

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

DISTRIBUTED OPERATING SYSTEMS SCALABILITY AND NAMING

HORST SCHIRMEIER, DISTRIBUTED OPERATING SYSTEMS, SS2024

- Lecturer in charge of DOS:
 Dr. Carsten Weinhold, Barkhausen Institute TUD
- Several lectures presented by research-group members
- Mandatory: register for mailing list (see website)
 - must use "tu-dresden.de" mail addresses
- Hybrid format (BBB, recordings, both "best effort")
 - Lecture: Monday, 11:10
 - Exercise: Monday 13:00 (roughly every 2 weeks, starting 2024-04-15)

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024

ORGANISATION

O24 Scalability in Computer Systems, Example: DNS/BIND

- Oral exam covering lectures and exercises About 1 exam date per month
- Exam appointments:
 - Email to <u>sandy.seifarth-haupold@tu-dresden.de</u>
 - more cancellation except for sickness.
- Diplom/Master INF study programmes:

 Provide paperwork (forms) at least 2 weeks before exam otherwise, automatic cancellation (and angry secretary) You can cancel until 2 weeks before date; after that, no

can be combined with other classes in complex modules

- Course name no more precise, rather:
 - Scalability
 - Systems security
 - Modeling
- Prof. Wählisch) and some classes by Prof. Fetzer
- In some cases no written material (except slides)

DISTRIBUTED OPERATING SYSTEMS

"Interesting/advanced Topics in Operating Systems"

Some overlap with "Distributed Systems" (Dr. Springer /

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

1.0) DOS ORGANISATION 1.1) SCALABILITY IN COMPUTER SYSTEMS 1.2) EXAMPLE: DNS/BIND

HORST SCHIRMEIER, DISTRIBUTED OPERATING SYSTEMS, SS2024

GOAL OF ALL LECTURES ON SCALABILITY

Topics:

- Case studies, all layers of compute systems

Goal:

 Understand (some of the) important principles how to build scalable systems

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

Scalability: terminology, problems, principle approaches

Outline:

- aspect
- Names in Distributed Systems: purposes of naming, terminology (DNS) Application of scalability approaches on name
- resolution

Goal:

build scalable systems (using DNS as example)

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

Scalability – and a simple model to reason about one

Understand some of the important principles how to

MORE CASE STUDIES LATER IN THE CLASS

- Memory consistency
- Locks and advanced synchronization approaches
- File systems
- Load balancing (MosiX) and HPC (MPI)

Scalability in Computer Systems, Example: DNS/BIND TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024

Scalability: Scalability is the property of a system to handle a growing amount of work by adding resources to the system.

(Wikipedia (2019) and many other sources)

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

GENERAL DEFINITION: SCALABILITY

Ability of a system to use growing resources ...

- Weak scalability: to handle growing load, larger problem, ...
- Strong scalability: accelerate existing work load, same problem

Scalability in Computer Systems, Example: DNS/BIND TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024

SCALABILITY: WEAK ./. STRONG

- Performance bottlenecks / Amdahl's Law
- Failures / abuse
- Administration

PROBLEMS

- Processors
- Communication
- Memory (remember basic OS course: "thrashing")

Speedup: original execution time enhanced execution time

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

RESOURCES AND PERFORMANCE

Speedup: original execution time enhanced execution time

Parallel Execution

red: cannot run in parallel green: runs perfectly parallel unlimited processors maximum speedup: blue/red

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

SIMPLE MODEL: AMDAHL'S LAW

Parallel Execution, N processors

 $\bullet \bullet \bullet$

red: cannot run in parallel **green:** runs *perfectly* parallel N processors maximum speedup: **blue**/(**red+green**/N)

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

AMDAHL'S LAW

Parallel Execution, N processors

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

ANDAHL'S LAW

Speedup: original execution time enhanced execution time

- P: section that can be parallelized
- I-P:serial section
- N: number of CPUs

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

ANDAHL'S LAW

Speedup(P,N) = $\frac{1}{\left(1 - P + \frac{P}{N}\right)}$ if N becomes VERY large, speedup approaches: 1/(1-P)

Partitioning

Split systems into parts that can operate independently/parallel to a large extent

Replication

Provide several copies of components

- that are kept consistent eventually
- that can be used in case of failure of copies

Locality (caching) Maintain a copy of information that is nearer, cheaper/faster to access than the original

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

THE "RPC" PRINCIPLES

- Identify and address bottlenecks
- Specialize functionality/interfaces
- Caches, replicates, ... need not always be fully consistent.
- Right level of consistency Lazy information dissemination
- Balance load (make partitioning dynamic)

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024

MORE PRINCIPLES

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

1.0) DOS ORGANISATION 1.1) SCALABILITY IN COMPUTER SYSTEMS 1.2) EXAMPLE: DNS/BIND

HORST SCHIRMEIER, DISTRIBUTED OPERATING SYSTEMS, SS2024

- UUCP/MMDF:

 - user@ira!heinrich%gmdzi (mixing identifiers and path information)

EARLY EMAILS

iralgmdziloldenburglheinrichluser (path to destination)

- ARPA-Net at the beginning:
 - a single file: hosts.txt
 - maintained at Network Information Center of SRI (Stanford)
 - accessed via FTP
 - TCP/IP in BSD Unix massively increased ARPA-Net size → Chaos, name collisions, consistency, load, ...
- DNS: Paul Mockapetris et al.

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024

A BIT OF HISTORY

Scalability in Computer Systems, Example: DNS/BIND

DOMAIN NAME SYSTEM

NAMES, IDENTIFIERS, ADDRESSES

- Names
 - symbolic, many names possible for one entity
 - have a meaning for people

Identifiers

- identifies an entity uniquely
- are used by programs
- Addresses
 - locates an entity
 - changes occasionally (or frequently)

Scalability in Computer Systems, Example: DNS/BIND

- Name resolution: encryption keys, ...
- Principle interface: **Register** (Context, Name, attributes, ...)
 - **Lookup** (Context, Name) \rightarrow attributes -

NAME RESOLUTION

Map symbolic names to a set of attributes such as: identifiers, addresses, alias names, security properties,

DNS DOMAINS

Domain = subtree in DNS hierarchy:

- de

dresden

fis

- <u>tu-dresden.de</u>
- <u>os.inf.tu-dresden.de</u>

<u>tudos.org</u> and <u>os.inf.tu-dresden.de</u> are aliases

scalability in Computer Systems, Example: DNS/BIND

Zone: Subset of a domain over which an **authority** has complete control → controlled by a **name server**

- Subzones can be delegated to other authorities.
- Navigation: • querying in a set of cooperating name servers

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

PARTITIONING: ZONE

POTENTIAL ZONES

POTENTIAL ZONES

Option #1: complete tu-dresden domain

POTENTIAL ZONES

Option #1: complete tu-dresden domain

 Option #2: Opt. #1 with sub zone os (not allowed by ZIH anymore)

CACHING

CACHING

- remember intermediate results
- @ root NS makes no sense! (overload)
- @ NS i !

CACHING

REPLICATION

• Two techniques for replication:

- Several IPs/names
- 13 root name server IPs, ~1700 physical servers via anycast
- Each zone has at least one primary and one secondary IP

TU Dresden, Horst Schirmeier, Distributed Operating Systems, SS2024 Scalability in Computer Systems, Example: DNS/BIND

"anycast" (send packet to one of many servers with same IP)

	Record type	Interpretation	Content
	Α	address	IPv4 address
	AAAA	address	IPv6 address
	NS	Name server	DNS name
	CNAME	Symbolic link	DNS name of canonicial name
	SOA	Start of authority	Zone-specific properties
	PTR	IP reverse pointer	DNS name
	HINFO	Host info	Text description of host OS
	•••	•••	•••

Scalability in Computer Systems, Example: DNS/BIND TO Dresden, Horst Schirmeler, Distributed Operating Systems, SS2024

RESOURCE RECORDS

- Main problems for scalability -
- Simple model: Amdahl's law
- Few principle approaches •
- DNS as fine example, more to come → study DNS it in your first exercise (Apr 15th)
- Register in mailing list! (with a tu-dresden.de address)

SUMMARY

- O'Reilly & Associates, Inc. (available online via SLUB)
- **Era**, 2008
 - IEEE (available online via SLUB)
- Couluris, Tollimore, Kindberg: Distributed systems

LITERATURE

• Cricket Liu, Paul Albitz: **DNS and BIND**, 5th edition (2006)

Mark Hill, Michael Marty: Amdahl's Law in the Multicore