
MICHAEL ROITZSCH

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

REAL-TIME
SYSTEMS

TU Dresden iOS: Real-Time Systems

DEFINITION

2

system whose quality depends on the 
functional correctness of computations
and the time those results are produced

TU Dresden iOS: Real-Time Systems

RELEVANCE

3

system

real world

user input reaction

work

TU Dresden

real-time school systems school

mathematically sound practical systems

simplifying assumptions baroque details

random task sets actual applications

strong contract usable interface

theory implementation

iOS: Real-Time Systems

LINES OF THOUGHT

4

TU Dresden iOS: Real-Time Systems

THE OLD DAYS
Leslie Lamport: Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM 21(7): pp. 558–565, July 1978

Perhaps the first true “distributed systems”
paper, it introduced the concept of “causal
ordering”, which turned out to be useful in
many settings. The paper proposed the
mechanism it called “logical clocks”, but
everyone now calls these “Lamport clocks.”

5

HoF

TU Dresden iOS: Real-Time Systems

LOGICAL CLOCKS

6

0

6

12

18

24

30
36
42

48

54

60

0

8

16

24

32

40
48
56

64

72

80

0

10

20

30

40

50
60
70

80

90

100

A

B

D

C

0

6

12

18

24

30
36
42

48

70!

76

0

8

16

24

32

40
48
61

69

77

85

0

10

20

30

40

50
60
70

80

90

100

A

B

D

C

TU Dresden iOS: Real-Time Systems

THEORY
Chang L. Liu, James W. Layland: Scheduling
Algorithms for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM, Volume 20(1): pp.
46–61, January 1973

first description of RMS and EDF

including the now well-known utilization
bounds

with proof

7

TU Dresden iOS: Real-Time Systems

PRACTICE
Clifford W. Mercer, Stefan Savage, Hideyuki Tokuda:
Processor Capacity Reserves: Operating System
Support for Multimedia Applications. Proceedings of
the IEEE International Conference on Multimedia
Computing and Systems (MCS), pp. 90–99, May 1994

introduced the idea of tracking actual
execution time to police overruns

the reservation concept was born

implemented in RT-Mach
8

TU Dresden iOS: Real-Time Systems

RESOURCE KERNEL
Raj Rajkumar, Kanaka Juvva, et al.: Resource Kernels:
A Resource-Centric Approach to Real-Time and
Multimedia Systems. Proceedings of the 1998
Multimedia Computing and Networking Conference
(MMCN), pp. 150–164, January 1998

time as a first-class, globally managed
shared resource

based on the periodic task model

extended with inheritance, reservations
9

TU Dresden iOS: Real-Time Systems

DISASTER STRIKES
the 90’s: multimedia driving practical
real-time work

this could have been our world,  
but then…

10

… CPUs got fast.

TU Dresden iOS: Real-Time Systems

DIRECTIONS

11

real-time school systems school

real-time folks building systems

systems folks designing time contracts

TU Dresden iOS: Real-Time Systems

CBS
Luca Abeni, Giorgio Buttazzo: Integrating Multimedia
Applications in Hard Real-Time Systems. Proceedings
of the 19th IEEE Real-Time Systems Symposium
(RTSS), pp. 4–13, December 1998

“server” as a real-time concept

allocation of time with period and budget

jobs enqueue to be run by the server

deadlines postponed on budget overrun
12

TU Dresden iOS: Real-Time Systems

CBS

illusion of a dedicated, slower processor

virtual fluid-flow of CPU time

individual job deadlines hard to manage
13

τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t
c1=3 c2=2

r1 r2 r3

d2 c3=1d1 d3

1 2 3 4 5 7 8 9 t10 11 13 14 15 16 17 19 20 21 22 236 12 18
t1 t2 t3

Figure 1. An example of CBS scheduling.

H1,1

J1

a1,1

d1,1 d2,2
1,2H

J2

a2,1 a2,2

d1,2 =d 2,1
H2,2

a1,2

H

c=4 c=4

2,1

Figure 2. Example of jobs divided to chunks.

Theorem 1 Given a set of periodic hard tasks with pro-
cessor utilization and a CBS with processor utilization
, the whole set is schedulable by EDF if and only if

Proof.
See [1].

The isolation property allows us to use a bandwidth
reservation strategy to allocate a fraction of the CPU time
to soft tasks whose computation time cannot be easily
bounded. The most important consequence of this result
is that such tasks can be scheduled together with hard tasks
without affecting the a priori guarantee, even in the case in
which soft requests exceed the expected load.
In addition to the isolation property, the CBS has the fol-

lowing characteristics.

The CBS behaves as a plain EDF if the served task
has parameters () such that and
. This is formally stated by the following lemma.

Lemma 1 A hard task with parameters () is
schedulable by a CBS with parameters and

if and only if is schedulable with EDF.

Proof.
For any job of a hard task we have that
and . Hence, by definition of the CBS,

each hard job is assigned a deadline

and it is scheduled with a budget . Moreover,
since , each job finishes no later than the
budget is exhausted, hence the deadline assigned to a
job does not change and is exactly the same as the one
used by EDF.

The CBS automatically reclaims any spare time caused
by early completions. This is due to the fact that when-
ever the budget is exhausted, it is always immediately
replenished at its full value and the server deadline is
postponed. In this way, the server remains eligible and
the budget can be exploited by the pending requests
with the current deadline. This is the main difference
with respect to the processor capacity reserves pro-
posed by Mercer et al. [12].

Knowing the statistical distribution of the computation
time of a task served by a CBS, it is possible to perform
a statistical guarantee, expressed in terms of probabil-
ity for each served job to meet its deadline.

3.3. Statistical guarantee

To perform a statistical guarantee on soft tasks served by
CBS, we can model a CBS as a queue, where each arriving
job can be viewed as a request of time units. At any
time, the request at the head of the queue is served using the
current server deadline, so that it is guaranteed that units
of time can be consumed within this deadline.
We analyze the following cases: a) variable computation

time and constant inter-arrival time; and b) constant com-
putation time and variable inter-arrival time.

TU Dresden iOS: Real-Time Systems

SLACK

Luca Marzario, Giuseppe Lipari, et al.: IRIS: A New
Reclaiming Algorithm for Server-Based Real-Time
Systems. Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), pp. 211–218, May 2004

“slack time” ≈ nothing urgent to do

redirect slack to help out on overruns

14

TU Dresden iOS: Real-Time Systems

ADAPTING
Luca Abeni, Tommaso Cucinotta, et al.: QoS
Management Through Adaptive Reservations. Real-
Time Systems, Volume 29(2): pp. 131–155,
March 2005

adapt server budget to varying
application demand

control loop observes tasks, 
QoS manager tunes parameters

15

TU Dresden iOS: Real-Time Systems

ADAPTING

16

138 ABENI ET AL.

Figure 2. Pictorial representation of the envisioned architecture: each task is controlled by a dedicate controller
while a supervisor enforces the consistency condition

∑
B(i) ≤ 1.

3. Feedback Scheduling Techniques

Equation (4) describes a first order switching system, in which ε
(i)
k is a measurable state

variable that we want to control, the bandwidth B(i) acts as a command variable, whereas
c(i)

k is an exogenous disturbance term. As a matter of fact, we have a collection of first order
systems that evolve asynchronously one another, their states being observed at asynchronous
points in time (jobs termination for the different tasks).

The asynchronism of the system makes it difficult to design a global controller. A sim-
pler choice is a decentralised scheme where a dedicated controller decides the bandwidth
of each task looking at the evolution of the task itself in isolation. This idea is not com-
pletely applicable since the bandwidths chosen by the different controllers undergo a global
constraint dictated by Eq. (2). A minor departure from the entirely decentralised scheme
is to include a supervisor that, whenever the controllers violate the constraint, resets the
values of the bandwidths to fix the problem (e.g. operating a weighted compression or a
saturation). From the standpoint of each controller, every time the supervisor is forced to
act an impulsive disturbance is experienced (see Figure 2).

3.1. Single Controller General Design

The control scheme just introduced consists of a collection of controllers attached to each
task and of a supervisor that performs corrective actions only when a controller chooses
a value for the bandwidth in contrast with Eq. (2) determining an overload condition. The
latter component is described in depth in Abeni (2002) and we will omit further details.
Rather, this section is mainly concerned with the design of the dedicated controllers. In
order to reduce the probability of overload conditions, and the subsequent supervisory
corrections, each controller is constrained by a “local” saturation constraint: B(i)

k ≤ B(i)
max.

Even choosing the saturation values so that
∑

i B(i)
max ≥ Ulub, their presence allows one to

TU Dresden iOS: Real-Time Systems

GUESSING
Tommaso Cucinotta, Fabio Checconi, et al.: Self-Tuning
Schedulers for Legacy Real-Time Applications.
Proceedings of the 5th ACM European Conference on
Computer Systems (EuroSys), pp. 55–68, April 2010

sample system call behavior to infer
period and execution time

provide real-time scheduling to
unmodified non-real-time applications

17

TU Dresden iOS: Real-Time Systems

INFRASTRUCTURE

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Server period (ms)

Minimum bandwidth

Figure 1. Fraction of CPU Qs
i /T s

i required to correctly schedule
a real-time task with 20% utilisation C = 20 ms, P = 100 ms.

too small a value for Qs
i (compared to the average CPU util-

isation of the task), the application is likely to receive a very
bad Quality of Service. Likewise, choosing a large value of
Qs

i affects adversely the behaviour of the other applications
and the possibility to admit new applications.

Much less obvious but equally relevant can be the detri-
mental effects of a bad choice for the reservation period T s

i .
This problem was discussed in our previous work [8] us-
ing an analysis technique inspired to the supply bound func-
tion [16]. It is very illustrative to report here the correct val-
ues of the budget QS

i (and hence of the bandwidth Bs
i) re-

quired to schedule a simple periodic task with Ci = 20ms,
Ti = 100ms. As it is possible to see in Figure 1, the required
bandwidth ranges from the correct value (20%) to very high
values (more than 60%) if the server period is chosen too
small or too large. The correct bandwidth (20%) is required
choosing T s

i equal to the task period or to a sub-multiple of
the task period. However, the choice T s

i = Pi is the most
robust, in that moderate errors in the choice of the period do
not lead to an excessive waste of bandwidth. On the contrary
if we choose, for instance, T s

i = Pi
3 = 33ms, then even an

error of a few milliseconds in the choice of the period easily
raises the required bandwidth to a value close to 30% (with
an over-allocation of bandwidth close to 50% w.r.t. the task
utilisation). These considerations suggest a possible ineffi-
ciency in scheduling real-time periodic tasks by a class of
algorithms (such as the Proportional Share algorithms), for
which the scheduling period is not explicitly considered.

If we schedule multiple tasks in the same server, things
are far less obvious. This choice has natural motivations if
we use the CBS to schedule a multi-task application or to im-
plement a machine virtualisation scheme with performance
guarantees but it raises important issues as well. As an illus-
trative example, consider a task-set composed of three real-
time tasks with parameters: C1 = 3.0ms, P1 = 15.0ms,
C2 = 5.0ms, P2 = 20.0ms, C3 = 5.0ms, P3 = 30.0ms.
Suppose that the three tasks are scheduled in the same reser-
vation and, inside the reserved time, the allocation is decided
using a fixed priority schedule. The priorities are chosen pro-
portionally to the activation rate, the famous Rate Mono-
tonic assignment [19]. Applying the theory of hierarchical
scheduling [9, 22, 25], we are able to identify, for each server
period, the minimum budget to ensure the respect of timing
constraints (and hence the bandwidth). We show this mini-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

M
in

im
um

 b
an

dw
id

th

Server period

Single reservation
Multiple reservations

Figure 2. Minimum bandwidth required to schedule in a single
reservation three tasks. The task parameters are C1 = 3ms, P1 =
15ms, C2 = 5ms, P2 = 20ms, C3 = 5ms, P3 = 30ms and the
cumulative utilisation is ≈ 62%.

Figure 3. Scheme of the proposed approach.

mum bandwidth in Figure 2. For the reader convenience, we
report in the same plot the cumulative utilisation of the three
tasks. The figure lends itself to the following considerations:
1) in this case, there is not an obvious connection between
the “best” server period and the periods of the tasks, 2) even
with the best choice of the service period the efficiency is
way below the one that we can get with a separate server
for each thread (62%). Indeed, with a single reservation the
waste of bandwidth is between 6% and 41%. On the con-
trary, if we schedule each task in a dedicated server and if the
period of the tasks is correctly identified, we can schedule
the three tasks with a total assignment of bandwidth equal to
their cumulative utilisation, the theoretical lower bound.

4. Our Approach
The approach proposed in this paper is pictorially described
in Figure 3. The legacy real-time tasks are scheduled through
a CBS scheduling mechanism implemented in the Linux ker-
nel. A task controller is associated with each CBS server to
the purpose of identifying the correct parameters (Qs

i , T s
i)

for the task scheduled in the server. More specifically, the
controller formulates a request for a couple of parameters
Qrep

i , T s
i . The request is submitted to the supervisor com-

ponent whose purpose is to enforce the schedulability con-

58

TU Dresden iOS: Real-Time Systems

FOURIER

19

� �

����������	
�����
��	�
���������������������	
������
�������
��������������������������
���
��	����������
�����������������������	
������
�������
��������������������������
���
��	����������
�������������

Period detectionPeriod detection

The tracer produces a sequence of The tracer produces a sequence of time-stampstime-stamps

Time-stamps used to compute a Time-stamps used to compute a Fourier-transformFourier-transform

A A heuristicheuristic catches the catches the first harmonicfirst harmonic� �

����������	
�����
��	�
���������������������	
������
�������
��������������������������
���
��	����������
�����������������������	
������
�������
��������������������������
���
��	����������
�������������

Period detectionPeriod detection

The tracer produces a sequence of The tracer produces a sequence of time-stampstime-stamps

Time-stamps used to compute a Time-stamps used to compute a Fourier-transformFourier-transform

A A heuristicheuristic catches the catches the first harmonicfirst harmonic

TU Dresden

mplayer desync while starting Eclipse

iOS: Real-Time Systems

RESULTS

20

� �

����������	
�����
��	�
���������������������	
������
�������
��������������������������
���
��	����������
�����������������������	
������
�������
��������������������������
���
��	����������
�������������

Benefits for the applicationBenefits for the application
(LFS++ improves over Linux)(LFS++ improves over Linux)

A/V desynchronisation in A/V desynchronisation in mplayermplayer while starting while starting
the Eclipse IDEthe Eclipse IDE

�90% reduction of the peak A/V desynchronisation

TU Dresden iOS: Real-Time Systems

SUMMARY

21

adaptation
mechanisms

fluid flow
abstraction

periodic tasks
✔ predictable job behavior

✘ inflexible

✔ flexible on overruns

✘ job behavior less clear

✔ serve jobs per demand

✘ controller infrastructure

TU Dresden iOS: Real-Time Systems

DIRECTIONS

22

real-time school systems school

real-time folks building systems

systems folks designing time contracts

TU Dresden iOS: Real-Time Systems

REDLINE
Ting Yang, Tongping Liu, et al.: Redline: First Class
Support for Interactivity in Commodity Operating
Systems. Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pp. 73–86, December 2008

integrated management of CPU, memory
and disk to improve responsiveness

external specification files

23

TU Dresden iOS: Real-Time Systems

REDLINE

24

74 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TU Dresden iOS: Real-Time Systems

REDLINE

25

</usr/bin/mplayer:Iact:5:30:IR:–:–>

application
class
budget
period
flags
working-set keep-alive
I/O priority

TU Dresden iOS: Real-Time Systems

REDLINE

26

82 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TU Dresden iOS: Real-Time Systems

BVT
Kenneth J. Duda, David R. Cheriton: Borrowed-Virtual-
Time (BVT) Scheduling: Supporting Latency-Sensitive
Threads in a General-Purpose Scheduler. Proceedings
of the 17th ACM Symposium on Operating Systems
Principles (SOSP), pp. 261–276, December 1999

each thread carries a virtual timestamp

increases when thread runs, inversely
proportional to its weight

thread with smallest timestamp runs
27

TU Dresden iOS: Real-Time Systems

BVT
this is also the principle behind the
Completely Fair Scheduler (CFS) in Linux

warp time controls dispatch latency

effective virtual time = 
actual virtual time – warp time

effective time is used for scheduling

warping is constrained by other
parameters

28

TU Dresden iOS: Real-Time Systems

SUMMARY

golden middle ground still not found

a lot of RT-research moves deep into
theory territory

current chance to close the gap:
multicore scheduling

29

