g., 8-bit counter: read = 0xff, write = 5

xadd(next, 1) => read = 0, write = 6

=> 1-bit to separate read from write field
always clear this bit before xadd

readwrite

readwrite

readwrite

xadd => overflow

1

0

clear flag before next xadd

Read won't overflow again unless 2^n CPUs
are preempted after clear flag (i.e. 2^n
xadds in sequence)

=> Condition (1) prevents this

Distributed Operating Systems 2013 Marcus Völp 61

Special Issues

Source: [corey 08]

Source: [johnson 10]

Distributed Operating Systems 2013 Marcus Völp 62

Special Issues

Lockholder preemption

Spinning-time of other CPUs increase by the time the lockholder is
preempted

 worse for ticket lock / MCS

 grant free lock to preempted thread



=> do not preempt lock holders

spin_lock(lock_var) {

pushf; // store whether interrupts were already closed

do {

popf;

reg = 1;

do {} while (lock_var == 1); spin_unlock(lock_var) {

pushf; lock_var = 0;

cli; popf;

swap(lock_var, reg); }

} while (reg == 1);

}

Distributed Operating Systems 2013 Marcus Völp 63

Special Issues

Monitor, Mwait

Stop CPU / HT while waiting for lock (signal)

Saves power

Frees up processor resources (HT)

Monitor: watch cacheline

Mwait: stop CPU / HT until:

cacheline has been written, or

interrupt occurs

while (trigger[0] != value) {

monitor (&trigger[0])

if (trigger[0] != value) {

mwait

}

}

CPU 0 CPU 1

mwait

write to trigger

t

Distributed Operating Systems 2013 Marcus Völp 64

References

Scheduler-Conscious Synchronization

LEONIDAS I. KONTOTHANASSIS, ROBERT W. WISNIEWSKI, MICHAEL L.
SCOTT

Scalable Reader- Writer Synchronization for Shared-Memory Multiprocessors

John M. Mellor-Crummey, Michael L. Scottt

Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors

JOHN M. MELLOR-CRUMMEY, MICHAEL L.

Concurrent Update on Multiprogrammed Shared Memory Multiprocessors

Maged M. Michael, Michael L. Scott

Scalable Queue-Based Spin Locks with Timeout

Michael L. Scott and William N. Scherer III

Distributed Operating Systems 2013 Marcus Völp 65

References

Reactive Synchronization Algorithms for Multiprocessors

B. Lim, A. Agarwal

Lock Free Data Structures

John D. Valois (PhD Thesis)

Reduction: A Method for Proving Properties of Parallel Programs

R. Lipton - Communications of the ACM 1975

Decoupling Contention Management from Scheduling (ASPLOS 2010)

F.R. Johnson, R. Stoica, A. Ailamaki, T. Mowry

Corey: An Operating System for Many Cores (OSDI 2008)

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang

Distributed Operating Systems 2013 Marcus Völp 66

MESI

