
Department of Computer Science Institute of System Architecture, Operating Systems Group

MICHAEL ROITZSCH

THREADS

TU Dresden MOS: Threads

RECAP

2

TU Dresden MOS: Threads

MICROKERNEL

3

■ kernel:

■ provides system foundation

■ usually runs in privileged CPU mode

■ microkernel:

■ kernel provides mechanisms, no policies

■ most functionality implemented in user
mode, unless dictated otherwise by

■ security

■ performance

TU Dresden MOS: Threads

ABSTRACTIONS

4

Resource Mechanism

CPU Thread

Memory Task

Communication IPC, IRQ

Platform Virtual Machine

R
ig

h
ts

C
ap

ab
ilities

TU Dresden MOS: Threads

VIRTUAL MACHINE

5

■ provides an exclusive instance of a full
system platform

■ may be a synthetic platform (bytecode)

■ full software implementations

■ hardware!assisted implementations in the
kernel (hypervisor)

■ see virtualization lecture on Nov 30th

TU Dresden MOS: Threads

IPC

■ inter!process communication

■ between threads

■ two!way agreement, synchronous

■ memory mapping with flexpages

■ see communication lecture on Nov 2nd

6

TU Dresden MOS: Threads

TASK
■ (virtual) address space

■ unit of memory management

■ provides spatial isolation

■ common memory content can be shared

■ shared libraries

■ kernel

■ see memory lecture next week

7

TU Dresden MOS: Threads

KERNEL AS

8

User Kernel

User Address Space Kernel Address Space

TU Dresden MOS: Threads

SHARED KERNEL

9

User

Kernel

Task 1

User

Kernel

Task 2Physical RAM

Pagetables

Pagetables

TU Dresden MOS: Threads

ALTERNATIVES

10

user shared system privileged

Monolith Exokernel Microkernel Software
Isolation

m
or

e
co

de

TU Dresden MOS: Threads

THREADS

11

TU Dresden MOS: Threads

BASICS

12

■ abstraction of code execution

■ unit of scheduling

■ provides temporal isolation

■ typically requires a stack

■ thread state:

■ instruction pointer

■ stack pointer

■ CPU registers, flags

CPU
IP

SP

Regs

Code

Stack

TU Dresden MOS: Threads

STACK
■ storage for function!local data

■ local variables

■ return address

■ one stack frame per function

■ grows and shrinks
dynamically

■ grows from high to low
addresses

13

Stack Frame 1

Stack Frame 2

Stack Frame 3

TU Dresden MOS: Threads

KERNEL’S VIEW
■ maps user!level threads to kernel!level

threads

■ often a 1:1 mapping

■ threads can be implemented in userland

■ assigns threads to hardware

■ one kernel!level thread per logical CPU

■ with hyper!threading and multicore, we
have more than one hardware thread now

14

TU Dresden MOS: Threads

KERNEL ENTRY

15

CPU

IP

SP

Regs

Code

Stack

■ thread can enter
kernel:

■ voluntarily

■ system call

■ forced

■ interrupt

■ exception

!

TU Dresden MOS: Threads

KERNEL ENTRY

16

CPU

IP

SP

Regs

■ IP and SP point
into kernel

■ user CPU state
stored in TCB

■ old IP and SP

■ registers

■ flags

■ FPU state

■ MMX, SSE

Stack

Code

Code

Stack

!

Regs

TU Dresden MOS: Threads

TCB
■ thread control block

■ kernel object, one per thread

■ stores thread’s userland state while it is
not running

■ untrusted parts can be stored in user
space

■ separation into KTCB (kernel TCB) and
UTCB (user TCB)

■ UTCB also holds system call parameters
17

TU Dresden MOS: Threads

KERNEL EXIT
■ once the kernel has provided its services,

it returns back to userland

■ by restoring the saved user IP and SP

■ the same thread or a different thread

■ the old thread may be blocking now

■ waiting for some resource

■ returning to a different thread might
involve switching address spaces

18

TU Dresden MOS: Threads

SCHEDULING

19

TU Dresden MOS: Threads

BASICS

20

■ scheduling describes the decision, which
thread to run on a CPU at a given time

■ When do we schedule?

■ current thread blocks or yields

■ time quantum expired

■ How do we schedule?

■ RR, FIFO, RMS, EDF

■ based on thread priorities

TU Dresden MOS: Threads

POLICY
■ scheduling decisions are policies

■ should not be in a microkernel

■ L4 used to have facilities to implement
scheduling in user land
■ each thread has an associated preempter

■ kernel sends an IPC when thread blocks

■ preempter tells kernel where to switch to

■ no efficient implementation yet

■ scheduling is the only in!kernel policy in L4
21

TU Dresden MOS: Threads

QUANTA
■ a thread’s time quantum defines the time

it owns the CPU before it is preempted

■ preemption is the process of (involuntarily)
deactivating a thread in favor of another

■ flavors of time quanta

■ time slices for round robin scheduling

■ execution time budgets for real!time

■ time quanta get replenished

22

TU Dresden MOS: Threads

L4

■ scheduling in L4 is based on thread
priorities

■ time!slice!based round robin within the
same priority level

■ kernel manages priority and timeslice as
part of the thread state

■ see scheduling lecture on Nov 9th

23

TU Dresden MOS: Threads

EXAMPLE
■ thread 1 is a high priority driver thread,

waiting for an interrupt (blocking)

■ thread 2 and 3 are ready with equal
priority

24

Thread 1

Thread 2

Thread 3

P
rio

rity

TU Dresden MOS: Threads

EXAMPLE
■ 1 hardware thread

■ kernel fills time slices of threads 2 and 3

■ scheduler selects 2 to run

25

Thread 1

Thread 2

Thread 3

P
rio

rity

TU Dresden MOS: Threads

EXAMPLE
■ device interrupt arrives

■ thread 2 is forced into the kernel, where it
unblocks thread 1 and fills its time slice

■ switch to thread 1 preempts thread 2

26

Thread 1

Thread 2

Thread 3

P
rio

rity

TU Dresden MOS: Threads

EXAMPLE
■ thread 1 blocks again (interrupt handled,

waiting for next)

■ thread 2 has time left

27

Thread 1

Thread 2

Thread 3

P
rio

rity

TU Dresden MOS: Threads

EXAMPLE
■ thread 2’s time slice has expired

■ scheduler selects the next thread on the
same priority level (round robin)

28

Thread 1

Thread 2

Thread 3

P
rio

rity

TU Dresden MOS: Threads

EXAMPLE
■ it’s really only one hardware thread being

multiplexed

29

Thread 1

Thread 2

Thread 3

P
rio

rity

Kernel

TU Dresden MOS: Threads

NOVA

38

TU Dresden MOS: Threads

INTRODUCTION

39

■ NOVA is a research microhypervisor
currently developed by Udo Steinberg

■ explore technologies for a small and
robust platform that hosts:

■ legacy operating systems

■ native NOVA applications

■ designed for virtualization and manycore

TU Dresden MOS: Threads

KERNEL STYLES

40

Process!Style Interrupt!Style

■ one kernel stack per thread ■ one kernel stack per CPU

■ context switch: switch to
kernel stack of target
thread

■ context switch: save kernel
state of current thread,
discard stack, restore state
of target thread

■ target thread resumes at
last context switch point

■ target thread resumes with
empty kernel stack in
continuation function

■ kernel state retained on
stack at switch time

■ kernel state must be
explicitly serialized

■ can switch anytime ■ lower thread overhead

Fiasco, Linux NOVA, (xnu)

TU Dresden MOS: Threads

RECAP

41

■ repeated basic microkernel concepts
■ tasks, threads, IPC

■ closer look on threads
■ TCB, kernel entry

■ scheduling
■ time quanta, priorities, preemption

■ synchronization
■ atomic ops, serializer thread, semaphore

■ next up: memory management

