
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Hardware and Device Drivers

Dresden, 2010-11-16

Björn Döbel

TU Dresden, 2010-11-16 Device Drivers Slide 2 / 51

Outline

• What's so different about device drivers?

• How to access hardware?

• L4 services for writing drivers

• Reusing legacy drivers

• Device virtualization

TU Dresden, 2010-11-16 Device Drivers Slide 3 / 51

Some statistics

• [Swift03]: Drivers cause 85% of Windows XP crashes.

• [Chou01]:
– Error rate in Linux drivers is 3x (maximum: 10x)

higher than for the rest of the kernel
– Bugs cluster (if you find one bug, you're more likely

to find another one pretty close)
– Life expectancy of a bug in the Linux kernel (~2.4):

1.8 years

• [Rhyzyk09]: Causes for driver bugs
– 23% programming error
– 38% mismatch regarding device specification
– 39% OS-driver-interface misconceptions

TU Dresden, 2010-11-16 Device Drivers Slide 4 / 51

Anecdote: Linux e1000 NVRAM bug

• Aug 8th 2008 Bug report: e1000 PCI-X network
cards rendered broken by Linux 2.6.27-rc
– overwritten NVRAM on card

• Oct 1st 2008 Intel releases quickfix
– map NVRAM somewhere else

• Oct 15th 2008 Reason found:
– dynamic ftrace framework tries to patch __init code,

but .init sections are unmapped after running init code
– NVRAM got mapped to same location
– Scary cmpxchg() behavior on I/O memory

• Nov 2nd 2008 dynamic ftrace reworked for Linux
2.6.28-rc3

TU Dresden, 2010-11-16 Device Drivers Slide 5 / 51

Idea: User-level Drivers

• Isolate components
– device drivers (disk, network, graphic, USB cruise

missiles, ...)
– stacks (TCP/IP, file systems, …)

• Separate address spaces each
– More robust components

• Problems
– Overhead

• HW multiplexing
• Context switches

– Need to handle I/O privileges

TU Dresden, 2010-11-16 Device Drivers Slide 6 / 51

Break

• Need special care for device drivers.

• Next: A closer look on how hardware works.

TU Dresden, 2010-11-16 Device Drivers Slide 7 / 51

System Layout

• Devices connected by buses (USB, PCI, PCIx)
• Host chipset (DMA logic, IRQ controller) connects

buses and CPU

CPU Chipset

Memory

System
Bus

Memory
Bus

PCI
Controller

Network Card

Sound Card

PCI Bridge

USB Host
Controller

PCI
Bus

USB
Bus

USB Coffee
Machine

PCI Wifi

PCI
Bus

PCI
Bus

TU Dresden, 2010-11-16 Device Drivers Slide 8 / 51

Real World Example

Intel 925x Chipset
(source: http://www.intel.com)

http://www.intel.com/

TU Dresden, 2010-11-16 Device Drivers Slide 9 / 51

Buses and Devices

• A long long time ago:
– device architecture hard-coded

• Problem: more and more devices
– need means of dynamic device discovery

• Probing
– try out every driver to see if it works

• Plug&Play:
– first try of dynamic system description
– device manufacturers provide unique IDs

• PCI: dedicated config space
• ACPI: system description without relying on

underlying bus/chipset

TU Dresden, 2010-11-16 Device Drivers Slide 10 / 51

Buses: PCI

• Peripheral Component Interconnect
• Hierarchy of buses, devices and functions
• Configuration via I/O ports

• Address + data register (0xcf8-0xcff)

Chipset

Device 1 Device 2
PCI-to-PCI

Bridge

Device 3 Device 4

Func 1

Func 2

TU Dresden, 2010-11-16 Device Drivers Slide 11 / 51

Buses: PCI (2)

• PCI configuration space

• 64 byte header
– Busmaster DMA
– Interrupt line
– I/O port regions
– I/O memory regions
– + 192 byte additional space

• must be provided by every device function

• must be managed to isolate device drivers

TU Dresden, 2010-11-16 Device Drivers Slide 12 / 51

Buses: USB

• Intel, 1996
• One bus to rule them all?

– Firewire has always been faster
• Tree of devices

– root = Host Controller (UHCI, OHCI, EHCI)
– Device drivers use HC to communicate with their

device via USB Request Blocks (URBs)
– USB is a serial bus

• HC serializes URBs
• Wide range of device classes (input, storage,

peripherals, ...)
– classes allow generic drivers

TU Dresden, 2010-11-16 Device Drivers Slide 13 / 51

Break

• Someone (BIOS) organizes physical hierarchy
of devices buses.→

• Devices need to interact with the rest of the
system
– Interrupts
– I/O ports
– Memory-mapped I/O registers

TU Dresden, 2010-11-16 Device Drivers Slide 14 / 51

Interrupts

• Signal device state change
• Programmable Interrupt Controller (PIC, APIC)

– map HW IRQs to CPU's IRQ lines
– prioritize interrupts

Chipset

CPU

System
Bus

Memory
Bus

PCI
Bus

IDE NET USB

INT
PIC

INT A
INT B
INT C

Memory

TU Dresden, 2010-11-16 Device Drivers Slide 15 / 51

Interrupts (2)

• Handling interrupts involves
– examine / manipulate device
– program PIC

• acknowledge/mask/unmask interrupts

Chipset

CPU

System
Bus

Memory
Bus

PCI
Bus

IDE NET USB

INT
PIC

INT A
INT B
INT C

Memory

TU Dresden, 2010-11-16 Device Drivers Slide 16 / 51

L4: Interrupt handling

• IRQ kernel object
– Represents arbitrary async notification
– Kernel maps hardware IRQs to IRQ objects

• Exactly one waiter per object
– call l4_irq_attach() before

– wait using l4_irq_receive()

• Multiple IRQs per waiter
– attach to multiple objects
– use l4_ipc_wait()

• IRQ sharing
– Many IRQ objects may be chain()ed to a master

IRQ object

TU Dresden, 2010-11-16 Device Drivers Slide 17 / 51

Disabling interrupts

• CLI – only with IO Privilege Level (IOPL) 3

• Should not be allowed for every user-level driver
– unstrusted drivers
– security risk

• Observation: drivers often don't need to disable
IRQs globally, but only access to their own IRQ
– Just don't receive from your IRQ

TU Dresden, 2010-11-16 Device Drivers Slide 18 / 51

I/O ports

• x86-specific feature
• I/O ports define own I/O address space

– Each device uses its own area within this address
space

• Special instruction to access I/O ports
– in / out: I/O read / write
– Example: read byte from serial port
mov $0x3f8, %edx
in (%dx), %al

• Need to restrict I/O port access
– Allow device drivers access to I/O ports used by its

device only

TU Dresden, 2010-11-16 Device Drivers Slide 19 / 51

I/O Bitmap

• Per task IO privilege level (IOPL)
• If IOPL > current PL, all

accesses are allowed
(kernel mode)

• Else: I/O bitmap is checked
• 1 bit per I/O port

– 65536 ports -> 8kB
• Controls port access

(0 == ok, 1 == GPF)
• L4: per-task I/O bitmap

– Switched during task switch
– Allows per-task grant/deny of

I/O port access

I/O Map Base AddressI/O Map Base Address

. . .
#0x0000

#0xffe0

#0xfff0

TSS

11 1111 11 1111 11 1111 11 1111 11 1111 11

11 1111 11 1111 11 1111 11 0011 11 0011 11

11 1111 11 1111 11 1111 11 1111 11 1111 11

TU Dresden, 2010-11-16 Device Drivers Slide 20 / 51

I/O Flexpages

• Reuse kernel's map/grant mechanism for mapping
I/O port rights -> I/O flexpages

• Kernel detects type of flexpage and acts
accordingly

• Task with all I/O ports mapped is raised to IOPL 3

1111 Base Port log2#Ports0000 0

Map/Grant

L4.Fiasco I/O flexpage format

TU Dresden, 2010-11-16 Device Drivers Slide 21 / 51

I/O Memory

• Devices often contain on-chip memory (NICs, graphcis
cards, ...)

• Instead of accessing through I/O ports, drivers can
map this memory into their address space just like
normal RAM
– no need for special instructions
– increased flexibility by using underlying virtual

memory management

CPU Chipset

Memoy

Device
Hardware

Software

Kernel
Fiasco Microkernel

Memory

Driver Memory

TU Dresden, 2010-11-16 Device Drivers Slide 22 / 51

I/O memory (2)

• Device memory looks just like phys. memory
• Chipset needs to

– map I/O memory to exclusive address ranges
– distinguish physical and I/O memory access

CPU Chipset

Memory

Device
Hardware

Software

Kernel
Fiasco Microkernel

Memory

Driver

TU Dresden, 2010-11-16 Device Drivers Slide 23 / 51

I/O memory in L4

• Like all memory, I/O memory is owned by sigma0
• Sigma0 implements protocol to request I/O memory

pages
• Abstraction: Dataspaces containing I/O memory

CPU Chipset

Memory

Hardware

Software

Kernel
Fiasco Microkernel

Driver 1

Device 1 Device 2

Driver 2

Sigma0

TU Dresden, 2010-11-16 Device Drivers Slide 24 / 51

Direct Memory Access (DMA)

• Bypass CPU by directly transferring data from
device to RAM
– improved bandwidth
– relieved CPU

• DMA controller either programmed by driver or by
device's DMA engine (Busmaster DMA)

CPU Chipset

Memory

Device
Controller

DMA
Engine

TU Dresden, 2010-11-16 Device Drivers Slide 25 / 51

Problems with DMA

• DMA mostly uses physical addresses.

• Drivers need to know these addresses.

• Buffers must not be paged out (pinned pages)
during DMA
– close interaction with memory management

• DMA with phys. addresses bypasses VM
management
– Drivers can overwrite any phys. Address

• DMA is a security risk.

TU Dresden, 2010-11-16 Device Drivers Slide 26 / 51

Idea: I/O MMU

• Like traditional MMU maps virtual to physical
addresses
– implemented in PCI bridge
– manages a page table
– I/O-TLB

• Drivers access buffers through virtual
addresses
– I/O MMU translates accesses
– restrict access to phys. memory by only

mapping certain DMA addresses into driver's
address space

TU Dresden, 2010-11-16 Device Drivers Slide 27 / 51

I/O MMUs

• Per-Bus IOMMU already in 64bit architectures

• Per-device IOMMU not available yet

Chipset

Device 1 Device 2

I/O-MMU

Device 3Memory

Chipset

Memory

Device 3

I/O-MMU

Device 2

I/O-MMU

Device 1

I/O-MMU

TU Dresden, 2010-11-16 Device Drivers Slide 28 / 51

I/O MMU Architecture

• I/O MMU managed by yet another resource
manager

• Before accessing I/O memory, drivers use
manager to establish a virt->phys mapping

CPU Chipset

Memory

Hardware

Software

I/O-MMU Device

Device
Manager

Dataspace
Manager

I/O-MMU
Manager

Driver

Client Application

TU Dresden, 2010-11-16 Device Drivers Slide 29 / 51

Summary: Driver support in L4

• Interrupts -> Kernel object + IPC
• I/O ports and memory -> flexpage mappings
• User-level resource manager -> L4IO

CPU Chipset

Memory

Devices
Hardware

Software

Kernel
Fiasco Microkernel

L4IO
- Device Resources
- PCI
- Virtual buses

Dataspace Manager
- Phys. Addresses
- Pinned Memory

Driver
lib_l4io lib_dm

Driver
lib_l4io lib_dm

Driver
lib_l4io lib_dm

TU Dresden, 2010-11-16 Device Drivers Slide 30 / 51

Untrusted Device Drivers

• How to enforce device access policies on
untrusted drivers?

• I/O manager needs to manage device resources
– Virtual buses

NIC Disk 1 Disk 2 Sound card

PCI bus

I/O server

Network
Driver

Disk
Driver

Sound
Driver

TU Dresden, 2010-11-16 Device Drivers Slide 31 / 51

Break

• Device drivers are hard.
• Hardware is complex.
• L4 hardware support
• Virtual buses for isolating device resources

• Next: Implementing device drivers on L4
without doing too much work

TU Dresden, 2010-11-16 Device Drivers Slide 32 / 51

Implementing Device Drivers

• Just like in any other OS:
– Specify a server interface
– Implement interface, use the access methods

provided by the runtime environment
• Highly optimized code possible
• Hard to maintain
• Implementation time-consuming
• Unavailable specifications
• Why reimplement drivers if there are already

versions available?
– Linux, BSD – Open Source
– Windows – Binary drivers

TU Dresden, 2010-11-16 Device Drivers Slide 33 / 51

Reusing legacy device drivers

• Exploit virtualization: Device Driver OS

Source: LeVasseur et. al.: "Unmodified Device Driver Reuse and Improved
System Dependability via Virtual Machines”, OSDI 2004

TU Dresden, 2010-11-16 Device Drivers Slide 34 / 51

Reusing Legacy Device Drivers

Linux

Windows
Driver
Code

Glue Code

• NDIS-Wrapper: Linux glue
library to run Windows WiFi
drivers on Linux

• Idea is simple: provide a
library mapping Windows API
to Linux

• Implementation is a problem.

TU Dresden, 2010-11-16 Device Drivers Slide 35 / 51

Reusing Legacy Device Drivers (2)

• Generalize the idea: provide a Linux
environment to run drivers on L4

 Device Driver Environment (DDE)→

TU Dresden, 2010-11-16 Device Drivers Slide 36 / 51

Emulating Linux: DDE/Linux

• Multiple L4 threads provide a Linux environment
– Workqueues
– SoftIRQs / Bottom Halves
– Timers
– Jiffies

• Emulate SMP-like system (each L4 thread
assumed to be one processor)

• Wrap Linux functionality
– kmalloc() L4 Slab allocator library→
– Linux spinlock pthread mutex→

• Handle in-kernel accesses (e.g., PCI config space)

TU Dresden, 2010-11-16 Device Drivers Slide 37 / 51

DDE Structure

CPU Chipset

Memory

Devices
Hardware

Software

Kernel
Fiasco Microkernel

L4IO Dataspace Manager

Emulation Library (dde_linux)

Linux Driver
Source Code

L4 Server Code

Client Application
Client Library

lib_l4io lib_dm

Work Queues

SoftIRQs

IRQs

Timer

TU Dresden, 2010-11-16 Device Drivers Slide 38 / 51

Multiple Donator OSes

TU Dresden, 2010-11-16 Device Drivers Slide 39 / 51

DDEKit – another abstraction

• Pull common abstractions
into dedicated library
– Threads
– Synchronization
– Memory
– IRQ handling
– I/O port access

 → DDE Construction Kit
 (DDEKit)

• Implement DDEs against the
DDEKit interface

TU Dresden, 2010-11-16 Device Drivers Slide 40 / 51

DDEKit (2)

• Implementation overhead for single DDEs
gets much smaller

• Performance overhead still reasonable
– e.g., no visible increase of network latency in

user-level ethernet driver
• L4-specific parts (sloccount):

– standalone DDE Linux 2.4: ~ 3.000 LoC
– DDEKit ~ 2.000 LoC
– DDEKit-based DDE Linux 2.6: ~ 1.000 LoC
– Standalone Linux VM: > 500.000 LoC

• Highly customizable: implement DDE base
library and support libs (net, disk, sound, ...)

TU Dresden, 2010-11-16 Device Drivers Slide 41 / 51

DDEKit (3)

CPU Chipset

Memory

Devices
Hardware

Software

Kernel
Fiasco Microkernel

L4IO Dataspace Manager

Emulation Library (ddekit)

dde_linux

Linux Driver
Source Code

L4 Server Code

Client Application
Client Library

Linux-specifics
(SoftIRQs,
KThreads)

TU Dresden, 2010-11-16 Device Drivers Slide 42 / 51

DDEKit: portability

• Reversing the DDE idea: port DDEKit to host
environment reuse whole Linux support lib→

• Has been done for:
– L4Env, L4Re
– Genode OS Framework
– Minix 3
– GNU/Hurd

• Currently: Linux/UIO on the way

TU Dresden, 2010-11-16 Device Drivers Slide 43 / 51

DDE(Kit): Use Cases

• DDELinux2.4
– IDE Disk Driver
– Virtual Ethernet Interface
– USB Webcam
– TCP/IP Network Stack
– OSS sound server

• DDELinux 2.6
– Virtual Ethernet Interface
– ATA disk driver
– ALSA sound server
– USB host controller, web cams, disks, ...

• DDEFreeBSD
– ATA disk driver

TU Dresden, 2010-11-16 Device Drivers Slide 44 / 51

Break

• Device driver support library
– Reuse donator drivers
– Split into generic and donator-specific parts
– Portable on both directions

• Next: Securing device drivers

TU Dresden, 2010-11-16 Device Drivers Slide 45 / 51

Securing Drivers: Nooks

• Failure model: transient failure of driver

• Run drivers in lightweight protection domain
– still ring0
– switch page table before executing driver code

(make kernel data read-only)

• Need to wrap all driver-kernel function calls
– Track and update duplicate objects

• 22,000 LoC, performance near native

TU Dresden, 2010-11-16 Device Drivers Slide 46 / 51

Nooks Shadow Drivers

TU Dresden, 2010-11-16 Device Drivers Slide 47 / 51

Securing Drivers: Dingo

• Observations:
– drivers fail to obey device spec
– developers misunderstand

OS interface
– multithreading is bad

• Tingu: state-chart-based
specification of device
protocols
– Event-based

state transition
– Timeouts
– Variables

TU Dresden, 2010-11-16 Device Drivers Slide 48 / 51

Dingo (2)

• Dingo: device driver architecture

• Single-threaded
– Builtin atomicity
– Not a performance problem for most drivers

• Event-based
– Developers implement a Tingu specification

• Can use Tingu specs to generate runtime driver
monitors

TU Dresden, 2010-11-16 Device Drivers Slide 49 / 51

Various Cool Things ™

• DevIL (OSDI 2000): generate driver from an IDL spec
of the device interface
“...our vision is that Devil specifications either should be
written by device vendors or should be widely available
aspublic domain libraries...”

• Termite (SOSP 2009): use device driver spec (VHDL)
to generate
– Lets vendors generate drivers on their own

• RevNIC (EuroSys 2010):
– Obtain I/O trace from existing driver (Windows)
– Analyse driver binary
– Generate Linux driver

TU Dresden, 2010-11-16 Device Drivers Slide 50 / 51

Literature

 Reading on device drivers, problems, and solutions
– Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, Dawson R.

Engler: “An Empirical Study of Operating System Errors”, SOSP 2001
– Michael M. Swift, Brian N. Bershad, Henry M. Levy: “Improving the

Reliability of Commodity Operating Systems”, SOSP 2003
– Michael M. Swift, Brian N. Bershad, Henry M. Levy, Muthukaruppan

Annamalai : “Recovering Device Drivers”, OSDI 2004
– Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz:

“Unmodified Device Driver Reuse and Improved System Dependability via
Virtual Machines”, OSDI 2004

– Leonid Ryzhyk, Peter Chubb, Ihor Kuz and Gernot Heiser: “Dingo: Taming
device drivers”, EuroSys 2009

– Leonid Ryzhyk et al.: “Automatic Device Driver Synthesis with Termite”,
SOSP 2009

– V. Chipounov, G. Candea: “Reverse Engineering of Binary Device Drivers
with RevNIC”, EuroSys 2010

• DDE-related
– http://os.inf.tu-dresden.de/papers_ps/helmuth-diplom.pdf
– http://os.inf.tu-dresden.de/papers_ps/friebel-diplom.pdf
– http://os.inf.tu-dresden.de/papers_ps/vogt-beleg.pdf

http://os.inf.tu-dresden.de/papers_ps/helmuth-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/friebel-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/vogt-beleg.pdf

TU Dresden, 2010-11-16 Device Drivers Slide 51 / 51

Coming soon

• Today:
– Paper Reading Exercise:

Singularity – Rethinking the Software Stack

• NO LECTURE OR EXERCISE NEXT WEEK

• Nov 30th:
– Lecture: Resource Management
– Practical exercise

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51

