
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Inter-Process Communication

Dresden, 2010-11-02

Björn Döbel

Communication Slide 2 / 482010-11-02

So far...

• Microkernels
• Basic resources in an operating system

– Tasks and Threads
• Execution contexts
• Spatial isolation through virtual memory
• Scheduling

– Memory
• Hierarchical memory management in user

space
• L4: dataspaces, region management

Communication Slide 3 / 482010-11-02

Today

• Inter-Process Communication (IPC)
– Purpose
– Implementation
– How to find a service?
– Tool/Language support
– Security – Who speaks to whom?
– Shared memory

Communication Slide 4 / 482010-11-02

Why do we need to Communicate?

• IPC is a fundamental mechanism in a µ-
kernel-based system:
– Exchange data
– Synchronization
– Sleep, timeout
– Hardware / software interrupts
– Grant access to resources (memory, I/O ports,

capabilities)
– Exceptions

• Liedtke: “IPC performance is the master.”

Communication Slide 5 / 482010-11-02

Exploring the Design Space

• Asynchronous IPC (e.g., Mach)
– “Fire and forget”
– In-kernel message buffering
– Two problems:

• Data copied twice
• DoS attack on kernel memory (never receive

data) – can use quotas, though

• Synchronous IPC (e.g., L4)
– IPC partner blocks until other one gets ready
– Direct copy between sender and receiver
– E.g., Remote Procedure Call (RPC)

Communication Slide 6 / 482010-11-02

L4 IPC - Basics

• Basic data types:
– Bulk data
– Memory references
– Resource mappings (flexpages)

• Types
– Send
– Closed wait
– Open wait
– Call
– Reply & wait

Communication Slide 7 / 482010-11-02

L4 IPC – Advanced Features

• Timeouts
– 0 (non-blocking IPC)
– NEVER or specific value – block until partner

gets ready or timeout occurs
– sleep() is implemented as IPC to NIL (non-

existing) thread with timeout

• Exceptions
– Certain conditions need external interaction

• Page faults
• L4Linux system calls
• Virtualization faults (-> lectures on

virtualization)

Communication Slide 8 / 482010-11-02

L4 IPC Flavors

• Why is there no broadcast?

Basics Special cases for
client/server IPC

S R send

S R
receive from
(closed wait)

R
receive any
(open wait)?

cl
ie

n
t

ser ve r

• call := send + recv
from

• reply and wait :=
send + recv any

?

Communication Slide 9 / 482010-11-02

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Communication Slide 10 / 482010-11-02

IPC Building Blocks – IPC Gate

• Referenced through a capability (local name)
• Creation:

– Create using factory object
– Bind to a thread (receiver)
– Add a label

• Receiving:
– Receiver calls open wait
– Waits for message on any of its gates
– After arrival, origin gate identified by label

• Replying
– Receiver doesn't know sender.
– Kernel provides implicit reply capability (per-thread)

• Valid until reply sent or next wait started.

Communication Slide 11 / 482010-11-02

IPC Building Blocks – UTCB

• User-level Thread Control Block
• Set of “virtual” registers
• Message Registers

– System call parameters
– IPC: direct copy to receiver

• Buffer registers
– Receive flexpage descriptors

• Thread Control Registers
– Thread-private data
– Preserved, not copied

Message
Registers

Buffer
Registers

Thread Control
Registers

Communication Slide 12 / 482010-11-02

IPC Building Blocks – Message Tag

• Protocol:
– User-defined type of communication
– Pre-defined system protocols (Page fault, IRQ, …)

• Flags
– Special-purpose communication flags

• Items
– Number of indirect items to copy

• Words
– Number of direct items to copy

Protocol
Flags Items Words

31

15

16

12 6 0

Communication Slide 13 / 482010-11-02

Direct vs. indirect copy

Sender AS

Receiver AS

Sender UTCB Receiver UTCBdirect

Communication Slide 14 / 482010-11-02

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Communication Slide 15 / 482010-11-02

Client-Server RPC Broken down

Client

Marshall data
Assign Opcode
IPC call

Unmarshall exception or
reply

Server

IPC wait
Unmarshall Opcode
Unmarshall Data
Execute function
Marshall return value or

error
IPC reply
Goto begin

Communication Slide 16 / 482010-11-02

Writing IPC code Manually

/* Arguments: 1 integer parameter, 1 char array with size */
int FOO_OP1_call(l4_cap_idx_t dest, int arg1, char *arg2, unsigned size) {
 int idx = 0; // index into message registers

 // opcode and first arg go into first 2 registers
 l4_utcb_mr()->mr[idx++] = OP1_opcode;
 l4_utcb_mr()->mr[idx++] = arg1;

 // tricky: memcpy buffer into registers, adapt idx according
 // to size (XXX NO BOUNDS CHECK!!!)
 memcpy(&l4_utcb_mr()->mr[idx], arg2, size);
 idx += round_up(size / sizeof(int));

 // create message tag (prototype, <idx> words, no bufs, no flags)
 l4_msgtag_t tag = l4_msg_tag(PROTO_FOO, idx, 0, 0);
 return l4_ipc_call(dest, l4_utcb(), tag, TIMEOUT_NEVER);
}

Communication Slide 17 / 482010-11-02

Writing IPC code Manually

• Now repeat the above steps for
– N > 20 functions with

• varying parameters
• varying argument size
• complex use of send/receive flexpages
• correct error checking
• …

• Dull and error-prone!

Communication Slide 18 / 482010-11-02

How About Some Automation?

• Specify the interface of server in Interface Definition
Language (IDL)
– High-level language

interface FOO {
 int OP1(int arg1,
 [size_is(arg2_size)] char *arg2,
 unsigned arg2_size);
};

• Use IDL Compiler to generate IPC code
– Automatic assignment of RPC opcodes
– Generated marshalling/unmarshalling code
– Built-in error handling
– Client/server stub functions to fill in

• For L4: Dice – DROPS IDL Compiler

Communication Slide 19 / 482010-11-02

IDL vs. Manual code

• Use of high-level language and IDL compiler
makes things easier

• Additionally:
– Type checking: generated code stubs make

sure that client sends the correct amount of
data, having proper types

– IDL compiler can optimize code
– Use IDL interfaces to generate

• Documentation
• Unit tests
• ...

Communication Slide 20 / 482010-11-02

Using Fancy Language Features

• C++: streams

• Overload operator<< to access the UTCB
– Copying of basic data types and arrays into

message registers
– Dedicated objects representing flexpages

copied into buffer registers
– Automatic updates of positions in buffer

• Do the reverse steps for operator>>

Communication Slide 21 / 482010-11-02

Fancy Language Features - Client

int Foo::op1(l4_cap_idx_t dest, int arg1,
 char *arg2, unsigned arg2_size)
{
 int res = 1;
 L4_ipc_iostream i(l4_utcb());
 i << Foo::Op1
 << arg1
 << Buffer(arg2, arg2_size);
 int err = i.call(dest);
 if (!err)
 i >> result;
 return i;
}

Communication Slide 22 / 482010-11-02

Fancy Language Features - Server

int Foo::dispatch(L4_ipc_iostream& str, l4_msgtag_t tag) {
 // check for invalid invocations
 if (tag.label() != PROTO_FOO)
 return L4_ENOSYS;

 int opcode, arg1, retval;
 Buffer argbuf(MAX_BUF_SIZE);

 str >> opcode;
 switch(opcode) {
 case Foo::Op1:
 str >> arg1 >> argbuf;
 // do something clever, calculate retval
 str << retval;
 return L4_EOK;
 // .. more cases ..

 }}

Communication Slide 23 / 482010-11-02

Dynamic RPC Marshalling in Genode

• C++-based operating system framework
• Abstract from the underlying kernel

– Runs on Linux, L4.Fiasco, OKL4, L4::Pistacchio,
Nova, CodeZero

– IPC mechanisms differ (built-in mechanism in
L4.Fiasco vs. UDP sockets in Linux)

• Communication abstraction: IPC streams
– Use C++ templates to allow writing arbitrary

(primitively serializable!) objects to IPC
message buffer

– Special values (Genode::IPC_CALL) lead to
calls to underlying system's mechanism

Communication Slide 24 / 482010-11-02

DynRPC Summary

• C++ compiler can heavily optimize IPC path
• No automatic (un)marshalling

– Use whatever serialization mechanism you like
• No builtin type checking

– Developer needs to care about amount, type
and order of arguments

• Orthogonal to use of IDL compiler
– Generate IPC stream code from C++ class

definitions (Prototype: Liasis IDL compiler by
Stefan Kalkowski, 2008)

Communication Slide 25 / 482010-11-02

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Communication Slide 26 / 482010-11-02

IPC & Security

• Problem: How to control data flow?

• Crucial problem to solve when building real
systems

• Many proposed solutions

Communication Slide 27 / 482010-11-02

L4v2: Clans & Chiefs

• Tasks are owned by a chief.
• Clan := set of tasks with the same chief
• No IPC restrictions inside a clan
• Inter-clan IPC redirected through chiefs
• Performance issue

– One IPC transformed into three IPCs
– Decisions are not cached.

C
C

blue clan
green clan

Communication Slide 28 / 482010-11-02

L4/Fiasco: Reference Monitors

• New abstraction: communication is allowed if
certain flexpage has been mapped to sender

• Every task gets a reference monitor assigned.
• Communication:

– IPC right mapped?
• Yes: perform IPC
• No: raise exception at reference monitor

– Reference monitor can answer exception IPC
with a mapping and thereby allow IPC

• Fine-grained control
• No per-IPC overhead, only one exception in

the beginning

Communication Slide 29 / 482010-11-02

Mach: Ports

• Dedicated kernel objects
• Applications hold send/recv rights for ports
• Kernel checks whether task owns sufficient

rights before doing IPC

Mach kernel

client
(with
right)

server

server port

client
(w/o
right)

receive()

send()

se
nd
()

Communication Slide 30 / 482010-11-02

kernel

L4.Sec, L4Re: Dedicated Kernel Objects

• Idea:
– Invoke IPC on a kernel-object (IPC gate)

-> endpoint (capability)
– Kernel object mapped to a virtual address (local

name space)
• task only knows object's local name

 no information leaks through global names→

client AS server AS

endpoint
send()

receive()

Communication Slide 31 / 482010-11-02

Singularity

• Singularity
– Research microkernel by MS Research
– Written in a dialect of C# (Sing#)
– Topic of a paper reading exercise

• All applications run in privileged mode.
– No system call overhead – syscalls are real

function calls
• Enforce system safety at compile time.

– Isolation completely realized using means of
the used programming language -> Language-
Based Isolation

Communication Slide 32 / 482010-11-02

IPC & Language-Based Isolation

• Singularity IPC is always performed through
shared memory.

• Only certain objects can be transferred.
– Allocated from a special memory pool

-> shared heap

Task A Task B

Local
Heap

Local
HeapShared Heap

ow
ns

owns

owns

Communication Slide 33 / 482010-11-02

IPC & Language-Based Isolation (2)

• Only one task may own objects in SH.
• IPC := transfer ownership of an object in SH.
• IPC protocols are specified by state machines

– contracts
• Contracts are verified at compile-time

Task A Task B

Local
Heap

Local
HeapShared Heap

ow
ns

owns

owns

Communication Slide 34 / 482010-11-02

Break

• Mechanisms for controling information flow
– Special IPC control mechanism (traditional L4)
– Reuse other kernel mechanism (e.g., mapping

of memory pages) for IPC control (L4.Fiasco)
– Special kernel objects for IPC (Mach,

L4.Florence, L4Re)
– Static compile-time analysis of communication

behavior (Singularity)

Communication Slide 35 / 482010-11-02

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Communication Slide 36 / 482010-11-02

How to find a service

• Need to get some kind of identification of
service provider in order to perform IPC.
– L4Re: need to get a capability mapped into my

local capability space

• Idea borrowed from the internet: translate
human-readable-names into IDs.

• Need a name service provider.

Communication Slide 37 / 482010-11-02

Global name service

Name service

Service
Client

1. register(“service”)

2. query(“service”)

3... use

• Race condition: Evil app can register name before real one.
• Information leak: Query name service for names and gain

information about running services contradicts resource →
separation

 → Names are a resource and must be managed!

Communication Slide 38 / 482010-11-02

Hierarchical naming

Parent

Client1 Service2 Client2Service1

libNS
4. query(“service”)2. query(“service”)

ns/C1/ ns/C2/3. reply 5. reply

n
s
/
S
1

n
s
/
S
2

1. register(“service)

Communication Slide 39 / 482010-11-02

Hierarchical Naming

• Race Condition
– Parent controls name space and program

startup
– Knows who is registering a service

• Information leak
– Parent only provides name space content to

each application

• Problem: configuration can be a mess.

Communication Slide 40 / 482010-11-02

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Communication Slide 41 / 482010-11-02

Asynchronous IPC & Shared Memory

• Some applications need high throuput for a
lot of data.
– Sharing memory between tasks can provide

better performance

• Many workloads need asynchronous
communication.
– Fiasco.OC: IRQ kernel object

Communication Slide 42 / 482010-11-02

Shared Memory

• Zero-copy communication
– Producer writes data in place
– Consumer reads data from the same physical

location
• Kernel seldom involved

– At setup time: establish memory mapping
(flexpage IPC + resolution of pagefaults)

– Synchronization only when necessary
• Ergo: Shared mem communication is fast (if

the scenario allows it)
– High throughput, large amount of data
– Example: streaming media applications

Communication Slide 43 / 482010-11-02

Producer Consumer

FIFO queuegenerate data (recv
from network,
keyboard events, ...)

process data

Example: Consumer-Producer Problem

• Shared buffer between consumer and
producer

• Wake up notifications using IPC
– If new data for consumer is ready
– If free space for producer is available

Communication Slide 44 / 482010-11-02

1st try: Consumer sets flag

• Consumer indicates “I am ready to receive.” using
a flag (in shared memory) and waits for IPC.

• Producer sends notification IPC with infinite
timeout.

• Evil consumer: sets flag, but doesn't wait
• Producer remains blocked forever -> DoS

Producer Consumer

blocked in IPC

Flag: Consumer
waits

continues with
program

Communication Slide 45 / 482010-11-02

2nd try: Notify with zero Timeout

• Consumer flags “I am ready.”
• Producer sends notification with timeout zero
• Consumer in bad luck: sets flag and gets

interrupted right before waiting for IPC
• Producer sends notification
• Consumer is blocked forever

sends IPC not yet waiting

Producer Consumer

Flag: Consumer
waits

Communication Slide 46 / 482010-11-02

The Problem: Atomicity

• Solution: set flag and enter wait state atomically
• (Delayed preemption)
• L4 IPC call is atomic

2. wakeup,
 timeout never

consumer in recv state1. IPC call

3. wakeup, tim
eout zero

Producer
Consumer

Synchronization Thread

Flag: Consumer
waits

Communication Slide 47 / 482010-11-02

Further Reading

• L4 kernel manual:
http://l4hq.org/docs/manuals/Ln-86-21.pdf

• Dice manual: http://os.inf.tu-dresden.de/dice/manual.pdf

• Genode Dynamic RPC Marshalling:
N. Feske: “A case study on the cost and benefit of dynamic
RPC marshalling for low-level system components”

• Singularity IPC:
Faehndrich, Aiken et al.: “Language support for fast and
reliable message-based communication in Singularity OS”

http://l4hq.org/docs/manuals/Ln-86-21.pdf
http://os.inf.tu-dresden.de/dice/manual.pdf

Communication Slide 48 / 482010-11-02

Coming soon

• So far: Basic Abstractions
– Tasks & Threads
– Memory
– IPC

• Next weeks: Getting larger – Building system
components
– Real-Time Systems (Nov 10)
– Device Drivers (Nov 17)

• Exercise today:
– Practical Exercise: Booting Fiasco, INF E042

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48

