
Hermann Härtig

LOAD BALANCING

DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2016

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

LECTURE OBJECTIVES
■ starting points

■ independent Unix processes and

■ block synchronous execution

■ which component (point in architecture)

■ dynamic load balancing example (Mosix)

■ load migration mechanism

■ management algorithms
■ information dissemination
■ decision algorithms

2

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

EXTREME STARTING POINTS

■ independent OS processes

■ block synchronous execution (HPC)

■ sequence: compute - communicate

■ all processes wait for all other processes

■ often: message passing  
for example Message Passing Library (MPI)

3

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SINGLE PROGRAM / MULTIPLE DATA

■ all processes execute same program

■ while (true)  
{ work; exchange data (barrier)}

■ common in  
High Performance Computing: 
Message Passing Interface (MPI) 
library

4

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

DIVIDE AND CONQUER

5

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
part 1

part 2

part 3

part 4

result 1

result 2

result 3

result 4

resultproblem

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

MPI BRIEF OVERVIEW

■ Library for message-oriented parallel
programming

■ Programming model:

■ Multiple instances of same program

■ Independent calculation

■ Communication, synchronization

6

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

MPI STARTUP & TEARDOWN
■ MPI program is started on all processors

■ MPI_Init(), MPI_Finalize()

■ Communicators (e.g., MPI_COMM_WORLD)

■ MPI_Comm_size()

■ MPI_Comm_rank(): “Rank” of process within
this set

■ Typed messages

■ (Dynamically create and spread processes
using MPI_Spawn() (since MPI-2))

7

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

MPI EXECUTION

■ Communication

■ Point-to-point

■ Collectives

■ Synchronization

■ Test

■ Wait

■ Barrier

8

MPI_Send(
 void* buf,
 int count,
 MPI_Datatype,
 int dest,
 int tag,
 MPI_Comm comm
)

MPI_Recv(
 void* buf,
 int count,
 MPI_Datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status
)

MPI_Bcast(
 void* buffer,
 int count,
 MPI_Datatype,
 int root,
 MPI_Comm comm
)

MPI_Reduce(
 void* sendbuf,
 void *recvbuf,
 int count
 MPI_Datatype,
 MPI_Op op,
 int root,
 MPI_Comm comm
)

MPI_Barrier(
 MPI_Comm comm
)

MPI_Test(
 MPI_Request* request,
 int *flag,
 MPI_Status *status
)

MPI_Wait(
 MPI_Request* request,
 MPI_Status *status
)

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

BLOCK AND SYNC

9

blocking call non-blocking call

synchronous
communication

asynchronous
communication

returns when message
has been delivered

returns immediately,
following test/wait
checks for delivery

returns when send
buffer can be reused

returns immediately,
following test/wait

checks for send buffer

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

EXAMPLE

10

int rank, total;
MPI_Init();
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &total);

MPI_Bcast(...);
/* work on own part, determined by rank */

if (id == 0) {
 for (int rr = 1; rr < total; ++rr)
 MPI_Recv(...);
 /* Generate final result */
} else {
 MPI_Send(...);
}
MPI_Finalize();

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

AMDAHLS’ LAW

interpretation for parallel systems:

■ P: section that can be parallelized

■ 1-P: serial section

■ N: number of CPUs 
 
 

11

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

AMDAHL’S LAW
Serial section:  
communicate, longest sequential section  

 Parallel, Comm, possible speedup:

■ 1ms, 100 μs: 1/0.1 → 10

■ 1ms, 1 μs: 1/0.001 → 1000

■ 10 μs, 1 μs: 0.01/0.001 → 10

■ ...
12

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

WEAK VS. STRONG SCALING

Strong:

■ accelerate same problem size

Weak:

■ extend to larger problem size

13

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

THE NEED FOR BALANCING

14

work item

tim
e

Barrier

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

THE NEED FOR BALANCING

15

work item

tim
e

Barrier

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SOURCES FOR EXECUTION JITTER

■ Hardware ???

■ Application

■ Operating system “noise”

16

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

OPERATING SYSTEM “NOISE”

Use common sense to avoid:

■ OS usually not directly on the critical path,  
BUT OS controls: interference via interrupts, caches,
network, memory bus, (RTS techniques)

■ avoid or encapsulate side activities

■ small critical sections (if any)

■ partition networks to isolate traffic of different
applications (HW: Blue Gene)

■ do not run Python scripts or printer daemons in parallel

17

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

WHICH COMPONENT DOES IT

balancing in systems architecture

■ application

■ run-time library

■ operating system

18

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SCHEDULER: GLOBAL RUN QUEUE

19

immediate approach: global run queue

all ready processes

CPU 1 CPU 2 CPU N…

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SCHEDULER: GLOBAL RUN QUEUE

■ … does not scale
■ shared memory only
■ contended critical section
■ cache affinity
■ …

■ separate run queues with 
 explicit movement of processes

20

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

OS/HW & APPLICATION

High Performance Computing

■ Operating System / Hardware: 
“All” participating CPUs: active / inactive

■ Partitioning (HW)

■ Gang Scheduling (OS)

■ Within Gang/Partition: 
Applications balance !!!

21

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

HW PARTITIONS & ENTRY QUEUE

22

Application

Application

request
queue

BATCH
SCHEDULER

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

PROPERTIES HW PARTITIONS

■ optimizes usage of network

■ takes OS off critical path (busy waiting)

■ best for strong scaling

■ burdens application/library with balancing

■ potentially wastes resources

■ current state of the art in High
Performance Computing (HPC)

23

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

TOWARDS SYSTEM-LEVEL BALANCING

24

work item

tim
e

Barrier

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SPLITTING BIG JOBS

25

work item

tim
e

Barrier

overdecomposition & “oversubscription”

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SMALL JOBS (NO DEPS)

26

work item

tim
e

Barrier

Execute small jobs in parallel (if possible)

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

BALANCING AT LIBRARY LEVEL

Programming Model

■ many (small) decoupled work items

■ overdecompose  
create more work items than active units

■ run some balancing algorithm

Example: CHARM ++

27

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

BALANCING AT SYSTEM LEVEL

■ create many more processes

■ use OS information on run-time and
system state to balance load

■ examples:

■ run multiple applications

■ create more MPI processes than nodes (!)

28

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

CAVEATS

added overhead

■ additional communication between
smaller work items (memory & cycles)

■ more context switches

■ OS on critical path  
(for example communication)

29

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

BALANCING ALGORITHMS

required:

■ mechanism for migrating load

■ information gathering

■ decision algorithms

MosiX system as an example

-> Barak’s slides now

30

Copyright © Amnon Barak 2011
31

MOSIX is a unifying management layer

MOSIX - OS

Mostly user-level 
 implementation

MOSIX management

All the nodes run
like one server with
many cores

Applications

SSI

Continuous
feedback about
the state of
resources

Dual 
4Core 4Core 2Core

Copyright © Amnon Barak 2011
32

The main software components
1. Preemptive process migration
• Can migrate a running processes anytime
• Like a course-grain context switch
• Implication on caching, scheduling, resource utilization

2. OS virtualization layer
• Allows a migrated process to run in remote nodes

3. On-line algorithms
• Attempt to optimize a given goal function by process migration
• Match between required and available resources
• Information dissemination – based on partial knowledge

Note: features that are taken for granted in shared-memory
systems, are not easy to support in a cluster

Copyright © Amnon Barak 2011
33

•A software layer that allows a migrated process to run in remote nodes,
away from its home node
• All system-calls are intercepted
• Site independent sys-calls are performed locally, others are sent home

• Migrated processes run in a sandbox
•Outcome:
• A migrated process seems to be running in its home node
• The cluster seems to the user as one computer
• Run-time environment of processes are preserved - no need to change or link

applications with any library, copy files or login to remote nodes
•Drawback: increased (reasonable) communication overhead

The OS virtualization layer

Copyright © Amnon Barak 2011
34

Process migration - the home node model

• Process migration – move the process context to a remote node
• System context stay at “home” thus providing a single point of entry

• Process partition preserves the user’s run-time environment
• Users need not care where their process are running

Gu
es

t

Home node

MOSIX Link 
reroute syscallsLoc

al

Remote node
Loc

al

OS Virtualization layer OS Virtualization layer

LinuxLinux

A migrated
process

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

FORK IN MOSIX

35

Deputy Remote
fork() syscall request

Deputy(child)
Remote(child)

fork()

Establish a new link

fork()

Reply from fork()

Reply from fork()

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

PROCESS MIGRATION IN MOSIX

36

Process migdaemon
migration request

Deputy

Remote fork()
Send state, memory maps, dirty pages

Transition

ack

Finalize migration

Migration completed

Ack

Copyright © Amnon Barak 2011
37

Distributed bulletin board

• An n node cluster/Cloud system
– Decentralized control
– Nodes can fail at any time

• Each node maintains a data structure (vector) with an
entry about selected (or all) the nodes

• Each entry contains:
– State of the resources of the corresponding node, e.g. load
– Age of the information (tune to the local clock)

• The vector is used by each node as a distributed bulletin
board
– Provides information about allocation of new processes

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

CENTRALIZED GLOBAL STATE

38

…

…….

..

..

..

..

..

..

..

..

…….

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

DECENTRALIZED GLOBAL STATE

39

Node 1

Node 2

Node n

…

…….

..

..

..

..

..

..

..

..

…….

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

…….

..

..

..

..

..

..

..

..

…….

DECENTRALIZED GLOBAL STATE

40

Node 1

Node 2

…

Node n

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

…….

..

..

..

..

..

..

..

..

…….

GOSSIP

41

Node 1

Node 2

…

Node n

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

GOSSIP

42

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5C:3A:1

Node X

Node Y

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

When  
  
  

Where 
  
  

Which 
  

WWW

43

Node 1

Node 2

…

Node n

When  
 M: load difference discovered  
 anomaly discovered 
 anticipated

Where 
 M: memory, cycles, comm  
 consider topology  
 application knowledge

Which 
 M: past predicts future  
 application knowledge

When  
 M: load difference discovered  
  

Where 
 M: memory, cycles, comm  
  

Which 
 M: past predicts future  

Copyright © Amnon Barak 2011
44

Load balancing algorithms
• When - Load difference between a pair of nodes is

above a threshold value
• Which - Oldest process (assumes past-repeat)
• Where - To the known node with the lowest load
• Many other heuristics  

• Performance: our online algorithm is only ~2% slower
than the optimal algorithm (which has complete
information about all the processes)

Copyright © Amnon Barak 2011
45

Memory ushering
• Heuristics: initiate process migration from a node with

no free memory to a node with available free memory
• Useful: when non-uniform memory usage (many users)  

or nodes with different memory sizes
• Overrides load-balancing  

 
 
 
 

• Recall: placement problem is NP-hard

Copyright © Amnon Barak 2011
46

Memory ushering algorithm

• When - free memory drops below a threshold
• Where - the node with the lowest load, to avoid

unnecessary follow-up migrations
• Which - smallest process that brings node under

threshold
• To reduce the communication overhead  

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

PRECEDENCE

■ memory

■ cpu load

■ IPC

47

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

SOME PRACTICAL PROBLEMS

■ flooding 
all processes jump to one new empty node 
=> decide immediately before migration
commitment  
extra communication, piggy packed

■ ping pong 
if thresholds are very close, processes
moved back and forth 
=> tell a little higher load than real

48

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

PING PONG

49

Node 1 Node 2

One process two nodes

Scenario:
compare load on nodes 1 and 2
node 1 moves process to node 2

Solutions:
add one + little bit to load  
average over time

Solves short peaks problem as well
(short cron processes)

Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

LESSONS

■ execution/communication time jitter
matters (Amdahl)

■ HPC approaches: partition ./. balance

■ dynamic balance components: 
migration mechanism,  
information bulletin,  
decision: which, when, where

50

