HYPOTHESES AND EXPERIMENTS

Maksym Planeta (mplaneta@os.inf.tu-dresden.de)
Julian Stecklina
Björn Döbel

Dresden, 2017/4/12
00 Earn a Beverage!

For every lecture-friendly real-world example of the mistakes I present in this lecture, I offer the finder a beverage of his/her choice at the ASCII.

Just send me a mail.
Introduction

Experiments

Statistics
 Analyzing the distribution
 Significance

Cheating with Methodology
 Normalization
 Benchmark Suites
 Correlation vs. Causation

Biasing the Reader

Summary
01 Outline

Introduction

Experiments

Statistics
 Analyzing the distribution
 Significance

Cheating with Methodology
 Normalization
 Benchmark Suites
 Correlation vs. Causation

Biasing the Reader

Summary
What do we want to achieve with a research paper:

- Communicate research findings.
- **Convince others** of the correctness of these findings.
01 One Example: NewNix

Consider a hypothetical operating system *NewNix* that we might have implemented. What do you want to show?

- The network stack performs better than X.
- The disk subsystem is more efficient than X.
- It uses less energy for task Y than X.

These are called *hypotheses*.
A Scientific Hypothesis

- aligns with preliminary data,
- can be used to make a prediction,
- predictions can be tested with experiments and
- falsified (at least in principle),
'NewNix’s TCP/IP stack is better than Linux’ stack.'
“NewNix’s TCP/IP stack is better than Linux’ stack.”

What is the prediction?
How can it be tested and falsified?
Observed: Lot of time spent in socket buffer code for small packet handling in Linux’ TCP/IP stack.

Hypothesis: “Complex socket buffer data structures are a cause for inefficient handling of small packets.”

Predicted: A network stack with simple data structures, will be able to handle more small packets in the same amount of time.
01 Experiments

How do we know that a hypothesis is true? In general, we can’t. Hypothesis can be

- supported (doesn’t make them universally true!) or,
- refuted.

Systems research is mostly empirical, so we use experiments to do that.

See *The Logic of Scientific Discovery* (original *Logik der Forschung*) by Karl Popper.
02 Outline

Introduction

Experiments

Statistics
 - Analyzing the distribution
 - Significance

Cheating with Methodology
 - Normalization
 - Benchmark Suites
 - Correlation vs. Causation

Biasing the Reader

Summary
Paper has certain hypotheses (claims). They have to be verified by experiments. Design experiments to

- test explicit and implicit assumptions (don’t need to be in the final paper)
- substantiate claims made in the paper by testing predictions.
02 Designing Experiments

Experiments must be **repeatable**:

- **Automate! Automate! Automate!**
 - System configuration
 - Booting
 - Your Experiment
 - Analysis and Plotting
- Document system and system configuration.
- *Publish and keep* raw data, source code, scripts, random seeds . . .

If an experiment cannot be repeated, it’s result is **meaningless**.
See Ten Simple Rules for Reproducible Computational Research.
02 Reasons to Repeat

Reasons for **you** to repeat:
- Code was buggy,
- Code was inefficient,
- Configuration incomplete,
- Documentation incomplete,
- Need new data.

Reasons for **others** to repeat:
- Validate your findings,
- Refute your findings,
- Improve on your work.

Experiments must be repeatable **by others**.
02 Watch out for . . .

System configuration can be particularly hard. Watch out for:

- Latency benchmark
 - Power management
 - IRQ rate throttling
 - IRQ affinity
 - . . .
- Memory-intense benchmark
 - NUMA
 - Huge-page support
 - memory speed
 - . . .
- Throughput/compute benchmark
 - Hyperthreading
 - Thread affinity
 - Compiler changes
 - Room temperature : ¬D
 - . . .
02 Where do my Cycles go?

Taking timestamps at predefined points in the program (tracing).

- Easy to interpret
- Fine-grained measurements have high overhead

Interrupting the system regularly and see where it is (statistical profiling).

- As low overhead as you want
- Fine-grained measurements slow
- Latency measurements hard

Use the right tool for the job, but be aware of the limitations. Verify with unmodified data!
02 A Tale of Caution [4]

Investigated memory throughput as a function of packet size on the Singlechip Cloud Computer (SCC).

Source: The 48-core SCC Processor: the Programmer’s View
02 Confusion

Expected: monotonously incr. curve
Got: strange peak at 1024 bytes
02 Confusion

Expected: monotonously incr. curve
Got: strange peak at 1024 bytes

Got blue curve while iterating over packet size in **increasing** order, green curve by iterating in **descending** order.
02 Confusion

Expected: monotonously incr. curve

Got: strange peak at 1024 bytes

Got blue curve while iterating over packet size in **increasing** order, green curve by iterating in **descending** order.

Measurements influence each other!
SCC has a write-back cache, but only allocates a cache line, when data is read, not when data is written. Instruction sequences such as

```c
*ptr = 42;
foo = *ptr;
```

can miss the cache twice. Repeated writes without reads will always miss.
02 Descending Measurement

Green measurement buffer was allocated on the stack and only written.

Grey line indicates maximum stack usage before measurement, i.e. memory partly in cache.

Blue is the function prologue (read and written).

Memory writes miss below the grey line and partly hit above the grey line. Best performance for largest buffer that fits!
Function prologue allocates cache line for next benchmark iteration.

All writes hit the cache (if it is large enough). Best performance for largest buffer.

Better solution is to manually prefetch the buffer before each experiment. Order doesn’t matter anymore.
02 Lessons Learned

- If the order of experiments change their result, they are interfering with each other.
- Results of interfering experiments **useless** (usually)!
- Sanitize the environment before starting experiments:
 - Reboot
 - Warmup runs
 - Cache
 - Memory Consumption
 - ...
- Discuss your experiment setups with other people!
03 Outline

Introduction

Experiments

Statistics
 Analyzing the distribution
 Significance

Cheating with Methodology
 Normalization
 Benchmark Suites
 Correlation vs. Causation

Biasing the Reader

Summary
03 Measuring

We want to measure a value x (*random variable*), which could be:

- network throughput,
- CPU utilization,
- power consumption,
- ...

Our experimentation setup is slightly inaccurate and will give us slightly different values x_i everytime we repeat the experiment (*random sample*).

What value is “correct”? How to report it?
03 Descriptive Statistics 101

(Arithmetic) Average \(\mu_x = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \)

Median Middle value in an ordered data set

Mode Most frequent value

Sample Variance \(\sigma^2_x = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)

Sample Standard Deviation \(\sigma_x = \sqrt{\sigma^2_x} \)

The \(\frac{1}{n-1} \) vs. \(\frac{1}{n} \) issue is due to Bessel’s correction.
03 Is 101 Statistics enough?

- Statistics may be hard.
- But sometimes simple things are just fine.
- Try to end up with the least work
03 First look

- We have averages, how to compare them?
03 First look

- We have averages, how to compare them?
- Chebyshev’s inequality:

\[Pr(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]
03 First look

- We have averages, how to compare them?
- Chebyshev’s inequality:
 \[Pr(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]
- \(k = 3 : \frac{N_{in}}{N} = 89\% \)
03 First look

- We have averages, how to compare them?
- Chebyshev’s inequality:
 \[Pr(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]
 - \(k = 3 \) : \(\frac{N_{in}}{N} = 89\% \)
 - \(k = 2 \) : \(\frac{N_{in}}{N} = 75\% \)
03 First look

- We have averages, how to compare them?
- Chebyshev’s inequality:
 \[Pr(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]
- \(k = 3 : \frac{N_{in}}{N} = 89\% \)
- \(k = 2 : \frac{N_{in}}{N} = 75\% \)

Can we narrow down the regions?
03 Three sigma rule of thumb

- 13.6% within $\mu \pm \sigma$
- 95.4% within $\mu \pm 2\sigma$
03 Three sigma rule of thumb

- 68.2% within $\mu \pm \sigma$
- 95.4% within $\mu \pm 2\sigma$
- Bounds are tighter
03 Three sigma rule of thumb

- 68.2% within $\mu \pm \sigma$
- 95.4% within $\mu \pm 2\sigma$
- Bounds are tighter
- Careful!
03 How tighter bounds look like?

- According to Chebyshev’s inequality: 75% of data points lies within $\mu \pm 2\sigma$
- According to three sigma rule: 68% of data points lies within $\mu \pm \sigma$
03 How tighter bounds look like?

- According to Chebyshev’s inequality: 75% of data points lies within $\mu \pm 2\sigma$
- According to three sigma rule: 68% of data points lies within $\mu \pm \sigma$
03 How tighter bounds look like?

- According to Chebyshev’s inequality: 75% of data points lies within $\mu \pm 2\sigma$
- According to three sigma rule: 68% of data points lies withing $\mu \pm \sigma$
- There is now free lunch: distribution *has* to be normal.
03 Normal Distribution

Lots of data can be approximated as **normally distributed**. Especially, when it is the result of multiple random influences.

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
\]

\[
P(a \leq X \leq b) = \int_{a}^{b} f(t) \, dt
\]

Central Limit Theorem: Arithmetic mean of a large sample is approx. normally distributed.
03 How do we know if the distribution is normal?

1. Work out a mental model
2. Decide if it logical to be normally distributed
 Latency typically is not.
3. Use statistical tools to prove that the distribution may be normal
4. Visualization for initial diagnosis:
 - Scatter plot
 - Histogram
 - Box plot
 - Violin plot
 - QQ-plot
5. Make it normally distributed by applying CLT
03 Enforcing normality

Statement: Our system is faster on average

- Given correct experiment setup, draw enough samples
- Mean of a sample is normally distributed (CLT)
- Compare means
- ???
- PROFIT!!!

- Not always enough
- Interested in worst case?
- See EVT, GEV distribution (Weibull, Frechet, Gumbel)
03 Box Plots

Present a sample by its median and quartiles. Use of the whiskers is not uniform. Popular choices are:

- smallest point within 1.5 IQR of lower quartile to largest in upper quartile,
- min / max,
- \(\mu \pm \sigma \)

Points outside whiskers are drawn individually.
03 Look at more points

- Combination of scatter plot and box plot
- Outliers are crosses
- Data points are dots
- What doesn’t look normal?
03 QQ-plots for the rescue

- Compare sample against theoretical distribution
- Better to use standard score
 \[z = \frac{x - \mu}{\sigma} \]
- A and C are clearly normal
03 QQ-plots for the rescue

- Compare sample against theoretical distribution
- Better to use standard score
 \[z = \frac{X - \mu}{\sigma} \]
- A and C are clearly normal
- B and D are problematic
03 Normality tests

- Shapiro-Wilk test
- Can be used to decide that distribution is *not* normally distributed
- Usually works better for small samples
- A, B, C may be normal
- D is not

<table>
<thead>
<tr>
<th>Experiment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>0.95</td>
<td>0.4</td>
<td>0.26</td>
<td>0.005</td>
</tr>
</tbody>
</table>
03 Parametric statistics

Why to bother about distribution at all?

- Parametric and non-parametric tools
- Parametric tools are generally more powerful
 Examples: Three sigma rule, CI for mean [3], ANOVA, Pearson correlation
- Non-parametric tools can be applied in more situations
 Examples: Chebyshev’s inequality, CI for median, non-parametric ANOVA, Spearman correlation
Mean vs. median

- Both non-parametric (do not assume distribution)
- Median is robust, mean is not
- CI for mean is parametric, CI for median is not
- Compromise: *truncated* mean

the first two results were excluded as warm-up runs [4]
Some random samples have multiple modes ("peaks"). Each one is an interesting data point.

- Median and mean are misleading!
- Do histogram or violin plot.
03 Example: Reporting results of HPL [2]

- Piz Daint supercomputer
- High-Performance Linpack
- Max: 77.38 Tflops/s
- Theoretical max: 94.5 Tflops/s
03 Example: Reporting results of HPL [2]

- Piz Daint supercomputer
- High-Performance Linpack
- Max: 77.38 Tflops/s
- Theoretical max: 94.5 Tflops/s

Figure 1: Distribution of completion times for 50 HPL runs.
03 Histograms may be misleading [6]

- Histograms and density plots show the same
- Histograms may be very different depending on the shift
- Hard to get exact data from density plots

Figure 5.8: Five shifted histograms with bin width 0.5 and the frequency polygon of their average, for the Old Faithful geyser duration data. The code used is in the scripts for this chapter.
03 Descriptive Statistics Recap

- **Aggregated values** might be misleading.
- Indicate **dispersion** in your plots!
- Multimodal results require extra care.
- May require additional experiments
A result is significant, if it is unlikely to have happened by chance. In practice, a rule of thumb for a large number of data points is

Any change that is several times larger than σ is probably significant.

Effects in the order of σ are suspicious, below σ are very likely meaningless.
03 Example: Small Data Sets

Suppose you have a system property that is expensive to test, you got the following data:

<table>
<thead>
<tr>
<th>Experiment Iteration</th>
<th>Result of Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\mu_1 &= 3.9640 \\
\sigma_1 &= 1.9690 \\
\mu_2 &= 5.4395 \\
\sigma_2 &= 1.6110
\end{align*}
\]

Clearly, our rule of thumb is not applicable.
03 Hypothesis Testing

“Simplifying socket buffer data structures leads to different CPU usage for small network packets.”

\[H_1 : \mu_{simple} - \mu_{original} \neq 0 \]

The right way to “prove” this hypothesis is to reject the null hypothesis that results are chance results:

\[H_0 : \mu_{simple} - \mu_{original} = 0 \]

We usually can do this only in a probabilistic way by giving a probability \(p \) for \(H_0 \). If \(p \) is below the significance level \(\alpha \), \(H_0 \) can be rejected. Popular significance levels are 0.05 or 0.01.

If we can reject \(H_0 \), our result is statistically significant, otherwise inconclusive.
03 Understanding Significance

Given 100 experiments of a worthless change (H_0 is true) to our system with a significance level of 0.05:

- 95 will be inconclusive,
- 5 will be significant! (Type I error).

Given 100 experiments of a real change (H_0 is false) to our system with a significance level of 0.05:

- 95 will be significant,
- 5 will be inconclusive! (Type II error).
03 t-Tests

For normally distributed results with the same σ, Student’s t-test can be used to reject H_0.

For normally distributed results with different σ, Welch’s t-test can be used to reject H_0.
03 t-Test Practice

The math is complex, but RTFM of SciPy gives us:

```python
>>> v1
array([ 4.55004876, 3.76050393, 1.78153774, 0.45846504, 4.22565852,
       3.2464959 , 2.07829922, 0.06514428, 6.67741018, 2.84793141,

...]

>>> v2
array([ 9.4764887 , 6.66139287, 8.12849474, 7.60792901,
       10.73051496, 6.5853035 , 6.93264452, 6.09349537,

...]

>>> scipy.stats.ttest_ind(v1, v2, equal_var=False)
(array(-2.5280026596739273), 0.015926207185724916)
```

\[
p = 0.0159
\]

With significance level of 0.05, we can reject \(H_0 \).

With significance level of 0.01, the test is **inconclusive**.
A way to assess the accuracy of e.g. the mean of a random sample is to use confidence intervals.

The confidence is given as $(1 - \alpha)$.

What does it mean: If you
- draw a random sample,
- compute the 95% confidence interval for the mean,
the "real" mean will be in this interval with 95% confidence.
03 Confidence Interval

![Confidence Interval Graph]

- **Observed Mean**
- **95% Confidence**

TU Dresden, 2017/4/12 Hypotheses and Experiments slide 50 of 71
Use confidence intervals, if there is nothing to compare to or the sample is large.

Use t-tests to establish the likelihood whether something changed with respect to another measurement, especially for very small samples.

t-tests can also test for the likelihood of a specific mean.
Literature on statistics focuses on social studies, experimental research in medicine, ...

Their experiments are:

- expensive,
- time-consuming,
- manual.

Make most out of little data with advanced statistical methods.

Systems experiments:

- cheap,
- fast,
- can be automated.

Gather lots of data and can get away with simpler statistical methods.
03 Statistics Recap

- Repeat experiments until you can be certain its result is not by chance.
 - Check multimodality and dispersion!
 - Use statistical methods to check your results:
 - confidence intervals
 - t-tests
- Understand significance
03 Statistics Recap

- Repeat experiments until you can be certain its result is not by chance.
 - Check multimodality and dispersion!
 - Use statistical methods to check your results:
 - confidence intervals
 - t-tests
- Understand significance

If you torture the data enough, nature will always confess.

Ronald Coase
04 Outline

Introduction

Experiments

Statistics
 Analyzing the distribution
 Significance

Cheating with Methodology
 Normalization
 Benchmark Suites
 Correlation vs. Causation

Biasing the Reader

Summary
Suppose we have a benchmark suite comprised of benchmarks E, F, H, I, K and results for three processors R, M, Z.

It’s tempting to normalize results to one processor and compute the arithmetic mean for each processor. It’s also wrong.

Source: How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results
Suppose we have a benchmark suite comprised of benchmarks E, F, H, I, K and results for three processors R, M, Z.

It’s tempting to normalize results to one processor and compute the arithmetic mean for each processor. It’s also wrong.

TABLE II. Same Raw Data, but Different Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>E</td>
<td>417 (1.71)</td>
</tr>
<tr>
<td>F</td>
<td>83 (1.19)</td>
</tr>
<tr>
<td>H</td>
<td>66 (0.43)</td>
</tr>
<tr>
<td>I</td>
<td>39,449 (1.18)</td>
</tr>
<tr>
<td>K</td>
<td>772 (2.10)</td>
</tr>
</tbody>
</table>

Arithmetic mean

(1.32) (1.00) (1.08)

The numbers in parentheses are normalized to Machine M.

Source: How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results
04 Arithmetic vs. Geometric Mean

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} v_i \]

\[\bar{x}_{\text{geom}} = \left(\prod_{i=1}^{n} v_i \right)^{\frac{1}{n}} = \frac{1}{n} \sum_{i=1}^{n} \ln v_i \]

For non-negative \(v_i \): \(\bar{x}_{\text{geom}} \leq \bar{x}_{\text{arith}} \).

Geometric mean \(\bar{x}_{\text{geom}} \) usually used for interest rates and growth factors.
The geometric mean gives the same relative “ranking” of benchmarks regardless of normalization.

The geometric mean is the only mean with this property.

Source: How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results

TABLE V. Correct Use of the Geometric Mean

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>20 (1.00)</td>
</tr>
<tr>
<td>2</td>
<td>40 (1.00)</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>(1.00)</td>
</tr>
</tbody>
</table>

The numbers in parentheses are normalized to Machine X.
The geometric mean gives the same relative “ranking” of benchmarks regardless of normalization.

The geometric mean is the only mean with this property.

Source: How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results
04 Normalization Rules

- Don’t average normalized numbers with the arithmetic mean!
- Use geometric mean instead.
Benchmark suites are sets of several individual benchmarks and designed to test certain aspects of a system. Popular examples are SPEC benchmarks:

- CPU (SPEC CPU)
- High Performance Computing (SPEC MPI)
- Java (SPECjbb)
- Network filesystem (SPECsfs)
- Power (SPECpower)

Using only subsets of benchmark suites is highly frowned upon.
SPEC CPU2006 is comprised of (more or less) real-life applications:

12 Integer Benchmarks:
- perlbench
- bzip2
- gcc
- h264ref
- mass transport vehicle scheduling
- ...

18 Floating Point Benchmarks:
- Partial Differential Equations
- Fluid Dynamics
- Simplex Linear Program Solver
- ...

Choosing subsets will unfairly highlight particular system properties, but not give a good estimate of overall performance.
04 Suite Subsets vs. Speedup

Relative Speedup vs. Benchmark Subsets
04 Benchmark Suites

- If a subset is used, then a reason must be given.
- “Those were the only ones I got working.” is a bad reason.
04 Correlation is not Causation

If A correlates to B, this can mean:

- A causes B.

Source: BoingBoing
If A correlates to B, this can mean:

- A causes B.
04 Correlation is not Causation

If A correlates to B, this can mean:

- A causes B.
- B causes A.
- A causes B and B causes A.
- C causes A and B.
- Nothing. (Chance result)
05 Outline

Introduction
Experiments

Statistics
 Analyzing the distribution
 Significance

Cheating with Methodology
 Normalization
 Benchmark Suites
 Correlation vs. Causation

Biasing the Reader

Summary
05 Biases

Source: Twitter IPO
05 Biases

Axes starting at a non-zero value exaggerate changes!
Which is the best visualization of the data? Lines indicate trends. Not useful for independent benchmarks.
Which is the best visualization of the data?
Which is the best visualization of the data?

Lines indicate trends.

Not useful for independent benchmarks.
05 Pie Charts

What is the second best result in each chart?

Source: BusinessInsider / Wikipedia
What is the second best result in each chart?

Hard to compare sizes without values as labels. 3D pie charts are even worse!
06 Outline

Introduction
Experiments
Statistics
 Analyzing the distribution
 Significance
Cheating with Methodology
 Normalization
 Benchmark Suites
 Correlation vs. Causation
Biasing the Reader
Summary
06 Take Away Points

Automate experiments, because you will redo them.

Hypotheses must be **substantiated** with data.

Experiments must be **repeatable by others** and ideally **automated**.

Numbers don’t lie, but analyses do. Use proper statistical methods!

Present results without cheating!
06 Literature I

06 Literature II

Markus Partheymüller.
Exploring inter-core message-passing for fiasco on the scc.

David A Patterson.
Computer architecture: a quantitative approach.
Elsevier, 2011.

William N Venables and Brian D Ripley.
Modern applied statistics with S-PLUS.