
Hermann Härtig, SS 2020

SCALABILITY IN LARGE COMPUTER SYSTEMS
(HPC, CLUSTERS)

DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2020

(THANKS TO AMNON BARAK, CARSTEN WEINHOLD, MAKSYM
PLANETA, ALEX MARGOLIN, …)

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

THIS LECTURE

Single Admin Domain,
large number of connected Compute Nodes

■ MPI (Short Intro), Partitioning

■ Amdahl’s law & communication & jitter
Fault Tolerance

■ Load Balancing (Case Study MosiX):
migration mechanism
decision making (information dissemination)

2

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PROGRAMMING MODELS

■ independent OS processes

■ bulk synchronous execution (HPC)

■ iterate: compute - communicate

■ all processes wait for (all) other processes

■ “task-based” …

■ usually small components within OS
processes with a data driven interface

3

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

BULK SYNCHRONOUS

■ all processes execute same program

■ iterate
{ work; exchange data (collective operation)}
until “result makes sense”

■ common in High Performance Computing:
Message Passing Interface (MPI)
library

4

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PARTITIONING

5

node 1

CPU #2

CPU #1

node 2

CPU #2

CPU #1
part 1

part 2

part 3

part 4

result 1

result 2

result 3

result 4

resultproblem

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

HW PARTITIONS & ENTRY QUEUE

6

Application

Application

request
queue

BATCH
SCHEDULER

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI BASICS

■ MPI program is started on group of
processors:
called communicator

■ MPI_Init(), MPI_Finalize()

■ MPI_Comm_size()
MPI_Comm_rank():
“Rank” of process within this set

■ message passing between group members

7

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI PROGRAM SKELETON

8

int my-rank, total;
MPI_Init();

MPI_Comm_rank(MPI_COMM_WORLD, &my-rank);
MPI_Comm_size(MPI_COMM_WORLD, &total);

Split (app-data, my-rank) -> my-slice ;

iterate{
Work on my-slice;
Exchange data via message passing

} until “result makes sense”

MPI_Finalize();

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI MESSAGES

■ Communication

■ Point-to-point

■ Collectives

9

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI MESSAGES

■ Communication

■ Point-to-point

■ Collectives

10

MPI_Send(
 void* buf,
 int count,
 MPI_Datatype,
 int dest,
 int tag,
 MPI_Comm comm
)
MPI_Recv(
 void* buf,
 int count,
 MPI_Datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status
)

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

LATENCY HIDING

11

send (msg-buf)

receive (msg)

buffer free

message received

P 1 P 2

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

LATENCY HIDING

12

blocking call non-blocking call

synchronous
communication

asynchronous
communication

returns when message
has been delivered

(i.e. received by some)

returns immediately,
sender later checks for

delivery (Test/Wait)

returns when send
buffer can be reused

returns immediately,
sender later checks for

send buffer

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI COLLECTIVES

■ Communication

■ Point-to-point

■ Collectives
all processes of
communicator
participate

13

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI MESSAGES

■ Communication

■ Point-to-point

■ Collectives

14

MPI_Barrier(
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI MESSAGES

■ Communication

■ Point-to-point

■ Collectives

15

MPI_Bcast(
 void* buffer,
 int count,
 MPI_Datatype,
 int root,
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI MESSAGES

■ Communication

■ Point-to-point

■ Collectives

16

MPI_Reduce(
 void* sendbuf,
 void *recvbuf,
 int count
 MPI_Datatype,
 MPI_Op op,
 int root,
 MPI_Comm comm
)

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

THIS LECTURE

Single Admin domain,
large number of connected Compute Nodes

■ MPI (Short Intro), Partitioning

■ Amdahl’s law & communication & jitter
Fault Tolerance

■ Load Balancing (Case Study MosiX):
migration mechanism
decision making (information dissemination)

17

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

AMDAHL & COMMUNICATION

18

work item

tim
e

communication

communication

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

REMEMBER AMDAHLS’ LAW(AL)
for parallel systems:

■ P: section that can be parallelized

■ S: serial section (S)

■ N: number of CPUs

Speedup=

■ next slides:
P, S per iteration step
S: communication
P/N: work per process

19

1
S + P

N

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

NUMERIC EXAMPLES

P N P/N S speedup, ca

1000 1000 1 1 500

1000 10000 0.1 1 909

100 1000 0.1 1 91

10 1000 0.01 1 10

10 1000 0.01 0.01 500

20

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

AMDAHL’S LIMITATIONS

21

work item

tim
e

communication

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

AMDAHLS’ LAW (MODIFIED)

22

1
S + P

N

1
S + LongestProcess

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

NUMERIC EXAMPLES

P N per proc S speedup, ca

10 1000 0.01 0.01 500

10 1000 0.02 0.01 333

23

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

SOURCES FOR EXECUTION JITTER

■ Hardware

■ Application

■ Operating system “noise”

24

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

OPERATING SYSTEM “NOISE”

Methods to avoid:

■ OS usually not directly on the critical path,
BUT OS controls: interference via interrupts, caches,
network, memory bus, (RTS techniques)

■ avoid or encapsulate side activities

■ small critical sections (if any)

■ partition networks to isolate traffic of different
applications (HW: Blue Gene)

■ do not run Python scripts or printer daemons in parallel

25

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

RESEARCH TOPIC

■ use small kernel to isolate

26

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI & FAULT TOLERANCE

27

work item

tim
e

communication

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

ITERATIVE ALGORITHM WITH CHECKPOINT

28

. . .

for(int t = 0; t < TIMESTEPS; t++) {
 /* ... Do work ... */

 SCR_Need_checkpoint(&flag);
 if (flag) {
 SCR_Start_checkpoint();
 SCR_Route_file(file, scr_file);
 /* save checkpoint into scr_file */
 SCR_Complete_checkpoint(1);
 }
 }
. . .

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

& RECOVER

29

MPI_Init();
SCR_Init();

if (SCR_Route_file(name, ckpt_file) ==
SCR_SUCCESS) {
 // Read checkpoint from ckpt_file
} else {
 // There is no existing checkpoint
 // Normal program startup
}

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

ULFM USER LEVEL FAULT MITIGATION

30
Alex

Margolin

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

THIS LECTURE

Single Admin domain,
large number of connected Compute Nodes

■ MPI (Short Intro), Partitioning

■ Amdahl’s law & communication & jitter
Fault Tolerance

■ Load Balancing (Case Study MosiX):
migration mechanism
decision making (information dissemination)

31

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MOTIVATION FOR BALANCING

32

work item

tim
e

Barrier

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MOTIVATION FOR BALANCING

33

work item

tim
e

Barrier

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

TOWARDS BALANCING

34

work item

tim
e

Barrier

smaller pieces that can run in parallel

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

SPLITTING BIG JOBS

35

work item

tim
e

Barrier

many more jobs than cores

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

SMALL JOBS (NO DEPS)

36

work item

tim
e

Barrier

Execute small jobs in parallel

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

BALANCE

■ if we have more pieces than CPU or are
able to split into smaller pieces that can
run in parallel, then use migration of load

■ caveats

■ virtualization of communication needed

■ splitting per se adds cost

■ scalable decision making needed

37

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

BALANCING

balancing in systems architecture

■ application

■ run-time library (task based models)

■ operating system

38

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

SCHEDULER: GLOBAL RUN QUEUE

39

(old) approach: global run queue

all ready processes

CPU 1 CPU 2 CPU N…

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

SCHEDULER: GLOBAL RUN QUEUE

■ … does not scale

■ shared memory only
■ contended critical section
■ cache affinity
■ …

■ separate run queues with
 explicit movement of processes

40

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

OS/HW & APPLICATION

High Performance Computing

■ Operating System / Hardware:
“All” participating CPUs: active / inactive

■ Partitioning (HW)

■ Gang Scheduling (OS)

■ Within Gang/Partition:
Applications balance !!!

41

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PROPERTIES HW PARTITIONS

■ optimizes usage of network

■ takes OS off critical path (busy waiting)

■ best for strong scaling

■ burdens application/library with balancing

■ potentially wastes resources

■ current state of the art in High
Performance Computing (HPC)

42

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

BALANCING AT LIBRARY LEVEL

Programming Model

■ many (small) decoupled work items

■ overdecompose
create more work items than active units

■ run some balancing algorithm

Example: CHARM ++

43

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

BALANCING AT SYSTEM LEVEL

■ create (many) more processes

■ use OS information on run-time and
system state to balance load

■ examples:

■ run multiple applications

■ create more MPI processes than nodes

44

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

CAVEATS

added overhead

■ additional communication between
smaller work items (memory & cycles)

■ more context switches

■ OS on critical path
(for example communication)

45

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

BALANCING ALGORITHMS

required:

■ mechanism for migrating load

■ information gathering

■ decision algorithms

MosiX system as an example

-> Barak’s slides now

46

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

THIS LECTURE

Single Admin Domain,
large number of connected Compute Nodes

■ MPI (Short Intro), Partitioning

■ Amdahl’s law & communication & jitter
Fault Tolerance

■ Load Balancing (Case Study MosiX):
migration mechanism
decision making (information dissemination)

47

Copyright © Amnon Barak 2011
48

MOSIX is a unifying management layer

MOSIX - OS

Mostly user-level
 implementation

MOSIX management

All the nodes run
like one server with
many cores

Applications

SSI

Continuous
feedback about
the state of
resources

Dual
4Core 4Core 2Core

Copyright © Amnon Barak 2011
49

The main software components
1. Preemptive process migration
• Can migrate a running processes anytime
• Like a course-grain context switch
• Implication on caching, scheduling, resource utilization

2. OS virtualization layer
• Allows a migrated process to run in remote nodes

3. On-line algorithms
• Attempt to optimize a given goal function by process migration
• Match between required and available resources
• Information dissemination – based on partial knowledge

Note: features that are taken for granted in shared-memory
systems, are not easy to support in a cluster

Copyright © Amnon Barak 2011
50

•A software layer that allows a migrated process to run in remote nodes,
away from its home node
• All system-calls are intercepted
• Site independent sys-calls are performed locally, others are sent home

• Migrated processes run in a sandbox
•Outcome:
• A migrated process seems to be running in its home node
• The cluster seems to the user as one computer
• Run-time environment of processes are preserved - no need to change or link

applications with any library, copy files or login to remote nodes
•Drawback: increased (reasonable) communication overhead

The OS virtualization layer

Copyright © Amnon Barak 2011
51

Process migration - the home node model

• Process migration – move the process context to a remote node
• System context stay at “home” thus providing a single point of entry

• Process partition preserves the user’s run-time environment
• Users need not care where their process are running

Gu
es

t

Home node

MOSIX Link
reroute syscallsLoc

al

Remote node
Loc

al

OS Virtualization layer OS Virtualization layer

LinuxLinux

A migrated
process

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PROCESS MIGRATION IN MOSIX

52

Process migdaemon
migration request

Deputy

Remote fork()
Send state, memory maps, dirty pages

Transition

ack

Finalize migration

Migration
completed

Ack

Copyright © Amnon Barak 2011
53

Distributed bulletin board

• An n node cluster/Cloud system
– Decentralized control
– Nodes can fail at any time

• Each node maintains a data structure (vector) with an
entry about selected (or all) the nodes

• Each entry contains:
– State of the resources of the corresponding node, e.g. load
– Age of the information (tune to the local clock)

• The vector is used by each node as a distributed bulletin
board
– Provides information about allocation of new processes

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

DECENTRALIZED GLOBAL STATE

54

Node 1

Node 2

Node n

…

…….

..

..

..

..

..

..

..

..

…….

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

…….

..

..

..

..

..

..

..

..

…….

DECENTRALIZED GLOBAL STATE

55

Node 1

Node 2

…

Node n

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

…….

..

..

..

..

..

..

..

..

…….

GOSSIP

56

Node 1

Node 2

…

Node n

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

GOSSIP

57

A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5C:3A:1

Node X

Node Y

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

When

Where

Which

WWW

58

Node 1

Node 2

…

Node n

When
 M: load diff erence discovered
 anomaly discovered
 anticipated

Where
 M: memory, cycles, comm
 consider topology
 application knowledge

Which
 M: past predicts future
 application knowledge

When
 M: load diff erence discovered

Where
 M: memory, cycles, comm

Which
 M: past predicts future

Copyright © Amnon Barak 2011
59

Load balancing algorithms
• When - Load difference between a pair of nodes is

above a threshold value
• Which - Oldest process (assumes past-repeat)
• Where - To the known node with the lowest load
• Many other heuristics

• Performance: our online algorithm is only ~2% slower
than the optimal algorithm (which has complete
information about all the processes)

Copyright © Amnon Barak 2011
60

Memory ushering
• Heuristics: initiate process migration from a node with

no free memory to a node with available free memory
• Useful: when non-uniform memory usage (many users)

or nodes with different memory sizes
• Overrides load-balancing

• Recall: placement problem is NP-hard

Copyright © Amnon Barak 2011
61

Memory ushering algorithm

• When - free memory drops below a threshold
• Where - the node with the lowest load, to avoid

unnecessary follow-up migrations
• Which - smallest process that brings node under

threshold
• To reduce the communication overhead

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PRECEDENCE

■ memory

■ cpu load

■ IPC

62

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

SOME PRACTICAL PROBLEMS

■ flooding
all processes jump to one new empty node
=> decide immediately before migration
commitment
extra communication, piggy packed

■ ping pong
if thresholds are very close, processes
moved back and forth
=> tell a little higher load than real

63

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PING PONG

64

Node 1 Node 2

One process two nodes

Scenario:
compare load on nodes 1 and 2
node 1 moves process to node 2

Solutions:
add one + little bit to load
average over time

Solves short peaks problem as well
(short cron processes)

Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

LESSONS

■ execution/communication time jitter
matters (Amdahl)

■ HPC approaches: partition ./. balance

■ dynamic balance components:
migration mechanism,
information bulletin,
decision: which, when, where

65

