
Department of Computer Science, Institute of Systems Architecture, Operating Systems Group

Distributed Operating Systems Lecture

Security: Foundations, Security Policies, Capabilities

2015

Marcus Völp / Hermann Härtig

June, 8, 2015 2

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Can you trust your system?

… to protect your privacy / credentials / valuable data?

… to grant only trusted programs access to your data?

… to grant access to your data if / when and only if / when a

trusted program needs it?

June, 8, 2015 3

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Can you trust your system?

… to protect your privacy / credentials / valuable data?

… to grant only trusted programs access to your data?

… to grant access to your data if / when and only if / when a

trusted program needs it?

• How you can trust your system.

• How you can assure that your system

is trustworthy.

June, 8, 2015 4

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Assurance

• trust developer / company
• reputation

• “I know the company so I can sue them if things go wrong”

• quality assuring processes
• e.g., independent test and development team, documentation, …

• certification
• trust them because some experts said they are trustworthy

• experts ensure that the company did their testing, …

• Examples:

• ISO 9000

• Common Criteria Security Evaluation

• Arinc / DO 178b

• (formal verification)
• mathematical proof of correctness

• required as part of Common Criteria for EAL 7 (in parts), old BSI GISA

June, 8, 2015 5

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Security Evaluations

• Common Criteria (EAL 7)

• Formal top level specification

• Informal (through tests) correspondence of

• source code to abstract specification

• GISA IT Security Evaluation Criteria (Q7)

(old proposal for CC-EAL 7 from 1989)

“The machine language of the processor used shall to a great extent be

formally defined.”

“The consistency between the lowest specification level and the source

code shall be formally verified.”

“The source code will be examined for the existence of covert channels,

applying formal methods. It will be checked that all covert channels

detected which cannot be eliminated are documented. [...]”

June, 8, 2015 6

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Outline

• Introduction

• Example Proof

• Security Policies

• Policy Enforcement Mechanisms

• Undecidability of Leakage

• Take-Grant Protection Model

June, 8, 2015 7

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Formal Verification

abstract

model

theorems

verification

system
QED

C++ Code
more detailled

model

verification

system
QED

Refinement

…

June, 8, 2015 8

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Formal Verification

abstract

model

theorems

verification

system
QED

C++ Code
more detailled

model

verification

system
QED

Refinement

…

11 PY to verify a 10KLOC microkernel (seL4)

June, 8, 2015 9

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

Operations: read, write, create / delete file, create / delete user, chmod

June, 8, 2015 10

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

„Only the owner of a file or root shall obtain write

permissions to a file.“

June, 8, 2015 11

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

1st ingredient: abstract system model
– captures the details that are relevant for the theorem

– abstracts away all other details

– often characterized as states + state transitions

June, 8, 2015 12

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

1st ingredient: abstract system model
– states:

S := { (Ulife, Flife, owner, rights) }

  S := ({root, hermann, marcus}, {foo, bar},

{(bar, hermann), (foo,marcus)}, // Flife  Ulife

{(hermann, bar, {w}), (root, foo, {r,w}), (marcus, foo, {r})}) // Flife x Ulife  2R

June, 8, 2015 13

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

1st ingredient: abstract system model
– state transitions:

C := S  S

read:   

delete(bar) :   ({root, hermann, marcus}, {foo, bar}, {(bar, hermann), (foo,marcus)},

{(hermann, bar, {w}), (root, foo, {r,w}), (marcus, foo, {r})})

June, 8, 2015 14

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

1st ingredient: abstract system model
– state transitions:

C := S  S

read:   

u.delete(bar) :   if u = root v u =  .owner(bar) then

({root, hermann, marcus}, {foo, bar}, {(bar, hermann), (foo,marcus)},

{(hermann, bar, {w}), (root, foo, {r,w}), (marcus, foo, {r})})

else  endif

June, 8, 2015 15

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

2nd ingredient: theorem

„Only the owner of a file or root shall obtain write

permissions to a file.“

„Information in a file shall origin only from the

owner of a file or from root.“

vs.

June, 8, 2015 16

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

2nd ingredient: theorem

„Only the owner of a file or root shall obtain write

permissions to a file.“

P : S  {true, false}

P
S \ P

secure wrt. P if 0  P and Sreachable  P

June, 8, 2015 17

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

2nd ingredient: theorem

„Only the owner of a file or root shall obtain write

permissions to a file.“

P : S  {true, false}

P() :=  f  Flife, u  Ulife. w  .rights(u,f) =>

u = root  u =  .owner(f)

June, 8, 2015 18

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

3rd ingredient: proof

P() :=  f  Flife, u  Ulife. w  .rights(u,f) =>

u = root  u =  .owner(f)

RootHermann

Marcus

…

Users

Files bar foo

{w}
{r,w}

{r}

Access Rights /

Permissions

Owner

Operations: read, write, create / delete file, create / delete user, chmod

Theorem: Sreachable  P

June, 8, 2015 19

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

3rd ingredient: proof

P() :=  f  Flife, u  Ulife. w  .rights(u,f) =>

u = root  u =  .owner(f)

Theorem: Sreachable  P

Proof:

by induction over all traces

0  ’ ’’ ’’’ …

Operations: read, write, create / delete file, create / delete user, chmod

u.c u‘.c‘ u‘‘.c‘‘ u‘‘‘.c‘‘‘

June, 8, 2015 20

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Proving Security – an Example

3rd ingredient: proof

P() :=  f  Flife, u  Ulife. w  .rights(u,f) =>

u = root  u =  .owner(f)

Theorem: Sreachable  P

Proof:
by induction over all traces

0  ’ ’’ ’’’ …

Operations: read, write, create / delete file, create / delete user, chmod

u.c u‘.c‘ u‘‘.c‘‘ u‘‘‘.c‘‘‘

induction step succeeds for read, …, delete user

but

chmod(Marcus, bar, {w})

June, 8, 2015 21

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

s
j

s
j+1

s
j+2

s
j+3

s
i+4

Proving Security – an Example

4th ingredient: refinement

chmod(u, f, R)() :=

if u = root v owner(f, u) then

 with rights (u, f) := R

else



endif

sys_chmod:

parse_parameters();

owner = file.owner;

if (current_thread->user == root ||

current_thread->user == owner)

{

file->set_acl(user, rights);

}


i


i+1

s'
j+2

s'
j +3

a a-1

June, 8, 2015 22

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Outline

• Introduction

• Example Proof

• Security Policies

• Policy Enforcement Mechanisms

• Undecidability of Leakage

• Take-Grant Protection Model

June, 8, 2015 23

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Security Policies - Definition

[Bishop: Computer Security Art and Science]

• Security Policy

A security policy P is a statement that partitions the states S

of a system into a set of authorized (or secure) states (e.g.,

S
sec

:= {   S | P() }) and a set of unauthorized (or non-

secure) states.

• Secure System

A secure system is a system that starts in an authorized state

and that cannot enter an unauthorized state

(i.e., S
reachable

 S
sec

)

June, 8, 2015 24

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Confidentiality, Integrity, Availability

Confidentiality

prevent unauthorized disclosure of sensitive information (prevent

information leakage).

Definition:

Information or data I is confidential with respect to a set of entities X if

no member of X can obtain information about I.

Example: the PIN of my EC-Card is XXXX

June, 8, 2015 25

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Confidentiality, Integrity, Availability

Integrity

correctness of information or data

Definition 1:

Information I is integer if it is current, correct and complete

June, 8, 2015 26

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Confidentiality, Integrity, Availability

Integrity

correctness of information or data

Definition 1:

Information I is integer if it is current, correct and complete

Definition 2: (crypto)

Either information is current, correct, and complete (Def 1) or it is

possible to detect that these properties do not hold.

June, 8, 2015 27

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Confidentiality, Integrity, Availability

Integrity

correctness of information or data

Definition 1:

Information I is integer if it is current, correct and complete

Definition 2: (crypto)

Either information is current, correct, and complete (Def 1) or it is

possible to detect that these properties do not hold.

Recoverability

Eventually damaged information can be recovered.

June, 8, 2015 28

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Confidentiality, Integrity, Availability

Availability

accessibility of information, services and data

Definition:

A resource I is available with respect to X if all members of X can

access I.

in practice, availability has also quantitative aspects:

– real-time systems:

I is available within t milliseconds

– reliability:

the probability that I is not available is less than 10-6

June, 8, 2015 29

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Security Policies - Classification

Concern

– confidentiality e.g., Bell La Padula (Document Mgmt)

– integrity e.g., Biba (Inventory System)

– availability

– hybrid e.g., Chinese Wall (Clinical Information)

Level of Enforcement

– discretionary

A user can allow or deny access to its objects

– mandatory

System-wide rules control who may access an object

June, 8, 2015 30

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Bell-LaPadula Policy '73 (simple version)

Concern: confidentiality

set of secrecy levels: L

higher secrecy level indicates more

sensitive information; greater need

to keep this information confidential

total order: 

domain: Entity -> L

– each subject has a security clearance: dom(s)  L

– each object has a security classification: dom(o)  L

Top secret

Secret

Confidential

Unclassified






June, 8, 2015 31

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Bell-LaPadula Policy '73 (simple version)

Policy: (L, , dom)

rules for reading / writing

simple security condition

a subject s can read only lower or equally

classified objects o

s can read o <=> dom(o)  dom(s)

* - property

a subject s can write only higher or equally

classified objects o

s can write o <=> dom(s)  dom(o)

Top secret

Secret

Confidential

Unclassified






June, 8, 2015 32

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Bell-LaPadula: Multi-Level Security Policy

Policy: (L, , dom)

 is a partial order, (L, ) form a lattice
Top Secret

UnClassified



Categories:
Police, BNDTS {Pol, BND}

UC {Pol, BND}
TS {Pol} TS {BND}

TS {} UC {Pol} UC {BND}

UC {}

Bundesverfassungsschutzgesetz §17 - §26:

in general, no information exchange between the BND and the Police

June, 8, 2015 33

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Biba '77

Concern: Integrity (prevent damage)

(L, , dom) dual to MLS

high integrity information must not be
tainted with low integrity data.

– s can read o <=> dom(s)  dom(o)

– s can write o <=> dom(o)  dom(s)

High

Low



June, 8, 2015 34

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Biba '77 Low Water Mark

• Concern: Integrity (prevent damage)

(L, , dom) dual to MLS

high integrity information must not be
tainted with low integrity data.

– s can read o <=> dom(s)  dom(o)

– if s reads o then dom'(s) = min(dom(s), dom(o))

– s can write o <=> dom(o)  dom(s)

High

Low



June, 8, 2015 35

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Biba '77 Low Water Mark

• Concern: Integrity (prevent damage)

(L, , dom) dual to MLS

high integrity information must not be
tainted with low integrity data.

– s can read o <=> dom(s)  dom(o)

– if s reads o then dom'(s) = min(dom(s), dom(o))

– s can write o <=> dom(o)  dom(s)

• Problem: label creep

subject clearances decrease over time
no means to “clean” a tainted subject

High

Low



June, 8, 2015 36

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Denning '76 + Sandhu '93

Confidentiality and integrity are dual and can be represented in the same

lattice:

Confidentiality: lconf ≤ hconf

Integrity: hint ≤ lint

hconf,lint

lconf,lint

lconf,hint

hconf,hint

June, 8, 2015 37

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Brewer '89: Chinese Wall

Concern: Conflict of interest (integrity + confidentiality)

Example: British stock exchange
a trader must not represent two competitors

Company Datasets (CD):
set of objects (files) related to a company

Conflict of Interest Class (COI):
CDs of companies in competition

Sanitized Objects:
cleared to the public

Subjects (e.g., the trader)

CD(BMW)

June, 8, 2015 38

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Brewer '89: Chinese Wall

* property

s can write o <=>

s can read o
and

if s can read an unsanitized object o' then o'
must belong to the same company as o

i.e.,  o'. s can read o' => CD(o') = CD(o)

CD(BMW) CD(Opel) CD(AMD) CD(Intel)

June, 8, 2015 39

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Outline

• Introduction

• Example Proof

• Security Policies

• Policy Enforcement Mechanisms

• Undecidability of Leakage

• Take-Grant Protection Model

June, 8, 2015 40

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Access Control Matrix

Subjects S

Objects O

Entities E = S  O

Rights R

Matrix: S x E x R

Operations:

• read / write entity

• create subject / object

• destroy subject / object

• enter / delete R into cell (s,o)

o1 o2 s1 s2

s1 r, w r r, w r

s2 r, w - w r, w

June, 8, 2015 41

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Subjects S

Objects O

Entities E = S  O

Rights R

list of S x R tuples stored with every Entity

abbreviations:

• owner / group e.g., Unix [user; group; all]

• wildcards e.g., sysadmin_*

conflicts:

• e.g., u – r; g + r resolved by order of occurrence / rules

Access Control List

o1 o2 s1 s2

s1 r, w r r, w r

s2 r, w - w r, w

June, 8, 2015 42

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Subjects S

Objects O

Entities E = S  O

Rights R

list of E x R tuples stored with every subject

more in a few minutes

Capabilities

o1 o2 s1 s2

s1 r, w r r, w r

s2 r, w - w r, w

June, 8, 2015 43

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Principle of Attenuation

German: Abschwächung / Verminderung

A subject s must not be able to give away rights that it does not possess

Problem: ACMs cannot enforce the principle of attenuation

e.g., s
1
.enter w into (s

2
, o

2
)

Solution:

replace “enter r into (s,o)” with:

s'.grant R into (s,o) :=

if R  (s',o) then enter R into (s,o)

o1 o2 s1 s2

s1 r, w r r, w r

s2 r, w - w r, w

June, 8, 2015 44

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Capabilities

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

sAlice

sBob

o

June, 8, 2015 45

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

sAlice

sBob

o

g

grant

Capabilities

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

June, 8, 2015 46

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

sAlice

sBob

o

g

grant

a

a

Capabilities

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

June, 8, 2015 47

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

sAlice

sBob

o

t

take

a

a

Capabilities

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

June, 8, 2015 48

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

sAlice

o

a

b  a

Capabilities

June, 8, 2015 49

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

sAlice

o

a

Capabilities

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

June, 8, 2015 50

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

sAlice

o

Capabilities

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

June, 8, 2015 51

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Capabilities

Implementation:

Software: OS protected segment / memory page

Hardware: Cambridge CAP / TLB

Cryptography: Amoeba

Problems:

• How to control the propagation of capabilities?

• How to revoke capabilities?

June, 8, 2015 52

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Propagation of Capabilities

Problem is dual to controlling ACM / ACL modifications

Permissions on channel capabilities:

take permission (t); grant permission (g)

Permission on the capability:

copy permission

Right-diminishing channels:

extension to the take-grant model by J. Shapiro

June, 8, 2015 53

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

– diminishing take

– diminishing grant

sAlice

sBob

o

dt

diminishing
take

{r, w, t, g, dt, dg}

{r, dt}

Propagation of Capabilities

June, 8, 2015 54

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

sAlice

sBob

o

dg

diminishing
grant

{r, w, t, g, dt, dg}

{r, dt}

Definition: unforgeable token E x R

possession of a capability is necessary and sufficient to access the

referenced entity

Operations:

• on objects

– read / write

– create / destroy

• on capabilities

– take / grant

– diminish / remove

– diminishing take

– diminishing grant

Propagation of Capabilities

June, 8, 2015 55

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Capability Revocation

Amoeba: leases – invalid after a certain amount of time

L4: find and invalidate all direct and indirect copies

Eros: indirection objects

use stored capabilities

but no take / grant

revoke by destruction b

June, 8, 2015 56

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Reference Monitors

EM: suppress or pass

Edit: modify message

BA

stop

x x

stop

x yEM
Ref. Mon

BA Edit
Ref. Mon

Schneider '98 / Bauer '02:

Theoretical results on the set of security policies that are

enforceable with EM / Edit automata

!!! Results are in part based on a different system model !!!

June, 8, 2015 57

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Reference Monitors

June, 8, 2015 58

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Reference Monitors

Security policies

More general security policies

System remains operational

Nothing bad
happens

June, 8, 2015 59

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Outline

• Introduction

• Example Proof

• Security Policies

• Policy Enforcement Mechanisms

• Undecidability of Leakage

• Take-Grant Protection Model

June, 8, 2015 60

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Leakage (of Access Rights)

Given a system S and a security policy P, decide whether S can

enter a state in which s can access o with right r (i.e., whether

access right r is leaked into (s,o)).

Theorem:

For a system S with a generic ACM it is in general undecidable

whether S leaks r into (s, o).

Proof:

by reduction to the halting problem

June, 8, 2015 61

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Turing Machine

infinite tape

tape symbols M: A, B, C, …

state automaton K: x, y, z, …

head

Operations:

• read symbol at head

• perform a transition step of the automaton

based on this symbol

• write a new symbol to the tape

• move head one step to the left or to the right

d: K x M → K x M x {L, R}

A ...B A C D A E

x

z

vy

w

A/C

B/A

C/D

D/E

B/D

June, 8, 2015 62

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Halting Problem

Given a turing machine TM and a program P, find a program of the

TM that decides whether P will terminate (halt)

TM @ universal TM @ while

Theorem: the halting problem is undecidable

June, 8, 2015 63

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Halting Problem

TM @ universal TM @ while

Theorem: the halting problem is undecidable

Proof: by contradiction

assume such a program P exists; write two programs:

does_P_terminate_on_input_E (P, E) :=

if P(E) terminates { return true } else { return false }

test (P) := while (does_P_terminate_on_input_E(P, P))

now, if does_P_terminate_on_input_E(test, test) returns

true, test(test) must terminate [if condition]

but then the condition of the while loop is true, which

means test(test) will not terminate

=> there cannot be a program that decides for all P, E whether P

terminates on E

June, 8, 2015 64

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Leakage is Undecidable

Proof: by reduction to the halting problem

1. Simulate a TM with the ACM

2. Define a correspondence relation such that

r is leaked to (s,o) <=> TM halts

=> leakage in the ACM could be used to solve the halting

problem, which is known to be undecidable

=> leakage is undecidable

TM
:

ACM
:

d(x,A)

ACM program

cx,A

June, 8, 2015 65

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

ACM Operations:

• create subject s

• create object o

• destroy subject s

• destroy object o

• enter r into (s, o)

• delete r from (s, o)

A C A D

1 2 3 4 …

…

x

z

y

A C B D

1 2 3 4 …

…

x

z

y

d: (x, A) -> (y, B, L)

A/B

A/B

s1 s2 s3 s4

As1

C

A, x

D

s2

s3

s4

June, 8, 2015 66

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

A C A D

1 2 3 4 …

…

x

z

y

A C B D

1 2 3 4 …

…

x

z

y

d: (x, A) -> (y, B, L)

A/B

A/B

s1 s2 s3 s4

As1

C

A, x

D

s1 s2 s3 s4

As1

C, y

B

D

s2

s3

s4

s2

s3

s4

June, 8, 2015 67

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

d: (x, A) -> (y, B, L)
s1 s2 s3 s4

As1

C

A, x

D

s1 s2 s3 s4

As1

C, y

B

D

cx,A (shead, sleft) :=

if x  (shead, shead) 
A  (shead, shead)

then
...

s2

s3

s4

s2

s3

s4

June, 8, 2015 68

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

d: (x, A) -> (y, B, L)
s1 s2 s3 s4

As1

C

D

s1 s2 s3 s4

As1

C, y

B

D

cx,A (shead, sleft) :=

if x  (shead, shead) 
A  (shead, shead)

then
delete x,A from (shead, shead)
…

s2

s3

s4

s2

s3

s4

June, 8, 2015 69

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

d: (x, A) -> (y, B, L)
s1 s2 s3 s4

As1

C,y

B

D

s1 s2 s3 s4

As1

C, y

B

D

cx,A (shead, sleft) :=

if x  (shead, shead) 
A  (shead, shead)

then
delete x,A from (shead, shead)
enter B into (shead, shead)
enter y into (sleft, sleft)
…

s2

s3

s4

s2

s3

s4

June, 8, 2015 70

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

A C A D

1 2 3 4 …

…

x

z

y

d: (x, A) -> (y, B, L)

A/B

s1 s2 s3 s4

As1

s2 C

s3 A, x

s4 D

s1 s2 s3 s4

As1

s2 C, y

s3 B

s4 D

c
x,A

(s
head

, s
left

) :=
…

x is leaked into (si,si)


TM halts in x

June, 8, 2015 71

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

Problem 1:

How to detect if we are at the last cell?

s1 s2 s3 s4

As1

s2 C

s3 A

s4 D,x

June, 8, 2015 72

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

Problem 1:

How to detect if we are at the last cell?

s1 s2 s3 s4

As1

s2 C

s3 A

s4
D,x,e

June, 8, 2015 73

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

Problem 2:

How do we restrict the ACM to only

execute the TM program?

c
x,A

(s, s’) :=

…

applies to all s, s’ pairs; not

only neighboring

s1 s2 s3 s4

As1

s2 C

s3 A, x

s4 D

June, 8, 2015 74

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Simulating a TM with an ACM

Problem 2:

How do we restrict the ACM to only

execute the TM program?

c
x,A

(s, s’) :=

…

applies to all s, s’ pairs; not

only neighboring

s1 s2 s3 s4

As1 l

s2 C l

s3 A, x l

s4 D

June, 8, 2015 75

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Outline

• Introduction

• Example Proof

• Security Policies

• Policy Enforcement Mechanisms

• Undecidability of Leakage

• Take-Grant Protection Model

June, 8, 2015 76

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Vertices: object, subject (either object or subject)

Edges: subject has capability with r right on object

Transition Rules:

• Take

• Grant

• Create

• Remove

• Diminish

r

t

b

b t b

g

b

b g b

a

b b-a

x y z

x y z x y z

x y z

x y

x yx y

x

b

b-a

x yx y

b

June, 8, 2015 77

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

A few Lemmas:

• Take

• Lemma 1:

• Grant

• Lemma 2:

t

b

b t b

g

b

b g b

x y z

x y z x y z

x y z

g b g b

x y z x y z

*

b

t

b

b t b

x y z x y z

*

June, 8, 2015 78

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

A few Lemmas:

• Lemma 3: t tg

x y z x y

g

z

g t

*

June, 8, 2015 79

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Proof of Lemma 1

x.create v (tg)
y.take g on v
y.grant b on z to v
x.take b on z from v

Lemmas 2 and 3 are left for the exercises

b

t b t b

x y z x y z

*

June, 8, 2015 80

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Theorem:

Leakage in the Take-Grant Protection Model is decidable

(in linear time)

Proof Sketch:

construct potential access graph G

apply take + grant + 3 lemmas until G does

not change anymore

r is leaked to (s,o) if s holds (o, r) in the potential G

Note:

- delete / diminish / remove only reduce access

=> they can be omitted for the construction of G

- create introduces new entities which cannot get more

privileged than their creators

June, 8, 2015 81

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Example:

t b

x y z

t

u v

g

w

t

* by Lemma 1

June, 8, 2015 82

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Example:

t b

x y z

t

u v

g

w

t

* by Lemma 1

t b

x y z

t

u v

g

w

t

g b

* by Lemma 3

June, 8, 2015 83

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Example:

t b

x y z

t

u v

g

w

t

* by Lemma 1

t b

x y z

t

u v

g

w

t

g b

* by Lemma 3

t b

x y z

t

u v

g

w

t

t,g b

* x.grant b on z to w

u.take b on z from w

g

t b

x y z

t

u v

g

w

t

t,g b

g

b

June, 8, 2015 84

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Islands and bridges: leakage in TG is decidable in linear time

• need to consider only t,g edges for building the graph

• Lemmas 1, 2 => t v g edge between subjects => full rights exchange

t

g

g

t

Islands Islands

June, 8, 2015 85

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Islands and bridges: towards deciding leakage in linear time

• need to consider only t,g edges for building the graph

• Lemmas 1, 2 => t v g edge between subjects => full rights exchange

t

g

g

t

Islands Islands

t
t

t
t

June, 8, 2015 86

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Take Grant Protection Model

Islands and bridges: towards deciding leakage in linear time

• need to consider only t,g edges for building the graph

• Lemmas 1, 2 => t v g edge between subjects => full rights exchange

t

g

g

t

Islands Islands

t
t

t
t

g

Bridge: tn g tm

June, 8, 2015 87

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

Summary

• Certification

– Assuring system security

• Verification Example

• Security Policies

– Confidentiality (MLS), Integrity (Biba), mixed (Chinese Wall)

• Policy Enforcement Mechanisms

– ACLs, Capabilities, Monitors

• Undecidability of Leakage

– ACM implements turing machine

• Take-Grant Protection Model

– Leakage is decidable in linear time

June, 8, 2015 88

Security: Foundations, Security Policies, Capabilities

Distributed Operating Systems

Marcus Völp, Hermann Härtig

References

• B. Lampson: A note on the confinement problem

• Matt Bishop – Text Book: Computer Security – Art and Science

• P. Gallagher: A Guide to Understanding the Covert Channel Analysis

of Trusted Systems [TCSEC – CC Guide]

• Proctor, Neumann: Architectural Implications of Covert Channels

• Sabelfeld, Myers: Language-based information-flow security

• Karger, Wray: Storage Channels in Disk Arm Optimizations

• Alpern, Schneider 87: Recognizing safety and lifeness

• Alves, Schneider: Enforceable security policies

• Walker, Bauer, Ligatti: More enforcable security policies

• Osvik, Shamir, Tromer: Cache Attacks and Countermeasures: the Case of AES

• Denning 67: A Lattice Model of Secure Information Flow

• Denning: Certification of programs for secure information flow.

• Hunt, Sands: On flow-sensitive security types

• Volpano, Irvine, Smith: A sound type system for secure inform. flow analysis

• Warnier: Statically checking confidentiality via dynamic labels

• Zheng, Myers: End-to-End Availability Policies and Noninterference

• Shapiro, Smith, Farber: EROS: A Fast Capability System

• Klein, Heiser + seL4: Verifying an Operating System Kernel

