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THIS LECTURE

Single Admin Domain,  
large number of connected Compute Nodes 

■ MPI (Short Intro), Partitioning 

■ Amdahl’s law & communication & jitter 
Fault Tolerance 

■ Load Balancing (Case Study MosiX): 
migration mechanism 
decision making (information dissemination)
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PROGRAMMING MODELS

■ independent OS processes 

■ bulk synchronous execution (HPC) 

■ iterate: compute - communicate  

■ all processes wait for (all) other processes 

■ “task-based” … 

■ usually small components within OS 
processes with a data driven interface
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BULK SYNCHRONOUS

■ all processes execute same program 

■ iterate 
{  work;  exchange data (collective operation)} 
until “result makes sense” 

■ common in High Performance Computing: 
Message Passing Interface (MPI) 
library
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PARTITIONING
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HW PARTITIONS & ENTRY QUEUE
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Application

Application

request 
queue

BATCH
SCHEDULER
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MPI BASICS

■ MPI program is started on group of 
processors: 
called communicator 

■ MPI_Init(), MPI_Finalize() 

■ MPI_Comm_size() 
MPI_Comm_rank():  
“Rank” of process within this set 

■ message passing between group members
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MPI PROGRAM SKELETON
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int my-rank, total; 
MPI_Init(); 

MPI_Comm_rank(MPI_COMM_WORLD, &my-rank); 
MPI_Comm_size(MPI_COMM_WORLD, &total); 

Split (app-data, my-rank) -> my-slice ; 

iterate{ 
Work on my-slice; 
Exchange data via message passing 

} until “result makes sense” 

MPI_Finalize();
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MPI MESSAGES

■ Communication 

■ Point-to-point 

■ Collectives
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MPI MESSAGES

■ Communication 

■ Point-to-point 

■ Collectives
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MPI_Send( 
  void* buf, 
  int count, 
  MPI_Datatype, 
  int dest, 
  int tag, 
  MPI_Comm comm 
)
MPI_Recv( 
  void* buf, 
  int count, 
  MPI_Datatype, 
  int source, 
  int tag, 
  MPI_Comm comm, 
  MPI_Status *status 
)
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LATENCY HIDING
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send (msg-buf)

receive (msg)

buffer free

message received

P 1 P 2
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LATENCY HIDING
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blocking call non-blocking call

synchronous 
communication

asynchronous 
communication

returns when message 
has been delivered 

(i.e. received by some)

returns immediately, 
sender later checks for 

delivery (Test/Wait)

returns when send 
buffer can be reused 

returns immediately, 
sender later checks for 

send buffer
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MPI COLLECTIVES

■ Communication 

■ Point-to-point 

■ Collectives 
all processes of 
communicator 
participate
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MPI MESSAGES

■ Communication 

■ Point-to-point 

■ Collectives
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MPI_Barrier( 
 MPI_Comm comm 
)
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MPI MESSAGES

■ Communication 

■ Point-to-point 

■ Collectives
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MPI_Bcast( 
  void* buffer, 
  int count, 
  MPI_Datatype, 
  int root, 
  MPI_Comm comm 
)
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MPI MESSAGES

■ Communication 

■ Point-to-point 

■ Collectives
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MPI_Reduce( 
  void* sendbuf, 
  void *recvbuf, 
  int count 
  MPI_Datatype, 
  MPI_Op op, 
  int root, 
  MPI_Comm comm 
)
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THIS LECTURE

Single Admin domain,  
large number of connected Compute Nodes 

■ MPI (Short Intro), Partitioning 

■ Amdahl’s law & communication & jitter 
Fault Tolerance 

■ Load Balancing (Case Study MosiX): 
migration mechanism 
decision making (information dissemination)
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AMDAHL & COMMUNICATION
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work item

tim
e

communication

communication
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REMEMBER AMDAHLS’ LAW(AL)
for parallel systems: 

■ P:    section that can be parallelized   

■ S:     serial section (S) 

■ N:     number of CPUs 
 
Speedup= 

■ next slides:  
P, S per iteration step 
S: communication  
P/N: work per process
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1
S + P
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NUMERIC EXAMPLES

P   N       P/N      S     speedup, ca 

1000 1000    1   1   500 

1000 10000    0.1   1   909 

100   1000       0.1  1   91  

10  1000    0.01  1   10 
 
10  1000   0.01  0.01  500
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AMDAHL’S LIMITATIONS 
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work item
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AMDAHLS’ LAW (MODIFIED)
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1
S + P

N

1
S + LongestProcess
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NUMERIC EXAMPLES

P   N   per proc   S     speedup, ca 

  
 
10  1000   0.01  0.01  500 

10  1000   0.02  0.01  333 
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SOURCES FOR EXECUTION JITTER

■ Hardware  

■ Application 

■ Operating system “noise”
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OPERATING SYSTEM “NOISE”

Methods to avoid: 

■ OS usually not directly on the critical path,  
BUT OS controls: interference via interrupts, caches, 
network, memory bus, (RTS techniques) 

■ avoid or encapsulate side activities 

■ small critical sections (if any) 

■ partition networks to isolate traffic of different 
applications (HW: Blue Gene) 

■ do not run Python scripts or printer daemons in parallel
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RESEARCH TOPIC

■ use small kernel to isolate 

26



Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

MPI & FAULT TOLERANCE
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ITERATIVE ALGORITHM WITH CHECKPOINT
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. . . 

for(int t = 0; t < TIMESTEPS; t++) { 
   /* ... Do work ... */ 

   SCR_Need_checkpoint(&flag); 
   if (flag) { 
     SCR_Start_checkpoint(); 
     SCR_Route_file(file, scr_file); 
     /* save checkpoint into scr_file */ 
     SCR_Complete_checkpoint(1); 
   } 
 } 
. . .
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& RECOVER
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MPI_Init(); 
SCR_Init(); 

if (SCR_Route_file(name, ckpt_file) == 
SCR_SUCCESS) { 
 // Read checkpoint from ckpt_file 
} else { 
 // There is no existing checkpoint 
 // Normal program startup 
}
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ULFM USER LEVEL FAULT MITIGATION
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Alex 
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THIS LECTURE

Single Admin domain,  
large number of connected Compute Nodes 

■ MPI (Short Intro), Partitioning 

■ Amdahl’s law & communication & jitter 
Fault Tolerance 

■ Load Balancing (Case Study MosiX): 
migration mechanism 
decision making (information dissemination)
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MOTIVATION FOR BALANCING
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work item
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MOTIVATION FOR BALANCING
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TOWARDS BALANCING
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work item

tim
e

Barrier

smaller pieces that can run in parallel
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SPLITTING BIG JOBS
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work item

tim
e

Barrier

many more jobs than cores
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SMALL JOBS (NO DEPS)
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work item

tim
e

Barrier

Execute small jobs in parallel
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BALANCE

■ if we have more pieces than CPU or are 
able to split into smaller pieces that can 
run in parallel, then use migration of load 

■ caveats 

■ virtualization of communication needed 

■ splitting per se adds cost 

■ scalable decision making needed
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BALANCING

balancing in systems architecture 

■ application 

■ run-time library  (task based models) 

■ operating system
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SCHEDULER: GLOBAL RUN QUEUE
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(old) approach: global run queue

all ready  processes

CPU 1 CPU 2 CPU N…
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SCHEDULER: GLOBAL RUN QUEUE

■ … does not scale 

■ shared memory only 
■ contended critical section 
■ cache affinity  
■ … 

■           separate run queues with 
          explicit movement of processes
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OS/HW & APPLICATION

High Performance Computing 

■ Operating System / Hardware: 
“All” participating CPUs: active / inactive 

■ Partitioning (HW)   

■ Gang Scheduling (OS) 

■ Within Gang/Partition: 
Applications balance !!!
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PROPERTIES HW PARTITIONS

■ optimizes usage of network 

■ takes OS off critical path (busy waiting) 

■ best for strong scaling 

■ burdens application/library with balancing 

■ potentially wastes resources 

■ current state of the art in High 
Performance Computing (HPC)
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BALANCING AT LIBRARY LEVEL

Programming Model 

■ many (small) decoupled work items 

■ overdecompose  
create more work items than active units 

■ run some balancing algorithm 

Example: CHARM ++ 
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BALANCING AT SYSTEM LEVEL

■ create (many) more processes 

■ use OS information on run-time and 
system state to balance load 

■ examples: 

■ run multiple applications 

■ create more MPI processes than nodes
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CAVEATS

added overhead 

■ additional communication between 
smaller work items (memory & cycles) 

■ more context switches 

■ OS on critical path  
(for example communication)
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BALANCING ALGORITHMS

required: 

■ mechanism for migrating load 

■ information gathering  

■ decision algorithms 

MosiX system as an example 

-> Barak’s slides now
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THIS LECTURE

Single Admin Domain,  
large number of connected Compute Nodes 

■ MPI (Short Intro), Partitioning 

■ Amdahl’s law & communication & jitter 
Fault Tolerance 

■ Load Balancing (Case Study MosiX): 
migration mechanism 
decision making (information dissemination)
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MOSIX is a unifying management layer

MOSIX - OS

Mostly user-level 
 implementation

MOSIX management

All the nodes run 
like one server with 
many cores

Applications 

SSI

Continuous
feedback about 
the state of 
resources

Dual 
4Core 4Core 2Core
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The main software components
1.  Preemptive process migration
• Can migrate a running processes anytime
• Like a course-grain context switch
• Implication on caching, scheduling, resource utilization 

2. OS virtualization layer
• Allows a migrated process to run in remote nodes 

3.  On-line algorithms
• Attempt to optimize a given goal function by process migration
• Match between required and available resources
• Information dissemination – based on partial knowledge

Note: features that are taken for granted in shared-memory 
systems, are not easy to support in a cluster
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•A software layer that allows a migrated process to run in remote nodes, 
away from its home node
• All system-calls are intercepted
• Site independent sys-calls are performed locally, others are sent home

• Migrated processes run in a sandbox
•Outcome: 
• A migrated process seems to be running in its home node
• The cluster seems to the user as one computer
• Run-time environment of processes are preserved - no need to change or link 

applications with any library, copy files or login to remote nodes
•Drawback: increased (reasonable) communication overhead

The OS virtualization layer
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Process migration - the home node model

• Process migration – move the process context to a remote node
• System context stay at “home” thus providing a single point of entry 

• Process partition preserves the user’s run-time environment
• Users need not care where their process are running

Gu
es

t

Home node

MOSIX Link 
reroute syscallsLoc

al

Remote node
Loc

al

OS Virtualization layer OS Virtualization layer

LinuxLinux

A migrated 
process



Hermann Härtig, TU Dresden, 2020 Distributed OS, MPI and Load Balancing

PROCESS MIGRATION IN MOSIX
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Process migdaemon
migration request

Deputy

Remote fork()
Send state, memory maps, dirty pages

Transition

ack

Finalize migration

Migration 
completed

Ack
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Distributed bulletin board

• An n node cluster/Cloud system  
– Decentralized control 
– Nodes can fail at any time 

• Each node maintains a data structure (vector) with an 
entry about selected (or all) the nodes 

• Each entry contains: 
– State of the resources of the corresponding node, e.g. load   
– Age of the information (tune to the local clock)  

• The vector is used by each node as a distributed bulletin 
board 
– Provides information about allocation of new processes
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DECENTRALIZED GLOBAL STATE
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DECENTRALIZED GLOBAL STATE
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…

Node n
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Node 1

Node 2

…

Node n
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GOSSIP
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A:0 B:12 C:2 D:4 E:11 ...

A:0 C:2 ...D:4

A:5 B:2 C:4 D:3 E:0 ...

A:1 C:3 ...D:5C:3A:1

Node X

Node Y
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When                                           
  
  
    

Where 
  
  
  

Which 
  
 

WWW
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Node 1

Node 2

…

Node n

When                                           
 M: load diff erence discovered 
 anomaly discovered 
 anticipated   

Where 
 M: memory, cycles, comm 
 consider topology 
 application knowledge 

Which 
 M: past predicts future  
 application knowledge

When                                           
 M: load diff erence discovered 
  
    

Where 
 M: memory, cycles, comm 
  
  

Which 
 M: past predicts future  
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Load balancing algorithms
• When - Load difference between a pair of nodes is 

above a threshold value
• Which - Oldest process (assumes past-repeat)
• Where - To the known node with the lowest load
• Many other heuristics 

• Performance: our online algorithm is only ~2% slower 
than the optimal algorithm (which has complete 
information about all the processes)
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Memory ushering
• Heuristics: initiate process migration from a node with 

no free memory to a node with available free memory
• Useful: when non-uniform memory usage (many users)  

or nodes with different memory sizes
• Overrides load-balancing  

 
 
 
 

• Recall: placement problem is NP-hard



Copyright ©  Amnon Barak  2011
61

Memory ushering  algorithm

• When - free memory drops below a threshold
• Where - the node with the lowest load, to avoid 

unnecessary follow-up migrations
• Which - smallest process that brings node under 

threshold
• To reduce the communication overhead 
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PRECEDENCE 

■ memory 

■ cpu load 

■ IPC
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SOME PRACTICAL PROBLEMS

■ flooding 
all processes jump to one new empty node 
=> decide immediately before  migration 
commitment  
extra communication, piggy packed 

■ ping pong 
if thresholds are very close, processes 
moved back and forth 
=> tell a little higher load than real
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PING PONG
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Node 1 Node 2

One process two nodes

Scenario:  
compare load on nodes 1 and 2 
node 1 moves process to node 2 

Solutions: 
add one + little bit to load  
average over time 

Solves short peaks problem as well 
(short cron processes)
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LESSONS

■ execution/communication time jitter 
matters (Amdahl) 

■ HPC approaches: partition ./. balance 

■ dynamic balance components: 
migration mechanism,  
information bulletin,  
decision: which, when, where
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