
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Distributed Operating Systems 
Memory Consistency & Cache Coherence

Michael Roitzsch

(slides Julian Stecklina, Marcus Völp)

Distributed Operating Systems 2

Concurrent programs

int i;
int k;global variables:

i = 1;
if (i > 1) k = 3;

i = i + 1;
if (k == 0) k = 4;

||

mov $1, [%i]
cmp [%i], $1
jgt end
mov $3, [%k]
end:

inc [%i]
cmp [%k], $0
jne end
mov $4, [%k]
end:

||

TU Dresden

Distributed Operating Systems 3

Symmetric Multiprocessor (SMP)

CPU0

L1

L2

CPU1

L1

L2

CPU2

L1

L2

CPU3

L1

L2

Memory

Processors

Local
Caches

Bus or
Crossbar

Shared
Memory

TU Dresden

Distributed Operating Systems 4

Chip Multiprocessor (CMP), Multicore

CPU0

L1

L2

CPU1

L1

Memory

CPU2

L1

L2

CPU3

L1

Processors

Local Cache

Bus or
Crossbar

Shared
Memory

Shared
LL-Cache

TU Dresden

Distributed Operating Systems 5

Symmetric Multithreading (SMT),
Hyperthreading

L1

L2

L1

HT0
HT1

HT2
HT3

Memory

L1

L2

L1

HT4
HT5

HT6
HT7

Processors

Local Cache

Bus or
Crossbar

Shared
Memory

Shared
LL-Cache

TU Dresden

Distributed Operating Systems 6

Non-Uniform Memory Access (NUMA)

CPU0Memory CPU3 Memory

CPU1Memory CPU2 Memory

General
Interconnect

TU Dresden

Distributed Operating Systems 7

NUMA Example: Tilera Gx

Source: http://tilera.com

TU Dresden

Distributed Operating Systems 8

Summary: Memory Organization

• Multiple processors share memory

• Memory access paths through one or more controllers
– UMA (Uniform Memory Access)
– NUMA (Non-Uniform Memory Access)

• Caches / store buffers hold memory content near  
accessing CPUs.

TU Dresden

Distributed Operating Systems 9

Cache Coherency

L1

L2

L1

HT0
HT1

HT2
HT3

Memory = =

address tag idx ofs

set

tag  
RAM

data
RAM

TU Dresden

Distributed Operating Systems 10

Cache Coherency

• Caches lead to multiple copies for the content of a
single memory location

• Cache Coherency keeps copies “consistent”
– locate all copies
– invalidate/update content

• Write Propagation
writes must eventually become visible to all
processors.

• Write Serialization
every processor should see writes to the same
location in the same order.

TU Dresden

Distributed Operating Systems 11

Alternative Definition: SWMR

Single-Writer, Multiple-Reader Invariant
For any memory location A, at any given time,
either only a single core may write (or read-modify-

write) the content of A
or any number of cores may read the content of A.

Data-Value Invariant
The value of a memory location at the start of an
operation is the same as the value at the end of its
last write (read-modify-write) operation.

[based on Sorin et al., 2011]

TU Dresden

Distributed Operating Systems 12

Attempt 1: write through all caches

CPU0

WT
Cache

CPU1

WT
Cache

Memory x=0

x=0x=0x=1

x=1

CPU0: read x
x=0 stored in cache

CPU1: read x
x=0 stored in cache

CPU0: write x=1
x=1 stored in cache
x=1 stored in memory

CPU1: read x
x=0 retrieved from cacheWrite not visible to CPU1!

TU Dresden

Distributed Operating Systems 13

Attempt 2: write back

CPU0

WB
Cache

CPU1

WB
Cache

Memory x=0

x=0x=0

CPU0: read x
x=0 stored in cache

CPU1: read x
x=0 stored in cache

CPU0: write x=1
x=1 stored in cache

CPU1: write x=2
x=2 stored in cache

CPU1: writeback
x=2 stored in memory

CPU0: writeback
x=1 stored in memory

Later store x=2 lost!

x=1 x=2

x=2x=1

TU Dresden

Distributed Operating Systems 14

Coherency Problems & Solutions

Both examples violate SWMR!

Problem 1
CPU1 used stale value that had already been modified by CPU0.

– Solution: Invalidate copies before write proceeds!

Problem 2
Incorrect writeback order of modified cache lines.

– Solution: Disallow more than one modified copy!

TU Dresden

Distributed Operating Systems 15

Coherency Protocol Design Space

• Snooping-based
– All coherency related traffic broadcasted to all CPUs
– Each processor snoops and acts accordingly:

• Invalidate lines written by other CPUs
• Signal sharing for lines currently in cache

– Straightforward for bus-based systems
– Suited for small-scale systems

• Directory-based
– Uses central directory to track cache line owner
– Update copies in other caches

• Can update all CPUs at once  
(less traffic for alternating reads and writes)

• Multiple writes need multiple updates  
(more traffic for subsequent writes)

– Suited for large-scale systems

TU Dresden

Distributed Operating Systems 16

Coherency Protocol Design Space

• Snooping-based vs. Directory-based

Memory

CPU0

L1

CPU1

L1

L2 Snoop
Filter

Memory

CPU0

L1

CPU1

L1

L2Snoop
Filter

TU Dresden

Distributed Operating Systems 17

Invalidation vs. Update Protocols

• Invalidation-based
– Only write misses hit bus (suited for WB caches)
– Subsequent writes are write hits
– Good for multiple writes to same cache line by same CPU

• Update-based
– All shares of a cache line continue to hit in the cache after

a write by one CPU
– Otherwise lots of useless updates (wastes bandwidth) →

Rarely used!

• Hybrid forms are possible!

TU Dresden

Distributed Operating Systems 18

A Basic Coherency Protocol: MSI

• Modified (M)
– No copies on other caches; local copy modifed
– Memory is stale

• Shared (S)
– Unmodified copies in one or more caches
– Memory is up-to-date

• Invalid (I)
– Not in cache

• States tracked from the view of the cache controller.
Sees events from:
– Local processor → processor transactions
– Other processors → snoop transactions

TU Dresden

Distributed Operating Systems 19

MSI: Processor Transitions

• State is I, CPU reads (PrRd)
– Generate bus read request (BusRd)
– Go to S

• State is S or M, CPU reads (PrRd)
– No transition

• State is S, CPU writes (PrWr)
– Upgrade cache line for exclusive ownership (BusRdX)
– Go to M

• State is M, CPU writes (PrWr)
– No transition

TU Dresden

Distributed Operating Systems 20

MSI: Snoop Transitions

• Receiving a read snoop (BusRd) for a cache line
– If M, write cache line back to memory (WB), transition to S
– If S, no transition

• Receiving a exclusive ownership snoop (BusRdX)
– If M, write cache line back to memory (WB), discard it,

transition to I
– If S, discard cache line, transition to I

TU Dresden

Distributed Operating Systems 21

MSI State Transitions

I

S

M

Snoop
Transitions

Processor
Transitions

PrWr → BusRdX

PrWr
PrRd

BusRd → WB

BusRd

PrRd

PrRd → BusRd

BusRdX → WB

BusRd
BusRdX

BusRdX

PrWr → BusRdX

TU Dresden

Distributed Operating Systems 22

Problems in MSI

A common usecase is to:
– read variable A: S
– Modify A: BusRdX sent, S → M

Invalidation message pointless, if no other cache holds A.

Solved by adding Exclusive (E) state:
– No copies exist in other caches
– Memory is up-to-date

Variants of MESI are used by most popular
microprocessors.

TU Dresden

Distributed Operating Systems 23

MESI State Transitions

E

I

S

M

Snoop
Transitions

Processor
Transitions

PrWr → BusRdX
PrWr

PrWr

BusRd → WB

BusRd → HIT

PrRd

PrRd → BusRd (HIT)PrRd → BusRd (!HIT)

BusRdX → WB

BusRd
BusRdX

BusRd → HIT

PrWr → BusRdX

BusRdX BusRdX

TU Dresden

Distributed Operating Systems 24

MOESI: Adding Owned to MESI

• Similar to MESI, with some extensions
• Cache-to-Cache transfers of modified cache lines

– Modified cache lines not written back to memory, but
supplied by to other CPUs on BusRd

– CPU that had initial modified copy becomes “owner”
• Avoids writeback to memory when another CPU

accesses cache line
– Beneficial when cache-to-cache latency/bandwidth is

better than cache-to-memory latency/bandwidth
• Used by AMD Opteron

TU Dresden

Distributed Operating Systems 25

MOESI State Transitions

E

I

S

M

Snoop
Transitions

Processor
Transitions

PrWr → BusRdX

PrWr

PrWr

BusRd → WB

BusRd → HIT

PrRd

PrRd → BusRd (HIT)PrRd → BusRd (!HIT)

BusRdX → XFER

BusRd
BusRdX

BusRd → HIT

PrWr → BusRdX

BusRdX BusRdX

O
BusRd → HIT, XFER

PrWr → BusRdX

PrRd

BusRd → HIT, XFER

TU Dresden

Distributed Operating Systems 26

Coherency in Multi-Level Caches

• Bus only connected to last-level cache (e.g. L2)
– Snoop requests are relevant to inner-level caches (e.g. L1)
– Modifications in L1 may not be visible to L2 (and the bus)

• Idea: L2 forwards filtered transactions for L1:
– On BusRd check if line is M/O in L1 (may be S or E in L2)
– On BusRdX, send invalidate to L1

• Only easy for inclusive caches!

• Inclusion property
 Outer cache contains a superset of the content of its inner  
 caches.

TU Dresden

Distributed Operating Systems 27

Concurrent programs

int i;
int k;global variables:

i = 1;
if (i > 1) k = 3;

i = i + 1;
if (k == 0) k = 4;

||

mov $1, [%i]
cmp [%i], $1
jgt end
mov $3, [%k]
end:

inc [%i]
cmp [%k], $0
jne end
mov $4, [%k]
end:

||

lock;

TU Dresden

Distributed Operating Systems 28

Memory Consistency Models

Memory Consistency Model 
defines correct shared memory behavior in terms of
loads and stores in terms of how operations to
different memory locations may become visible with
respect to each other.

Different memory consistency models exist
– Complex models can expose more performance
– Some platforms support multiple models (SPARC)

Terminology
– Program Order (of a processor's operations)

Per-processor order of memory accesses determined by the
program (software)

– Visibility Order (of all operations)
Order of memory accesses observed by one or more
processors.

TU Dresden

Distributed Operating Systems 29

Sequential Consistency (SC)

“The result of any execution is the same as if the operations of
all the processors were executed in some sequential order,
and the operations of each individual processor appear in this
sequence in the order specified by its program. A
multiprocessor satisfying this condition will be called
sequentially consistent.” [Lamport 1979]

• Program Order Requirement
– Each CPU issues memory operations in program order.

• Atomicity Requirement
– Memory services operations one at a time
– Memory operations appear to execute atomically wrt

other memory operations
• Implemented by MIPS R10k

TU Dresden

Distributed Operating Systems 30

Examples for Sequential Consistency

CPU0 CPU1
[A] = 1; (a1) u = [B]; (a2) [A] [B] Memory
[B] = 1; (b1) v = [A]; (b2) u, v Registers

(u,v) = (1,1)
– Sequentially consistent: a1, b1, a2, b2

(u,v) = (1,0)
– Not sequentially consistent: b1, a2, b2, a1
– Violates program order for CPU0 (or 1)
– No visibility order possible that is seq. consistent!

TU Dresden

Distributed Operating Systems 31

Examples for Sequential Consistency

CPU0 CPU1
[A] = 1; (a1) [B] = 1; (a2) [A] [B] Memory
u = [B]; (b1) v = [A]; (b2) u, v Registers

(u,v) = (1,1)
– Sequentially consistent: a1, a2, b1, b2

(u,v) = (0,0)
– Not sequentially consistent: b1, b2, a1, a2
– Violates program order for CPU0/1
– No visibility order possible that is seq. Consistent!

TU Dresden

Distributed Operating Systems 32

Store Buffer

Memory

CPU0

Cache

SB

CPU1

Cache

SB

SB optimizes writes to memory
and/or caches to optimize
interconnect accesses.

CPU can continue before write
is completed.

Store forwarding allows reads
from local CPU to see pending
writes in the SB.

SB invisible to remote CPUs.

FIFO vs. non-FIFO. Writes can
be combined, may reorder
writes on some architectures.

TU Dresden

Distributed Operating Systems 33

SC vs. weaker consistency models

In-order memory operations in SC:
– Read→Read
– Read→Write
– Write→Read
– Write→Write

Describes which program order relations hold in the
visibility order of memory operations.

Weaker models relax some or all of these orderings.

TU Dresden

Distributed Operating Systems 34

Relaxing Write→Read or Write→Write

Relaxing Write→Read (later reads can bypass earlier writes)
– Write followed by a read can execute out-of-order
– Typical hardware usage: Store Buffer

• Writes must wait for cache line ownership
• Reads can bypass writes in the buffer
• Hides write latency

Relaxing Write→Write (later writes can bypass earlier writes)
– Write followed by a write can execute out-of-order
– Typical hardware usage: Coalescing store buffer

TU Dresden

Distributed Operating Systems 35

IBM 370 (z Series)

• In-order memory operations:
– Read→Read
– Read→Write
– Write→Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• Unless both to same location
• Breaks Dekker's algorithm for mutual exclusion

– Write-to-Read to same location must execute in-order
• No forwarding from the store buffer

TU Dresden

Distributed Operating Systems 36

Dekker's Algorithm on z Series

CPU0

P: flag0 = true;
while (flag1) {
 If (turn == 1) {
 flag0 = false;
 goto P;
 }
 }
// Critical section
flag0 = false;
turn = 1;

CPU1

P: flag1 = true;
while (flag0) {
 If (turn == 0) {
 flag1 = false;
 goto P;
 }
 }
// Critical section
flag1 = false;
turn = 0;

bool flag0 = false; //
Intention
bool flag1 = false; // to enter
int turn = 0; // Who's next?

Buffered

TU Dresden

Distributed Operating Systems 37

SPARC v8 Total Store Order (TSO)

• In-order memory operations:
– Read-to-Read
– Read-to-Write
– Write-to-Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• Forwarding of pending writes in the store buffer to
successive reads to the same location

– Writes become visible to writing processor first
• Store buffer is FIFO
• Breaks Peterson's algorithm for mutual exclusion

TU Dresden

Distributed Operating Systems 38

Peterson's Algorithm on TSO

CPU0

flag0 = true;
turn = 1;
while (turn == 1 && flag1) {}
// Critical section
flag0 = false;

CPU1

flag1 = true;
turn = 0;
while (turn == 0 && flag0) {}
// Critical section
flag1 = false;

bool flag0 = false; //
Intention
bool flag1 = false; // to enter
int turn = 0; // Who's next?

Buffered

Loading turn orders accesses on zSeries, but not on TSO!

TU Dresden

Distributed Operating Systems 39

TSO vs. SC and z Series

CPU0 CPU1
[A] = 1; (a1) [B] = 1; (a2)
u = [A]; (b1) v = [B]; (b2)
w = [B]; (c1) x = [A]; (c2)

• (u,v,w,x) = (1,1,0,0)
– Not possible with SC and z Series
– Possible with TSO

• b1, b2, c1, c2, a1, a2
• b1 reads [A] from write buffer
• b2 reads [B] from write buffer

TU Dresden

Distributed Operating Systems 40

Processor Consistency (PC)

• Similar to Total Store Order (TSO)
• Additionally supports multiple cached memory copies

– Relaxed atomicity for write operations
• Each write broken into suboperations to update

cached copies of other CPUs
– Non-unique write order: per-CPU visibility order

• Additional coherency requirement
– All write suboperations to the same location complete in

the same order across all memory copies (or in other
words: each processor sees writes to the same location in
the same order)

TU Dresden

Distributed Operating Systems 41

PC vs. SC, z Series, TSO

CPU0 CPU1 CPU2
[A] = 1; (a1) u = [A]; (a2) v = [B]; (a3)
 [B] = 1; (b2) w = [A]; (b3)

• (u,v,w) = (1,1,0)
– Not possible with SC, z Series, TSO
– Possible with Processor Consistency (PC)

• CPU0 sets [A], sends update to other CPUs
• CPU1 gets update, sets [B], sends update
• CPU2 sees update from CPU1, but hasn't seen update

from CPU0 yet
– Single memory bus enforces single visibility order
– Multiple visibility orders with different topologies

TU Dresden

Distributed Operating Systems 42

Causality

CPU0 CPU1 CPU2
[A] = 1; while ([A] == 0); while ([B] == 0);
 [B] = 1; print [A];

Write Atomicity
All cores see writes at the same time (and the same order).

Relaxing write atomicity
– CPU0 writes [A]; sends update to CPU1/2
– CPU1 receives; writes [B]; sends update to CPU2
– CPU2 receives update from CPU1, prints [A] = 0
– CPU2 receives update from CPU0

Not sequentially consistent!

TU Dresden

Distributed Operating Systems 43

SPARC V8 Partial Store Order (PSO)

• In-order memory operations:
– Read→Read
– Read→Write

• Out-of-order memory operations:
– Write→Read (later reads can bypass earlier writes)

• Forwarding of pending writes to successive reads to
the same location

– Write→Write (later writes can bypass earlier writes)
• Unless both are to the same location
• Breaks naive producer-consumer code

• Write atomicity is maintained → single visibility order

TU Dresden

Distributed Operating Systems 44

PSO vs. SC, z Series, TSO, PC

CPU0 CPU1
[A] = 1; (a1) while ([Flag] == 0); (a2)
[B] = 1; (b1) u = [A]; (b2)
[Flag] = 1; (c1) v = [B]; (c2)

• (u,v) = (0,0) or (0,1) or (1,0)
– Not possible with SC, z Series, TSO, PC
– Possible with PSO

• c1,a2,b2,c2,a1,b1
• Store Barrier (STBAR) before c1 ensures sequentially

consistent result (u,v) = (1,1)

TU Dresden

Distributed Operating Systems 45

Relaxing all Program Orders

• In addition to previous relaxations:
– Read→Read (later reads can bypass earlier reads)

• Read followed by read can execute out-of-order
– Read→Write (later writes can bypass earlier reads)

• Read followed by a write can execute out-of-order
• Examples

– Weak Ordering (WO)
– Release Consistency (RC)
– DEC Alpha
– SPARC V9 Relaxed Memory Model (RMO)
– PowerPC
– Itanium (IA-64)

TU Dresden

Distributed Operating Systems 46

Weak Ordering (WO)

• Conceptually similar to Processor Consistency
– Including coherency requirement

• Classifies memory operations into
– Data operations
– Synchronization operations

• Reordering of operations between synchronization
operations typically does not affect correctness of a
program

• Program order only maintained at synchronization
points
– Between synchronization operations

TU Dresden

Distributed Operating Systems 47

Release Consistency (RC)

• Distinguishes memory operations as
– Ordinary (data)
– Special

• Sync (synchronization)
• Nsync (asynchronous data)

• Sync operations classified as
– Acquire

• Read operation for gaining access to a shared
resource

• e.g., spinning on a flag to be set, reading a pointer
– Release

• Write operation for granting permission to a shared
resource

• e.g., setting a synchronization flag

TU Dresden

Distributed Operating Systems 48

Flavors of Release Consistency

• RCSC

– Sequential consistency between special operations
– Program order enforced between:

• acquire → all
• all → release
• special → special

• RCPC

– Processor consistency between special operations
– Program order enforced between:

• acquire → all
• all → release
• special → special, except release followed by acquire

TU Dresden

Distributed Operating Systems 49

Enforcing Ordering:  
Synchronization Instructions

• IA32
– lfence, sfence, mfence (load, store, memory fence)

• Alpha
– mb (memory barrier), wmb (write memory barrier)

• SPARC (PSO)
– stbar (store barrier)

• SPARC (RMO)
– membar (4-bit encoding for r-r, r-w, w-r, w-w)

• PowerPC
– sync (similar to Alpha mb, except r-r), lwsync
– eieio (enforce in-order execution of I/O)

TU Dresden

Distributed Operating Systems 50

Dependent Load Reordering (Alpha)

A = 1, B = 0, P = &A
CPU0 CPU1
[B] = 1; (a1) u = [P] (a2)
Store barrier v = [u]; (b2)
[P] = &B; (b1)

Load depends previous load for address generation. Alpha may
reorder loads due to speculation. Allows:

(u,v) = (&B, 0)
– Even with barrier between a1,b1!
– Visibility order: a1,b1,b2,a2

Most (all?) processors except Alpha disallow dependent load/store
reordering.

TU Dresden

Distributed Operating Systems 51

Compiler Optimizations

Compilers reorder memory accesses for performance.
Effects are equivalent to reordering by hardware.

Flag0 = true; ld r1 ← flag1
while (flag1) { st flag0 ← true
 … loop: cmp r1,0
 … ...
} ld r1 ← flag1

Is this a legal optimization?

Single threaded: Yes Multithreaded: NO!
Can't perceive difference

TU Dresden

Distributed Operating Systems 52

How do we portably program this?!

Standardized memory models for HLL:
– C / C++ 2011
– Java

Basic model: Sequentially Consistency for data-race free
programs (SC-DRF)

A DRF program will execute sequentially consistent.

Data Race (informal)
Multiple threads access a memory location without

synchronization, one of them is a writer.

TU Dresden

Distributed Operating Systems 53

DRF Example

a = b = 0;

Thread 1 Thread 2
mtx_lock(l);
a = 1; x = a;
b = 1; y = b;
mtx_unlock(l);

Not DRF:
– a,b accessed without synchronization
– (x,y) = (0,0) (1,0) (0,1) (1,1) all legal!
– Need to add synchronization to Thread 2

With synchronization yields either (0,0) or (1,1):
– DRF, sequentially consistent!

TU Dresden

Distributed Operating Systems 54

Enforcing Memory Ordering in C++

• Mutexes may cause scalability issues
• C++ 11 offers rich set of atomic memory operations

(std::atomic)
– Implements RCSC:

• Atomic reads acquire
• Atomic stores release

– Can use weaker ordering if desired
– Compare-and-Swap
– Add/Sub/And/Or/Xor/...

• Does the right thing on all platforms
– Adds appropriate memory barriers
– Uses locked instructions as necessary
– May use locks on certain platforms!

TU Dresden

Distributed Operating Systems 55

References

• A Primer on Memory Consistency and Cache Coherence
Sorin, Hill, Wood; 2011

• atomic<> Weapons: The C++ Memory Model and
Modern Hardware (Video)
Sutter; 2013

• Shared memory consistency models: a tutorial
Adve, Gharachorloo; 1996

• IA Memory Model
Richard Hudson; Google Tech Talk 2008

• Memory Ordering in Modern Microprocessors
McKenney; Linux Journal 2005

• How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs
Lamport, 1979

• PowerPC Storage Model

TU Dresden

http://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=546611&tag=1
https://www.youtube.com/watch?v=WUfvvFD5tAA
http://www.linuxjournal.com/article/8211
https://www.ibm.com/developerworks/systems/articles/powerpc.html

