
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Microkernel-based Operating
Systems - Introduction

Dresden, Oct 12th 2010

Björn Döbel

TU Dresden, 2010-10-12 MOS - Introduction Slide 2 von 41

Lecture Goals

• Provide deeper understanding of OS
mechanisms

• Illustrate alternative design concepts

• Promote OS research at TU Dresden

• Make you all enthusiastic about OS
development in general and microkernels in
special

TU Dresden, 2010-10-12 MOS - Introduction Slide 3 von 41

Administration - Lecture

• Lecture every Tuesday, 1:00 PM, INF/E08

• Slides: http://www.tudos.org -> Teaching ->
Microkernel-based Operating Systems

• Subscribe to our mailing list:
http://os.inf.tu-dresden.de/mailman/listinfo/mos2010

• This lecture is not: Microkernel construction
(in summer term)

http://www.tudos.org/
http://os.inf.tu-dresden.de/mailman/listinfo/mos2010

TU Dresden, 2010-10-12 MOS - Introduction Slide 4 von 41

Administration - Exercises

• Exercises (roughly) bi-weekly, Tuesday, 2:50
PM, INF/E08

• Practical exercises in the computer lab
• Paper reading exercises

– Read a paper beforehand.
– Sum it up and prepare 3 questions.
– We expect you to actively participate in

discussion.
• First exercise: next week

– Brinch-Hansen: Nucleus of a multiprogramming
system

TU Dresden, 2010-10-12 MOS - Introduction Slide 5 von 41

Complex lab

• Complex lab in parallel to lecture
• Build several components of an OS
• “Komplexpraktikum” for (Media) Computer

Science students
• “Internship” for Computational Engineering
• starts on Tuesday, Oct 26th, 14:50

TU Dresden, 2010-10-12 MOS - Introduction Slide 6 von 41

Schedule

Date Lecture Exercise
Oct 12 Intro

Oct 19 Tasks, Threads, Synchronization Paper: Nucleus of an MP system

Oct 26 Memory

Nov 2 Communication Practical: Booting

Nov 9 Real-Time

Nov 16 Device Drivers Paper: Singularity OS

Nov 23

Nov 30 Resource Management Practical: IPC

Dec 7 Virtualization

Dec 14 Legacy Containers Paper: Formal req. on virtualization

Dec 21 Security Fundamentals

Jan 11 Information Flow Paper: Cap myths demolished

Jan 18 Secure Systems

Jan 25 Trusted Computing Practical: Capability Systems

Feb 1 Debugging Operating Systems

TU Dresden, 2010-10-12 MOS - Introduction Slide 7 von 41

What's an Operating System good for?

Resource Management

Fast

Reliable Secure

Comprehensible

Maintainable
Distributed

Isolated

Easy-to-use

Safe

Centralized

TU Dresden, 2010-10-12 MOS - Introduction Slide 8 von 41

Monolithic kernels - Linux

Linux
Kernel

Processes
 Scheduling

 IPC

Memory
Management

 Page allocation
 Address spaces

 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

System-Call Interface

Hardware Access

Application Application Application Application
User mode

Kernel
mode

Hardware
CPU, Memory, PCI, Devices

TU Dresden, 2010-10-12 MOS - Introduction Slide 9 von 41

What's the problem?

• All system components in privileged mode.
• No built-in isolation

– Faulty driver crashes the whole system.
– More then 2/3 of today's systems are drivers.

• No enforcement of good system design
– can directly access all kernel data structures

• Size and inflexibility
– Not suitable for embedded systems.
– Difficult to replace single components.

• Increasing complexity becomes more and
more difficult to manage.

TU Dresden, 2010-10-12 MOS - Introduction Slide 10 von 41

The microkernel vision

Memory
Management

 Page allocation
 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

Application Application Application Application

Hardware
CPU, Memory, PCI, Devices

 Address Spaces
 Threads

 Scheduling
 IPC

System-Call Interface

Hardware Access

Microkernel

User mode

Kernel
mode

TU Dresden, 2010-10-12 MOS - Introduction Slide 11 von 41

One vision - microkernels

• Minimal OS kernel
– less error prone
– small Trusted Computing Base
– suitable for verification

• System services implemented as user-level
servers
– flexible and extensible

• Protection between individual components
– systems get

• More secure – inter-component protection
• Safer – crashing component does not

(necessarily...) crash the whole system

TU Dresden, 2010-10-12 MOS - Introduction Slide 12 von 41

One vision – microkernels (2)

• OS personalities

• Servers may be configured to suit the target
system (small embedded systems, desktop
PCs, SMP systems, …)

• Enforce reasonable system design
– Well-defined interfaces between components
– No access to components besides these

interfaces
– Improved maintainability

TU Dresden, 2010-10-12 MOS - Introduction Slide 13 von 41

The mother of all microkernels

• Mach – developed at CMU, 1985 - 1994
– Rick Rashid (today head of MS Research)
– Avie Tevanian (former Apple CTO)
– Brian Bershad (professor @ U. of Washington)
– …

• Foundation for several real systems
– Single Server Unix (BSD4.3 on Mach)
– MkLinux (OSF)
– IBM Workplace OS
– NeXT OS Mac OS X→

TU Dresden, 2010-10-12 MOS - Introduction Slide 14 von 41

Mach – Technical Details

• Simple, extensible communication kernel
– “Everything is a pipe.” – ports as secure

communication channels
• Multiprocessor support
• Message passing by mapping
• Multi-server OS
• POSIX-compatibility
• Shortcomings

– performance
– drivers still in the kernel

TU Dresden, 2010-10-12 MOS - Introduction Slide 15 von 41

Case study: IBM Workplace OS

• Main goals:
– multiple OS personalities
– run on multiple HW architectures

ARM PPC x86 MIPS Alpha

Mach microkernel

OS base servicesFiles

Network Processes Power ...

Windows
Personality

Unix
Personality

OS/2
Personality

Win Apps Unix Apps OS/2 Apps

TU Dresden, 2010-10-12 MOS - Introduction Slide 16 von 41

IBM Workplace OS (2)

• Never finished (but spent 1 billion $)
• Failure causes:

– Underestimated difficulties in creating OS
personalities

– Management errors, forced divisions to adopt
new system without having a system

– “Second System Effect”: too many fancy
features

– Too slow
• Conclusion: Microkernel worked, but system

atop the microkernel did not

TU Dresden, 2010-10-12 MOS - Introduction Slide 17 von 41

Lessons learned

• OS personalities did not work
• Flexibility – but monolithic kernels became

flexible, too (Linux kernel modules)
• Better design – but monolithic kernels also

improved (restricted symbol access, layered
architectures)

• Maintainability – still very complex
• Performance matters a lot

TU Dresden, 2010-10-12 MOS - Introduction Slide 18 von 41

Proven advantages

• Subsystem protection / isolation
• Code size

– Fiasco kernel: ~ 15,000 LoC
– Minimal application:

(boot loader + “hello world”):
~ 6,000 LoC

– Linux kernel (2.6.24, x86 architecture):
~ 1.6 million LoC

(+drivers: ~ 2.8 million LoC)

(generated using David A. Wheeler's 'SLOCCount')

• Customizable
– Tailored memory management / scheduling / …

algorithms
– Adaptable to embedded / real-time / secure / …

systems

TU Dresden, 2010-10-12 MOS - Introduction Slide 19 von 41

Challenges

• We need fast and efficient kernels
– covered in the “Microkernel construction”

lecture in the summer term
• We need fast and efficient OS services

– Memory and resource management
– Synchronization
– Device Drivers
– File systems
– Communication interfaces
– subject of this lecture

TU Dresden, 2010-10-12 MOS - Introduction Slide 20 von 41

Who's out there?

• Minix @ VU Amsterdam (Andrew Tanenbaum)

• Singularity @ MS Research

• Eros/CoyotOS @ Johns Hopkins University

• The L4 Microkernel Family
– Originally developed by Jochen Liedtke at IBM

and GMD
– 2nd generation microkernel
– Several kernel ABI versions

TU Dresden, 2010-10-12 MOS - Introduction Slide 21 von 41

The L4 family – a timeline

v2 x0 x2/v4

N1 N2

Fiasco

L4/x86

L4Ka::Hazelnut

Fiasco/L4v2

L4Ka::Pistachio

NICTA::
Pistachio-embedded

OKL4

Fiasco/L4.Fiasco

OKL4v2

Fiasco.OCL4.Sec

Univ. of
Karlsruhe

Univ. of New South
Wales / NICTA / Open
Kernel Labs

TU
Dresden

SeL4

ABI Specification

Implementation

L2, L3

OC

Nova

Nova

TU Dresden, 2010-10-12 MOS - Introduction Slide 22 von 41

L4 concepts

• Jochen Liedtke:
“A microkernel does no real work.”
– kernel provides inevitable mechanisms
– kernel does not enforce policies

• But what is inevitable?
– Abstractions

• Threads
• Address spaces (tasks)

– Mechanisms
• Communication
• Resource Mapping
• (Scheduling)

TU Dresden, 2010-10-12 MOS - Introduction Slide 23 von 41

Fiasco.OC: System Calls

• “Everything is an object.”
– Objects posess internal state & behavior.

• 1 system call: invoke_object()
– Parameters passed in UTCB
– Types of parameters depend on type of object

• Objects referenced by capabilities
– invoke() allowed for everyone possessing a

capability to the object
– Kernel mechanism: unforgeable
– Can be mapped just like every other resource.

TU Dresden, 2010-10-12 MOS - Introduction Slide 24 von 41

Fiasco.OC: Object types

• Factory
– Create other objects
– Enforce resource quotas

• Task
– Address + capability space

• Thread
• IPC Gate
• IRQ

• Each task gets initial set of capabilities upon
startup.

TU Dresden, 2010-10-12 MOS - Introduction Slide 25 von 41

Problem: Memory partitioning

Physical Memory
0

4 GB

App1
App2

TU Dresden, 2010-10-12 MOS - Introduction Slide 26 von 41

Solution: Virtual Memory

Physical Memory
0

4 GB

App1
App2

TU Dresden, 2010-10-12 MOS - Introduction Slide 27 von 41

Resource partitioning

• General problem:
– Partition resources for concurrent use by

different applications

• Examples
– CPU partitioning Scheduling→
– Memory partitioning Virtual memory→
– Hard disks multiple logical drives→
– Computer partitioning virtual machines→
– IP address ranges

TU Dresden, 2010-10-12 Fiasco/OC & L4Re Slide 28 von 41

Fiasco.OC: Partitioning objects

• Addressing: How does
green know how to find
objects? need object →
ID

• Security: global IDs can
be forged.

• Flexibility: what happens
to object ID if blue object
implementation is moved
to red task?

Address
Space

Address
Space

Address
Space

invoke()

invoke()

TU Dresden, 2010-10-12 MOS - Introduction Slide 29 von 41

Fiasco.OC: Local names

• Global object IDs are
– insecure (forgery, covert channels).
– inconvenient (programmer needs to know

about partitioning in advance)

• Solution in Fiasco.OC: task-local capability
space as an indirection

• Per-task name space (configured by task's
creator) to map physical names (cap
references) to object capabilities.

TU Dresden, 2010-10-12 Fiasco/OC & L4Re Slide 30 von 41

Capabilities / Local Names

Indirection allows for security and flexibility.

Address
Space

Address
Space

Address
Space

1

3
4

1

4

1 2 3 4

TU Dresden, 2010-10-12 MOS - Introduction Slide 31 von 41

L4 - Threads

• Thread ::= Unit of Execution

• Properties managed by the kernel:
– Instruction Pointer (EIP)
– Stack (ESP)
– Registers
– User-level TCB

• User-level applications need to
– allocate stack memory
– provide memory for application binary
– find entry point
– ...

Code

Data

Stack

Stack

Threads

Address Space

TU Dresden, 2010-10-12 MOS - Introduction Slide 32 von 41

L4 - Communication

• Synchronous inter-process communication (IPC)
between threads

• Kernel object: IPC gate

• Communication:
– Put message into sender's UTCB
– Invoke IPC gate (blocks until receiver ready)
– Kernel copies message to receiver UTCB

• Note: This is the same procedure as for any other
invoke_object()
– allows object interpositioning

TU Dresden, 2010-10-12 MOS - Introduction Slide 33 von 41

L4 – Resource Mappings

• If a thread has access to a capability, it can
map this one to another thread.

• Abstraction for mapping: flexpage

• Flexpages describe mapping
– location and size of resource
– receiver's rights (read-only, mappable)
– type (memory, IO, communication capability)

TU Dresden, 2010-10-12 MOS - Introduction Slide 34 von 41

L4 – Recursive address spaces

Physical MemoryRAM
Device
Memory

TU Dresden, 2010-10-12 MOS - Introduction Slide 35 von 41

L4 – Hardware Interrupts

• Kernel object: IRQ

• Used for hardware and software interrupts
(read: asynchronous signals)

• Wait for IRQ: invoke_object(irq)

Kernel
User-space

device
driver

IRQ
invoke_object
(irq_id, ...)

TU Dresden, 2010-10-12 MOS - Introduction Slide 36 von 41

Linux on L4

L4 Task

Linux
Kernel

Processes
 Scheduling

 IPC

Memory
Management

 Page allocation
 Address spaces

 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

System-Call Interface

Hardware Access

User mode

Kernel
mode

Hardware

arch-dep

arch-dep

Arch-
indep.

Fiasco.OC

L4 Task

Application

L4 Task

Application

L4 Task

Application

L4 Task

Application

L4 Runtime Environment

TU Dresden, 2010-10-12 MOS - Introduction Slide 37 von 41

The Dresden Real-Time Operating System

Privileged
Mode

User
Mode

Fiasco.OC microkernel

Resource Management Layer (L4Re)

L4Linux

Apps

SCSI
driver

Network
driver

Display
driver

RT AppsTime
service

Non-RT World RT World

TU Dresden, 2010-10-12 MOS - Introduction Slide 38 von 41

Virtual machines

• Isolate not only processes, but also complete
Operating Systems (compartments)

• “Server consolidation”

Privileged
Mode

User
Mode

Fiasco.OC microkernel

Virtualization Layer (L4Re)

L4Linux L4Linux

Native
Linux

Apps Apps Apps

VMM

TU Dresden, 2010-10-12 MOS - Introduction Slide 39 von 41

Genode

• Genode := C++-based OS framework
developed here in Dresden

• Aim: hierarchical system in order to
– Support resource partitioning
– Layer security policies on top of each other

Genode::Core

Parent 1 Parent 2

Child Child Child

Child Child

TU Dresden, 2010-10-12 MOS - Introduction Slide 40 von 41

Lecture outline

• Basic mechanisms and concepts
– Memory management
– Tasks, Threads, Synchronization
– Communication

• Building real systems
– What are resources and how to manage them?
– How to build a secure system?
– How to build a real-time system?
– How to reuse existing code (Linux, standard

system libraries, device drivers)?
– How to improve robustness and safety?

TU Dresden, 2010-10-12 MOS - Introduction Slide 41 von 41

Outlook

• Next lecture:
– “Tasks, Threads and Synchronization”

on Oct 19th

• Next exercise:
– Oct 19th

– Brinch-Hansen: “The nucleus of a
multiprogramming system”

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41

