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MICROKERNEL
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■ kernel:

■ provides system foundation

■ usually runs in privileged CPU mode

■ microkernel:

■ kernel provides mechanisms, no policies

■ most functionality implemented in user 
mode, unless dictated otherwise by

■ security

■ performance
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ABSTRACTIONS
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VIRTUAL MACHINE
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■ provides an exclusive instance of a full 
system platform

■ may be a synthetic platform (bytecode)

■ full software implementations

■ hardware!assisted implementations in the 
kernel (hypervisor)

■ see virtualization lecture on Nov 30th
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IPC

■ inter!process communication

■ between threads

■ two!way agreement, synchronous

■ memory mapping with flexpages

■ see communication lecture on Nov 2nd
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TASK
■ (virtual) address space

■ unit of memory management

■ provides spatial isolation

■ common memory content can be shared

■ shared libraries

■ kernel

■ see memory lecture next week
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KERNEL AS
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User Kernel

User Address Space Kernel Address Space
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SHARED KERNEL
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ALTERNATIVES
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user shared system privileged

Monolith Exokernel Microkernel Software
Isolation
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11



TU Dresden MOS: Threads

BASICS
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■ abstraction of code execution

■ unit of scheduling

■ provides temporal isolation

■ typically requires a stack

■ thread state:

■ instruction pointer

■ stack pointer

■ CPU registers, flags
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STACK
■ storage for function!local data

■ local variables

■ return address

■ one stack frame per function

■ grows and shrinks 
dynamically

■ grows from high to low 
addresses
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Stack Frame 1

Stack Frame 2

Stack Frame 3
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KERNEL’S VIEW
■ maps user!level threads to kernel!level 

threads

■ often a 1:1 mapping

■ threads can be implemented in userland

■ assigns threads to hardware

■ one kernel!level thread per logical CPU

■ with hyper!threading and multicore, we 
have more than one hardware thread now
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KERNEL ENTRY
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■ thread can enter 
kernel:

■ voluntarily

■ system call

■ forced

■ interrupt

■ exception

!
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KERNEL ENTRY
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■ IP and SP point 
into kernel

■ user CPU state 
stored in TCB

■ old IP and SP

■ registers

■ flags

■ FPU state

■ MMX, SSE
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TCB
■ thread control block

■ kernel object, one per thread

■ stores thread’s userland state while it is 
not running

■ untrusted parts can be stored in user 
space

■ separation into KTCB (kernel TCB) and 
UTCB (user TCB)

■ UTCB also holds system call parameters
17
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KERNEL EXIT
■ once the kernel has provided its services, 

it returns back to userland

■ by restoring the saved user IP and SP

■ the same thread or a different thread

■ the old thread may be blocking now

■ waiting for some resource

■ returning to a different thread might 
involve switching address spaces
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SCHEDULING
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BASICS
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■ scheduling describes the decision, which 
thread to run on a CPU at a given time

■ When do we schedule?

■ current thread blocks or yields

■ time quantum expired

■ How do we schedule?

■ RR, FIFO, RMS, EDF

■ based on thread priorities
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POLICY
■ scheduling decisions are policies

■ should not be in a microkernel

■ L4 used to have facilities to implement 
scheduling in user land
■ each thread has an associated preempter

■ kernel sends an IPC when thread blocks

■ preempter tells kernel where to switch to

■ no efficient implementation yet

■ scheduling is the only in!kernel policy in L4
21
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QUANTA
■ a thread’s time quantum defines the time 

it owns the CPU before it is preempted

■ preemption is the process of (involuntarily) 
deactivating a thread in favor of another

■ flavors of time quanta

■ time slices for round robin scheduling

■ execution time budgets for real!time

■ time quanta get replenished
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L4

■ scheduling in L4 is based on thread 
priorities

■ time!slice!based round robin within the 
same priority level

■ kernel manages priority and timeslice as 
part of the thread state

■ see scheduling lecture on Nov 9th
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EXAMPLE
■ thread 1 is a high priority driver thread, 

waiting for an interrupt (blocking)

■ thread 2 and 3 are ready with equal 
priority
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EXAMPLE
■ 1 hardware thread

■ kernel fills time slices of threads 2 and 3

■ scheduler selects 2 to run
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EXAMPLE
■ device interrupt arrives

■ thread 2 is forced into the kernel, where it 
unblocks thread 1 and fills its time slice

■ switch to thread 1 preempts thread 2
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EXAMPLE
■ thread 1 blocks again (interrupt handled, 

waiting for next)

■ thread 2 has time left
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EXAMPLE
■ thread 2’s time slice has expired

■ scheduler selects the next thread on the 
same priority level (round robin)
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EXAMPLE
■ it’s really only one hardware thread being 

multiplexed
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NOVA

38



TU Dresden MOS: Threads

INTRODUCTION
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■ NOVA is a research microhypervisor 
currently developed by Udo Steinberg

■ explore technologies for a small and 
robust platform that hosts:

■ legacy operating systems

■ native NOVA applications

■ designed for virtualization and manycore
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KERNEL STYLES
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Process!Style Interrupt!Style

■ one kernel stack per thread ■ one kernel stack per CPU

■ context switch: switch to 
kernel stack of target 
thread

■ context switch: save kernel 
state of current thread, 
discard stack, restore state 
of target thread

■ target thread resumes at 
last context switch point

■ target thread resumes with 
empty kernel stack in 
continuation function

■ kernel state retained on 
stack at switch time

■ kernel state must be 
explicitly serialized

■ can switch anytime ■ lower thread overhead

Fiasco, Linux NOVA, (xnu)
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RECAP
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■ repeated basic microkernel concepts
■ tasks, threads, IPC

■ closer look on threads
■ TCB, kernel entry

■ scheduling
■ time quanta, priorities, preemption

■ synchronization
■ atomic ops, serializer thread, semaphore

■ next up: memory management


