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Concurrent programs

int i; 
int k;global variables:

i = 1; 
if (i > 1) k = 3;

i = i + 1; 
if (k == 0) k = 4;

||

mov $1, [%i] 
cmp [%i], $1 
jgt    end 
mov $3, [%k] 
end:

inc   [%i] 
cmp [%k], $0 
jne   end 
mov $4, [%k] 
end:

||
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Symmetric Multiprocessor (SMP)
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Chip Multiprocessor (CMP), Multicore
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Symmetric Multithreading (SMT), 
Hyperthreading
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Non-Uniform Memory Access (NUMA)
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NUMA Example: Tilera Gx

Source: http://tilera.com
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Summary: Memory Organization

• Multiple processors share memory 

• Memory access paths through one or more controllers 
– UMA (Uniform Memory Access) 
– NUMA (Non-Uniform Memory Access) 

• Caches / store buffers hold memory content near  
accessing CPUs.
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Cache Coherency
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Cache Coherency

• Caches lead to multiple copies for the content of a 
single memory location 

• Cache Coherency keeps copies “consistent” 
– locate all copies 
– invalidate/update content 

• Write Propagation 
writes must eventually become visible to all 
processors. 

• Write Serialization 
every processor should see writes to the same 
location in the same order.

TU Dresden
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Alternative Definition: SWMR

Single-Writer, Multiple-Reader Invariant 
For any memory location A, at any given time,  
either only a single core may write (or read-modify-

write) the content of A  
or any number of cores may read the content of A. 

Data-Value Invariant 
The value of a memory location at the start of an  
operation is the same as the value at the end of its  
last write (read-modify-write) operation. 

[based on Sorin et al., 2011]
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Attempt 1: write through all caches
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Attempt 2: write back
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Coherency Problems & Solutions

Both examples violate SWMR! 

Problem 1 
CPU1 used stale value that had already been modified by CPU0. 

– Solution: Invalidate copies before write proceeds! 

Problem 2 
Incorrect writeback order of modified cache lines. 

– Solution: Disallow more than one modified copy!

TU Dresden
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Coherency Protocol Design Space

• Snooping-based 
– All coherency related traffic broadcasted to all CPUs 
– Each processor snoops and acts accordingly: 

• Invalidate lines written by other CPUs 
• Signal sharing for lines currently in cache 

– Straightforward for bus-based systems 
– Suited for small-scale systems 

• Directory-based 
– Uses central directory to track cache line owner 
– Update copies in other caches 

• Can update all CPUs at once  
(less traffic for alternating reads and writes) 

• Multiple writes need multiple updates  
(more traffic for subsequent writes) 

– Suited for large-scale systems

TU Dresden



Distributed Operating Systems 16

Coherency Protocol Design Space

• Snooping-based vs. Directory-based
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Invalidation vs. Update Protocols

• Invalidation-based 
– Only write misses hit bus (suited for WB caches) 
– Subsequent writes are write hits 
– Good for multiple writes to same cache line by same CPU 

• Update-based 
– All shares of a cache line continue to hit in the cache after 

a write by one CPU 
– Otherwise lots of useless updates (wastes bandwidth) → 

Rarely used! 

• Hybrid forms are possible!
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A Basic Coherency Protocol: MSI

• Modified (M) 
– No copies on other caches; local copy modifed 
– Memory is stale 

• Shared (S) 
– Unmodified copies in one or more caches 
– Memory is up-to-date 

• Invalid (I) 
– Not in cache 

• States tracked from the view of the cache controller. 
Sees events from: 
– Local processor   → processor transactions 
– Other processors  → snoop transactions

TU Dresden
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MSI: Processor Transitions

• State is I, CPU reads (PrRd) 
– Generate bus read request (BusRd) 
– Go to S 

• State is S or M, CPU reads (PrRd) 
– No transition 

• State is S, CPU writes (PrWr) 
– Upgrade cache line for exclusive ownership (BusRdX) 
– Go to M 

• State is M, CPU writes (PrWr) 
– No transition

TU Dresden
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MSI: Snoop Transitions

• Receiving a read snoop (BusRd) for a cache line 
– If M, write cache line back to memory (WB), transition to S 
– If S, no transition 

• Receiving a exclusive ownership snoop (BusRdX) 
– If M, write cache line back to memory (WB), discard it, 

transition to I 
– If S, discard cache line, transition to I

TU Dresden
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MSI State Transitions
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Problems in MSI

A common usecase is to: 
– read variable A: S 
– Modify A:  BusRdX sent, S → M 

Invalidation message pointless, if no other cache holds A. 

Solved by adding Exclusive (E) state: 
– No copies exist in other caches 
– Memory is up-to-date 

Variants of MESI are used by most popular 
microprocessors.
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MESI State Transitions
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MOESI: Adding Owned to MESI

• Similar to MESI, with some extensions 
• Cache-to-Cache transfers of modified cache lines 

– Modified cache lines not written back to memory, but 
supplied by to other CPUs on BusRd 

– CPU that had initial modified copy becomes “owner” 
• Avoids writeback to memory when another CPU 

accesses cache line 
– Beneficial when cache-to-cache latency/bandwidth is 

better than cache-to-memory latency/bandwidth 
• Used by AMD Opteron
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Coherency in Multi-Level Caches

• Bus only connected to last-level cache (e.g. L2) 
– Snoop requests are relevant to inner-level caches (e.g. L1) 
– Modifications in L1 may not be visible to L2 (and the bus) 

• Idea: L2 forwards filtered transactions for L1: 
– On BusRd check if line is M/O in L1 (may be S or E in L2) 
– On BusRdX, send invalidate to L1 

• Only easy for inclusive caches! 

• Inclusion property 
 Outer cache contains a superset of the content of its inner  
 caches.
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Concurrent programs

int i; 
int k;global variables:

i = 1; 
if (i > 1) k = 3;

i = i + 1; 
if (k == 0) k = 4;

||

mov $1, [%i] 
cmp [%i], $1 
jgt    end 
mov $3, [%k] 
end:

inc   [%i] 
cmp [%k], $0 
jne   end 
mov $4, [%k] 
end:

||

lock;
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Memory Consistency Models

Memory Consistency Model 
defines correct shared memory behavior in terms of 
loads and stores in terms of how operations to 
different memory locations may become visible with 
respect to each other. 

Different memory consistency models exist 
– Complex models can expose more performance 
– Some platforms support multiple models (SPARC) 

Terminology 
– Program Order (of a processor's operations) 

Per-processor order of memory accesses determined by the 
program (software) 

– Visibility Order (of all operations) 
Order of memory accesses observed by one or more 
processors.

TU Dresden
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Sequential Consistency (SC)

“The result of any execution is the same as if the operations of 
all the processors were executed in some sequential order, 
and the operations of each individual processor appear in this 
sequence in the order specified by its program. A 
multiprocessor satisfying this condition will be called 
sequentially consistent.” [Lamport 1979] 

• Program Order Requirement 
– Each CPU issues memory operations in program order. 

• Atomicity Requirement 
– Memory services operations one at a time 
– Memory operations appear to execute atomically wrt 

other memory operations 
• Implemented by MIPS R10k

TU Dresden
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Examples for Sequential Consistency

CPU0   CPU1 
[A] = 1; (a1)  u = [B]; (a2)  [A] [B] Memory 
[B] = 1; (b1)  v = [A]; (b2)  u, v Registers 

(u,v) = (1,1) 
– Sequentially consistent: a1, b1, a2, b2 

(u,v) = (1,0) 
– Not sequentially consistent: b1, a2, b2, a1 
– Violates program order for CPU0 (or 1) 
– No visibility order possible that is seq. consistent!
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Examples for Sequential Consistency

CPU0   CPU1 
[A] = 1; (a1)  [B] = 1; (a2)  [A] [B] Memory 
u = [B]; (b1)  v = [A]; (b2)  u, v Registers 

(u,v) = (1,1) 
– Sequentially consistent: a1, a2, b1, b2 

(u,v) = (0,0) 
– Not sequentially consistent: b1, b2, a1, a2 
– Violates program order for CPU0/1 
– No visibility order possible that is seq. Consistent!
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Store Buffer
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SB invisible to remote CPUs. 

FIFO vs. non-FIFO. Writes can 
be combined, may reorder 
writes on some architectures.
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SC vs. weaker consistency models

In-order memory operations in SC: 
– Read→Read 
– Read→Write 
– Write→Read 
– Write→Write 

Describes which program order relations hold in the 
visibility order of memory operations. 

Weaker models relax some or all of these orderings.
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Relaxing Write→Read or Write→Write

Relaxing Write→Read (later reads can bypass earlier writes) 
– Write followed by a read can execute out-of-order 
– Typical hardware usage: Store Buffer 

• Writes must wait for cache line ownership 
• Reads can bypass writes in the buffer 
• Hides write latency 

Relaxing Write→Write (later writes can bypass earlier writes) 
– Write followed by a write can execute out-of-order 
– Typical hardware usage: Coalescing store buffer
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IBM 370 (z Series)

• In-order memory operations: 
– Read→Read 
– Read→Write 
– Write→Write 

• Out-of-order memory operations: 
– Write-to-Read (later reads can bypass earlier writes) 

• Unless both to same location 
• Breaks Dekker's algorithm for mutual exclusion 

– Write-to-Read to same location must execute in-order 
• No forwarding from the store buffer

TU Dresden
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Dekker's Algorithm on z Series

CPU0 

P: flag0 = true; 
while (flag1) { 
  If (turn == 1) { 
   flag0 = false; 
   goto P; 
  } 
 } 
// Critical section 
flag0 = false; 
turn = 1;

CPU1 

P: flag1 = true; 
while (flag0) { 
  If (turn == 0) { 
   flag1 = false; 
   goto P; 
  } 
 } 
// Critical section 
flag1 = false; 
turn = 0;

bool flag0 = false; // 
Intention 
bool flag1 = false; // to enter 
int turn = 0; // Who's next?

Buffered

TU Dresden
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SPARC v8 Total Store Order (TSO)

• In-order memory operations: 
– Read-to-Read 
– Read-to-Write 
– Write-to-Write 

• Out-of-order memory operations: 
– Write-to-Read (later reads can bypass earlier writes) 

• Forwarding of pending writes in the store buffer to 
successive reads to the same location 

– Writes become visible to writing processor first 
• Store buffer is FIFO 
• Breaks Peterson's algorithm for mutual exclusion

TU Dresden
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Peterson's Algorithm on TSO

CPU0 

flag0 = true; 
turn = 1; 
while (turn == 1 && flag1) {} 
// Critical section 
flag0 = false;

CPU1 

flag1 = true; 
turn = 0; 
while (turn == 0 &&  flag0) {} 
// Critical section 
flag1 = false;

bool flag0 = false; // 
Intention 
bool flag1 = false; // to enter 
int turn = 0; // Who's next?

Buffered

Loading turn orders accesses on zSeries, but not on TSO!

TU Dresden
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TSO vs. SC and z Series

CPU0   CPU1 
[A] = 1; (a1)  [B] = 1; (a2) 
u = [A]; (b1)  v = [B]; (b2) 
w = [B]; (c1)  x = [A]; (c2) 

• (u,v,w,x) = (1,1,0,0) 
– Not possible with SC and z Series 
– Possible with TSO 

• b1, b2, c1, c2, a1, a2 
• b1 reads [A] from write buffer 
• b2 reads [B] from write buffer

TU Dresden
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Processor Consistency (PC)

• Similar to Total Store Order (TSO) 
• Additionally supports multiple cached memory copies 

– Relaxed atomicity for write operations 
• Each write broken into suboperations to update 

cached copies of other CPUs 
– Non-unique write order: per-CPU visibility order 

• Additional coherency requirement 
– All write suboperations to the same location complete in 

the same order across all memory copies (or in other 
words: each processor sees writes to the same location in 
the same order)

TU Dresden
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PC vs. SC, z Series, TSO

CPU0   CPU1   CPU2 
[A] = 1; (a1)  u = [A]; (a2)  v = [B]; (a3) 
      [B] = 1; (b2)  w = [A]; (b3) 

• (u,v,w) = (1,1,0) 
– Not possible with SC, z Series, TSO 
– Possible with Processor Consistency (PC) 

• CPU0 sets [A], sends update to other CPUs 
• CPU1 gets update, sets [B], sends update 
• CPU2 sees update from CPU1, but hasn't seen update 

from CPU0 yet 
– Single memory bus enforces single visibility order 
– Multiple visibility orders with different topologies

TU Dresden
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Causality

CPU0  CPU1   CPU2 
[A] = 1; while ([A] == 0); while ([B] == 0); 
     [B] = 1;  print [A]; 

Write Atomicity 
All cores see writes at the same time (and the same order). 

Relaxing write atomicity 
– CPU0 writes [A]; sends update to CPU1/2 
– CPU1 receives; writes [B]; sends update to CPU2 
– CPU2 receives update from CPU1, prints [A] = 0 
– CPU2 receives update from CPU0 

Not sequentially consistent!
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SPARC V8 Partial Store Order (PSO)

• In-order memory operations: 
– Read→Read 
– Read→Write 

• Out-of-order memory operations: 
– Write→Read (later reads can bypass earlier writes) 

• Forwarding of pending writes to successive reads to 
the same location 

– Write→Write (later writes can bypass earlier writes) 
• Unless both are to the same location 
• Breaks naive producer-consumer code 

• Write atomicity is maintained → single visibility order
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PSO vs. SC, z Series, TSO, PC

CPU0   CPU1 
[A] = 1; (a1)  while ([Flag] == 0);  (a2) 
[B] = 1; (b1)  u = [A];   (b2) 
[Flag] = 1; (c1) v = [B];   (c2) 

• (u,v) = (0,0) or (0,1) or (1,0) 
– Not possible with SC, z Series, TSO, PC 
– Possible with PSO 

• c1,a2,b2,c2,a1,b1 
• Store Barrier (STBAR) before c1 ensures sequentially 

consistent result (u,v) = (1,1)

TU Dresden
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Relaxing all Program Orders

• In addition to previous relaxations: 
– Read→Read (later reads can bypass earlier reads) 

• Read followed by read can execute out-of-order 
– Read→Write (later writes can bypass earlier reads) 

• Read followed by a write can execute out-of-order 
• Examples 

– Weak Ordering (WO) 
– Release Consistency (RC) 
– DEC Alpha 
– SPARC V9 Relaxed Memory Model (RMO) 
– PowerPC 
– Itanium (IA-64)
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Weak Ordering (WO)

• Conceptually similar to Processor Consistency 
– Including coherency requirement 

• Classifies memory operations into 
– Data operations 
– Synchronization operations 

• Reordering of operations between synchronization 
operations typically does not affect correctness of a 
program 

• Program order only maintained at synchronization 
points 
– Between synchronization operations

TU Dresden
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Release Consistency (RC)

• Distinguishes memory operations as 
– Ordinary (data) 
– Special 

• Sync (synchronization) 
• Nsync (asynchronous data) 

• Sync operations classified as 
– Acquire 

• Read operation for gaining access to a shared 
resource 

• e.g., spinning on a flag to be set, reading a pointer 
– Release 

• Write operation for granting permission to a shared 
resource 

• e.g., setting a synchronization flag

TU Dresden
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Flavors of Release Consistency

• RCSC 

– Sequential consistency between special operations 
– Program order enforced between: 

• acquire → all 
• all → release 
• special → special 

• RCPC 

– Processor consistency between special operations 
– Program order enforced between: 

• acquire → all 
• all → release 
• special → special, except release followed by acquire

TU Dresden
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Enforcing Ordering:  
Synchronization Instructions

• IA32 
– lfence, sfence, mfence (load, store, memory fence) 

• Alpha 
– mb (memory barrier), wmb (write memory barrier) 

• SPARC (PSO) 
– stbar (store barrier) 

• SPARC (RMO) 
– membar (4-bit encoding for r-r, r-w, w-r, w-w) 

• PowerPC 
– sync (similar to Alpha mb, except r-r), lwsync 
– eieio (enforce in-order execution of I/O)
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Dependent Load Reordering (Alpha)

A = 1, B = 0, P = &A 
CPU0   CPU1 
[B] = 1;  (a1) u = [P]  (a2) 
Store barrier  v = [u]; (b2) 
[P] = &B;  (b1) 

Load depends previous load for address generation. Alpha may 
reorder loads due to speculation. Allows: 

(u,v) = (&B, 0) 
– Even with barrier between a1,b1! 
– Visibility order: a1,b1,b2,a2 

Most (all?) processors except Alpha disallow dependent load/store 
reordering.

TU Dresden
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Compiler Optimizations

Compilers reorder memory accesses for performance. 
Effects are equivalent to reordering by hardware. 

Flag0 = true;  ld r1 ← flag1 
while (flag1) {  st flag0 ← true 
 …    loop: cmp r1,0 
 …    ... 
}     ld r1 ← flag1 

Is this a legal optimization? 

Single threaded: Yes  Multithreaded: NO! 
Can't perceive difference

TU Dresden
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How do we portably program this?!

Standardized memory models for HLL: 
– C / C++ 2011 
– Java 

Basic model: Sequentially Consistency for data-race free 
programs (SC-DRF) 

A DRF program will execute sequentially consistent. 

Data Race (informal) 
Multiple threads access a memory location without 

synchronization, one of them is a writer.

TU Dresden
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DRF Example

a = b = 0; 

Thread 1   Thread 2 
mtx_lock(l);   
a = 1;   x = a; 
b = 1;   y = b; 
mtx_unlock(l); 

Not DRF: 
– a,b accessed without synchronization 
– (x,y) = (0,0) (1,0) (0,1) (1,1) all legal! 
– Need to add synchronization to Thread 2 

With synchronization yields either (0,0) or (1,1): 
– DRF, sequentially consistent!
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Enforcing Memory Ordering in C++

• Mutexes may cause scalability issues 
• C++ 11 offers rich set of atomic memory operations 

(std::atomic) 
– Implements RCSC: 

• Atomic reads acquire 
• Atomic stores release 

– Can use weaker ordering if desired 
– Compare-and-Swap 
– Add/Sub/And/Or/Xor/... 

• Does the right thing on all platforms 
– Adds appropriate memory barriers 
– Uses locked instructions as necessary 
– May use locks on certain platforms!
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