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m kernel;

® provides system foundation

= ysually runs in privileged CPU mode

. Mmicrokernel:

m kernel provides mechanisms, no policies

= most functionality iImplemented in user
mode, unless dictated otherwise by
B Security

® performance
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Communication IPC, IRQ
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Platform Virtual Machine
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provides an exclusive instance of a full
system platform

may be a synthetic platform (bytecode)
full software implementations

nardware-assisted implementations in the
cernel (hypervisor)

see Vvirtualization lecture on Nov 30t
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B |nter-process communication

m petween threads

= twoO-way agreement, synchronous
= memory mapping with flexpages

B see communication lecture on Nov 2nd
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= (virtual) address space
= ynit of memory management
m provides spatial isolation

B coOmmon mMemory content can be shared

m shared libraries

" kernel

B see memory lecture next week
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KERNEL AS

User Address Space Kernel Address Space
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Qs SHARED KERNEL

so|gelabed
So|ge1abed

Task 1 Physical RAM Task 2
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B User

"~ shared system 1 privileged

more code

Monolith Exokernel Microkernel Software
|lsolation
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m gbstraction of code execution C:I’)U

= ynit of scheduling RSP
egs

= provides temporal Isolation

m typically requires a stack

m thread state:

® nstruction pointer

m stack pointer

= CPU registers, flags
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= storage for function-local data

m [ocal variables

m return address
Stack Frame 1

m one stack frame per function Stack Frame 2

®m grows and shrinks Stack Frame 3
dynamically v

= grows from high to low
addresses
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® Mmaps user-level threads to kernel-level
threads

m often a 1:1 mapping

= threads can be implemented in userland
m 3ssigns threads to hardware
= one kernel-level thread per logical CPU

= with hyper-threading and multicore, we
have more than one hardware thread now
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st KERNEL ENTRY

m thread can enter
kernel;

= voluntarily

m system call

m forced

= nterrupt

B cxception
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Qe KERNEL ENTRY

= [P and SP point
INnto kernel

m yser CPU state
stored In TCB

m old |P and SP

B registers

= flags
m FPU state
n MMX, SSE
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® thread control block
m kernel object, one per thread

m stores thread's userland state while 1t Is
not running

m untrusted parts can be stored In user
space

= separation into KTCB (kernel TCB) and
UTCB (user TCB)

s UTCB also holds system call parameters
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m once the kernel has provided Its services,
It returns back to userland

= py restoring the saved user |P and SP

" the same thread or a different thread

= the old thread may be blocking now

® \Walting for some resource

" retu
INVO

‘ning to a d

ve switchir

TU Dresden

ifferent thread might

g address spaces
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SCHEDULING
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" SC
th

neduling describes t

ne decl

‘ead torunona CPU atag

= \/\Vhen do we schedule?

m current thread blocks or yields

= {ime gquantum expired

= How do we schedule?
= RR, FIFO, RMS, EDF

" pased on thread priorities
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m scheduling decisions are policies

" should not be In a microkernel

= | 4 used to have faclilities to implement
scheduling In user lanad

® cach thread has an assoclated preempter
= kernel sends an |IPC when thread blocks
m preempter tells kernel where to switch to

= no efficient iImplementation yet

m scheduling Is the only in-kernel policy In L4
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a thread's time quantum defines the time
it owns the CPU before i1t Is preempted

preemption Is t
deactivating a t

h

ne process of (involuntarily)

read In favor of another

flavors of time quanta

® time slices for round robin scheduling

m execution time budgets for real-time

time quanta get replenished

TU Dresden
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SC

neduling In L4 i1s based on thread

olf

orities

time-slice-based round robin within the
same priority level

ke
pa

‘nel manages priority and timeslice as
't of the thread state

see scheduling lecture on Nov 9t
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= thread 1 is a high priority driver thread,
walting for an interrupt (blocking)

= thread 2 and 3 are ready with equal
priority

Thread 2 [ |
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m 1 hardware thread
m kernel fills time slices of threads 2 and 3

m scheduler selects 2 to run

Thread 1

Thread 1
Thread 3

I

Thread 3
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® device Interrupt arrives

m thread 2 1s forced into the kernel, where It
unblocks thread 1 and fills its time slice

m switch to thread 1 preempts thread 2

—
Thread 2 [
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= thread 1 blocks again (interrupt handled,
walting for next)

m thread 2 has time left

—
Thread 2 [
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® thread 2's time slice has expired

m scheduler selects the next thread on the
same priority level (round robin)

—
Thread 2 [T I
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= |t's really only one hardware thread being
multiplexed
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NOVA
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= NOVA Is a research microhypervisor
currently developed by Udo Steinberg

= explore technologies for a small and
robust platform that hosts:

m |egacy operating systems

= native NOVA applications

= designed for virtualization and manycore
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izt KERNEL STYLES

Process-Style Interrupt-Style

®  one kernel stack per thread ® one kernel stack per CPU

B context switch: save kernel
state of current thread,
discard stack, restore state
of target thread

B context switch: switch to
kernel stack of target
thread

®  target thread resumes with
empty kernel stack in
continuation function

®  target thread resumes at
last context switch point

B kernel state retained on B kernel state must be
stack at switch time explicitly serialized

B can switch anytime " |ower thread overhead

NOVA, (xnu
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= repeated basic microkernel concepts
m tasks, threads, IPC

m closer look on threads
m [CB, kernel entry
® scheduling

B fime guanta, priorities, preemption

3 . orializor |, I
B next up: memory management
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