
Department of Computer Science Institute of Systems Architecture, Operating Systems Group

VIRTUALIZATION

Julian Stecklina (jsteckli@os.inf.tu-dresden.de)

Dresden, 2010/11/30



00 Goals

Give you an overview about:

• virtualization and virtual machines in general,
• hardware virtualization on x86,
• our research regarding virtualization.

We will not discuss:

• lots and lots of details,
• language runtimes,
• how to use XEN/KVM/. . .

TU Dresden, 2010/11/30 Virtualization slide 3 of 72



00 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA

TU Dresden, 2010/11/30 Virtualization slide 4 of 72



01 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA

TU Dresden, 2010/11/30 Virtualization slide 5 of 72



01 The Hype

TU Dresden, 2010/11/30 Virtualization slide 6 of 72



01 Virtualization

virtual existing in essence or effect though not in actual fact

http://wordnetweb.princeton.edu

“All problems in computer science can be solved by another level of
indirection.”

Butler Lampson, 1972

TU Dresden, 2010/11/30 Virtualization slide 7 of 72

http://wordnetweb.princeton.edu


01 Emulation

Suppose you develop for a system G (guest, e.g. an ARM-base phone) on your
workstation H (host, e.g., an x86 PC). An emulator for V running on H precisely
emulates G’s

• CPU,
• memory subsystem, and
• I/O devices.

Ideally, programs running on the emulated G exhibit the same behaviour as when
running on a real G (except for timing).

TU Dresden, 2010/11/30 Virtualization slide 8 of 72



01 Emulation (cont’d)

The emulator

• simulates every instruction in software as its executed,
• prevents direct access to H’s resources from code running inside G,
• maps G’s devices onto H’s devices,
• may run multiple times on H.

TU Dresden, 2010/11/30 Virtualization slide 9 of 72



01 Mapping G to H

Both systems may have considerably different

• instructions sets and
• hardware devices

making emulation slow and complex (depending on emulation fidelity).

TU Dresden, 2010/11/30 Virtualization slide 10 of 72





01 G = H

If host and virtualized hardware architecture is (about) the same,

• interpreting every executed instruction seems not necessary,
• near-native execution speed should be possible.

This is (easily) possible, if the architecture is virtualizable.

TU Dresden, 2010/11/30 Virtualization slide 12 of 72



01 From Emulation to Virtualization

A virtual machine is defined to be an

“efficient, isolated duplicate of a real machine.”

(Popek, Goldberg 1974)

The software that provides this illusion is the Virtual Machine Monitor (VMM,
mostly used synonymous with Hypervisor).

TU Dresden, 2010/11/30 Virtualization slide 13 of 72



01 Virtualizable?

. . . is a property of the Instruction Set Architecture (ISA). Instructions are divided into
two classes:

A sensitive instruction
• changes the configuration

or mode of the processor,
or

• depends in its behavior on
the processor’s state.

A privileged instruction
• causes a trap

(unconditional control
transfer to privileged
mode)

in user mode.

TU Dresden, 2010/11/30 Virtualization slide 14 of 72



01 Trap & Emulate

If all sensitive instructions are privileged,
a VMM can be written.

• execute guest in unprivileged mode,
• emulate all instructions that cause traps.

TU Dresden, 2010/11/30 Virtualization slide 15 of 72



01 Trap & Emulate (cont’d)

Will be topic of seminar on December 14th:

Formal Requirements for
Virtualizable Third-Generation Architectures

http://portal.acm.org/citation.cfm?id=361073

TU Dresden, 2010/11/30 Virtualization slide 16 of 72

http://portal.acm.org/citation.cfm?id=361073


01 Where to put the VMM?

TU Dresden, 2010/11/30 Virtualization slide 17 of 72







01 Type 1 vs. Type 2

Type 1 are implemented on the bare metal:

• no OS overhead
• complete control over host resources
• high maintainance effort

Popular examples are

• Xen,
• VMware ESXi.

TU Dresden, 2010/11/30 Virtualization slide 20 of 72



01 Type 1 vs. Type 2 (cont’d)

Type 2 run as normal process on top of an OS:

• doesn’t reinvent the wheel
• performance may suffer

Popular examples are

• KVM,
• VMware Server/Workstation,
• VirtualBox,
• . . .

TU Dresden, 2010/11/30 Virtualization slide 21 of 72



01 Paravirtualization

Why all the trouble? Just “port” a guest operating system to the interface of your
choice.
Paravirtualization can

• provide better performance,
• simplify VMM

but at a maintainance cost and you need the source code!

Compromise: Use paravirtualized drivers for I/O performance (KVM virtio, VMware).

Examples are MkLinux, L4Linux, Xen, . . .

TU Dresden, 2010/11/30 Virtualization slide 22 of 72



01 Reimplementation of the OS Interface

E.g. wine reimplements (virtualizes) the Windows ABI.

• Run unmodified Windows binaries.
• Windows API calls are mapped to Linux/FreeBSD/Solaris/MacOS X

equivalents.
• Huge moving target!

Can also be used to recompile Windows applications as native applications linking
to winelib ⇒ API “virtualization”

TU Dresden, 2010/11/30 Virtualization slide 23 of 72



01 Recap

• Virtualization is an overloaded term. Classification criteria:
– Target

real hardware, OS API, OS ABI, . . .
– Emulation vs. Virtualization

Interpret some or all instructions?
– Guest Modifications?

Paravirtualization

TU Dresden, 2010/11/30 Virtualization slide 24 of 72



01 Recap (cont’d)

• A (Popek/Goldberg) Virtual Machine is an
– efficient,
– isolated
– duplicate of a real machine.

• The software that implements the VM is the Virtual Machine Monitor
(hypervisor).

• Type 1 hypervisors run on the bare metal.
• Type 2 hypervisors run as applications on a conventional OS.

TU Dresden, 2010/11/30 Virtualization slide 25 of 72



02 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA

TU Dresden, 2010/11/30 Virtualization slide 26 of 72



“Virtual machines have finally arrived. Dismissed for a number of years
as merely academic curiosities, they are now seen as cost-effective
techniques for organizing computer systems resources to provide
extraordinary system flexibility and support for certain unique
applications.”

Survey of Virtual Machine Research
Robert P. Goldberg

1974

TU Dresden, 2010/11/30 Virtualization slide 27 of 72



02 Early History: IBM

TU Dresden, 2010/11/30 Virtualization slide 28 of 72



02 Early History: IBM

Virtualization was pioneered with IBM’s CP/CMS in ˜1967 running on System/360
and System/370:

CP Control Program
provided System/360 virtual machines.

CMS Cambridge Monitor System (later Conversational Monitor System)
single-user OS.

At the time more flexible and efficient than time-sharing multi-user systems.

TU Dresden, 2010/11/30 Virtualization slide 29 of 72



02 Early History: IBM (cont’d)

CP encodes guest state in a hardware-defined format.

SIE Start Interpretive Execution (instruction)
runs the VM until a trap or interrupt occurs. CP resume control
and handles trap.

CP provides:

• memory protection between VMs,
• preemptive scheduling.

Gave rise to IBM’s VM line of operating systems.
First release: 1972
Latest release: z/VM 6.1 (2009)

TU Dresden, 2010/11/30 Virtualization slide 30 of 72



02 Virtualization is Great

• Consolidation
– improve server utilization

• Isolation
– isolate services for security reasons or
– because of incompatibility

• Reuse
– run legacy software

• Development

. . . but is confined to the mainframe world for a very long time.

TU Dresden, 2010/11/30 Virtualization slide 31 of 72



. . . fast forward to the late nineties . . .



03 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA

TU Dresden, 2010/11/30 Virtualization slide 33 of 72



03 Is x86 Virtualizable?

x86 has several virtualization holes that violate Popek&Goldberg requirement.

• Possibly to expensive to trap on every privileged instruction.
• popf (pop flags) silently ignores writes to the Interrupt Enable flag in user

mode. Should trap!
• More in the seminar.

TU Dresden, 2010/11/30 Virtualization slide 34 of 72



03 VMware Workstation: Binary Translation

First commercial virtualization solution for x86, introduced in ˜1999. Overcame
limitations of the x86 architecture:

• translate problematic instructions into appropriate calls to the VMM
• can avoid costly traps for privileged instructions

Provided decent performance but:

• requires complex runtime translation engine (self-modifying code. . . )

Other examples: KQemu, Virtual Box, Valgrind

TU Dresden, 2010/11/30 Virtualization slide 35 of 72



03 Hardware Support for Virtualization

Late Pentium 4 (2004) introduced hardware support for virtualization: Intel VT.
(AMD-V is conceptually very similar)

• root mode vs. non-root mode
– root mode runs hypervisor
– non-root mode runs guest

• situations that Intel VT cannot handle trap to root mode (VM Exit)
• special memory region (VMCS) holds guest state
• reduced software complexity

Supported by all major virtualization solutions today.

TU Dresden, 2010/11/30 Virtualization slide 36 of 72



03 Instruction Emulator

Intel VT and AMD-V still require an instruction emulator, e.g. for

• running 16-bit code (not in AMD-V, latest Intel VT),
– BIOS
– boot loaders

• handling MMIO (need to emulate instruction that caused a page fault)
– realized as non-present page in guest physical mode
– emulate offending instruction

• . . .

TU Dresden, 2010/11/30 Virtualization slide 37 of 72



03 MMU Virtualization

Early version of Intel VT do not completely virtualize the MMU. VMM has to handle
paging in guest.

Four different types of memory addresses:

HPA Host Physical Address

HVA Host Virtual Address

GPA Guest Physical Address

GVA Guest Virtual Address

TU Dresden, 2010/11/30 Virtualization slide 38 of 72







03 Drawbacks of Shadow Paging

Maintaining Shadow Page Tables causes significant overhead, because they need to
be updated/recreated on

• guest page table modification,
• guest address space switch.

TU Dresden, 2010/11/30 Virtualization slide 41 of 72



03 Shadow Paging

1. page fault in guest (GVA)

2. traps to VMM

3. parse guest page tables (GVA ⇒ GPA)

4. maybe inject page fault to guest (no mapping found, true pagefault)

5. translate to shadow page table entry (GPA ⇒ HVA ⇒ HPA)

6. create entry in shadow page table

7. resume guest

TU Dresden, 2010/11/30 Virtualization slide 42 of 72



03 Nested Paging

Introduced in the Intel Nehalem (EPT) and AMD Barcelona (Nested Paging)
microarchitectures, the CPU can handle

• guest and
• host page table

at the same time. Can reduce VM Exits by two orders of magnitude, but introduces

• measurable constant overhead (< 1%)

TU Dresden, 2010/11/30 Virtualization slide 43 of 72



03 Nested Paging (cont’d)

Event Nested Paging Shadow Paging
vTLB Fill 181,966,391
Guest Page Fault 13,987,802
CR Read/Write 3,000,321
vTLB Flush 2,328,044
INVLPG 537,270
Hardware Interrupts 174,558 239,142
Port I/O 610,589 723,274
Memory-Mapped I/O 76,285 75,151
HLT 3,738 4,027
Interrupt Window 2,171 3,371
Sum 867,341 202,864,793
Runtime (seconds) 470 645

(Linux Kernel Compile)
TU Dresden, 2010/11/30 Virtualization slide 44 of 72



04 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA

TU Dresden, 2010/11/30 Virtualization slide 45 of 72



04 L4Linux

. . . is a paravirtualized Linux first presented at SOSP’97 running on the original
L4 kernel.

• L4Linux predates the x86 virtualization hype
• L4Linux 2.2 supported MIPS and x86
• L4Linux 2.4 first version to run on L4Env
• L4Linux 2.6 uses Fiasco.OC’s paravirtualization features

The current status:

• Linux 2.6.36
• x86 and ARM support
• SMP

TU Dresden, 2010/11/30 Virtualization slide 46 of 72



� �

�����

�����	

�����

���	

�����


�����	

�����


�����	


�����
�������	���

��
�

������
����������
�
�����		�������
�����������
���������

��	�������
����

���	�����������	�

 �����!���
����!��
�
������	

"�#����"��#��

�����$��		������%���

&������������

&�������

�
'(�������(�
��(�"�#���

���	������� ���	������� ���	������� ���	�������

����

������



04 Porting Linux to L4

Regard L4 as new hardware platform. Port small architecture dependent part:

• system call interface
– kernel entry
– signal delivery
– copy from/to user space

• hardware access
– CPU state and features
– MMU
– interrupts
– memory-mapped and port I/O

TU Dresden, 2010/11/30 Virtualization slide 48 of 72



� �

�����

�����	

�����

���	

�����


�����	

�����


�����	


�����
�������	���

��
�

������
����������
�
�����		�������
�����������
���������

��	�������
����

���	�����������	�

 �����!���
����!��
�
������	

"�#����"��#��

�����$��		������%���

&������������

&�������

���	������� ���	������� ���	������� ���	�������

����

������ ������'�

������

�(�' ����	� ���

������ ������ ������ ������

����)



04 L4Linux Architecture

• L4 specific code is divided into:
– x86 and ARM specific code
– hardware generic code

• Linux kernel and Linux user processes run each with a single L4 task.
– L4Linux kernel task does not see a L4Linux process virtual memory

TU Dresden, 2010/11/30 Virtualization slide 50 of 72



� �

����������

����������

����������

����
	

����
����

������
	

����
����

������������

��������������

�����������
�	 !"#���!$

	���%�&%���
'%(��%�����

$	��"��)!

	���%�&%���
'%(��%�����

 *��&+������������

��������������

�����������

�%���#�
�%���������

�%���#�
�%���������

���������	
�	


���������	


�
��	



04 L4Linux Challenges

The L4Linux kernel “server” has to:
• access user process data,
• manage page tables of its processes,
• handle exceptions from processes, and
• schedule them.

L4Linux user processes have to:
• “enter” the L4Linux kernel (living in a different address space).

TU Dresden, 2010/11/30 Virtualization slide 52 of 72



04 Kernel Entry

Normal Linux syscall interface (int 80h) causes trap.

• L4Linux server receives exception IPC.

Heavyweight compared to native Linux system calls:

• two address space switches,
• two Fiasco kernel entries/exits

TU Dresden, 2010/11/30 Virtualization slide 53 of 72



04 Interrupts

L4Linux has a thread for each virtual interrupt.

• Interrupts are received as messages.
• Interrupt threads have higher priority than normal Linux threads (Linux

semantics).
• Interrupt threads force running user process (or idle thread) into L4Linux

server.
• Linux uses CLI/STI to disable interrupts, L4Linux uses a lock.

TU Dresden, 2010/11/30 Virtualization slide 54 of 72



04 vCPUs

Simplify interrupt/exception handling by introducing vCPUs (Fiasco.OC):

• have dedicated interrupt entry points,
– need to differentiate between interrupt and systemcall

• can be rebound to different tasks,
– simulates address space switches

• can mask interrupts
– emulates Interrupt Enable flag
– don’t need that lock anymore

TU Dresden, 2010/11/30 Virtualization slide 55 of 72



04 Not Covered in Detail

• access to user process’ memory
– walk page tables of user process

• device drivers
– DMA is problematic
– IOMMU

• scheduling
– only one user process active at any time

TU Dresden, 2010/11/30 Virtualization slide 56 of 72



04 Hybrid Applications

• Linux applications that are “L4 aware”
• Need special handling by L4Linux server

– processes with ongoing IPC are marked UNINTERRUPTIBLE in L4Linux
– IPC is not disturbed

TU Dresden, 2010/11/30 Virtualization slide 57 of 72



� �

��������	
����

������ �������
 ��� ����

�������

������

������

�������

������

��������



04 Multiple L4Linux Instances

Of course, you can run multiple L4Linux instances.

• isolate applications for e.g. security reasons,
• communication via network or IPC
• devices need to be multiplexed (will be covered in resource management

lecture)

TU Dresden, 2010/11/30 Virtualization slide 59 of 72



04 L4Linux as Toolbox

Reuse large parts of code from Linux:

• filesystems,
• network stack,
• device drivers.

Use a hybrid application to provide this service to “native” L4 applications.

TU Dresden, 2010/11/30 Virtualization slide 60 of 72



05 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA

TU Dresden, 2010/11/30 Virtualization slide 61 of 72



05 Security and Virtualization

Virtualizing several insecure operating systems on one host is safe and secure,
because

• they cannot interfere with each other, and
• they are confined to their virtual machine.

Is it? Does virtualization add security?

TU Dresden, 2010/11/30 Virtualization slide 62 of 72



05 Recap

Xen runs its instruction emulator
and virtual devices in Ring 0 in
Root Mode.

KVM runs its instruction
emulator and virtual devices
(mostly) as normal Linux
application in Ring 3 in Root
Mode.

. . . but both share code for instruction emulation and virtual devices.

TU Dresden, 2010/11/30 Virtualization slide 63 of 72



05 Secunia Advisory SA25073
http://secunia.com/advisories/25073/

• “The size of ethernet frames is not correctly checked against the MTU before
being copied into the registers of the NE2000 network driver. This can be
exploited to cause a heap-based buffer overflow.”

• “ An error within the handling of the aam instruction can result in a division by
zero.”

• . . .

TU Dresden, 2010/11/30 Virtualization slide 64 of 72

http://secunia.com/advisories/25073/


05 TCB of Virtual Machines

The Trusted Computing Base of a Virtual Machine is the amount of hardware and
software you have to trust to guarantee this VM’s security. (More in lecture on
Security)
For e.g. KVM this (conservatively) includes:

• the Linux kernel,
• Qemu.

TU Dresden, 2010/11/30 Virtualization slide 65 of 72





05 NOVA Architecture

Reduce complexity of hypervisor:

• hypervisor provides low-level protection domains
– address spaces
– virtual machines

• VM exits are relayed to VMM as IPC with selective guest state,
• one VMM per guest in (root mode) userspace,

– possibly specialized VMMs to reduce attack surface
– only one generic VMM implement so far

TU Dresden, 2010/11/30 Virtualization slide 67 of 72



05 NOVA OS Virtualization Architecture

TU Dresden, 2010/11/30 Virtualization slide 68 of 72



05 Example: Low Complexity VMM
Diplomarbeit by Steffen Liebergeld

Idea: Reduce TCB of VMM by using paravirtualization and hardware-assisted
virtualization.

• Implemented on Fiasco using AMD-V
• Small VMM: 3800 LOC
• 300 LOC changed in Linux
• No instruction emulator required

– no MMIO
– no 16-bit code

• Only simple paravirtualized device models required: 2600 LOC
– salvaged from L4Linux

TU Dresden, 2010/11/30 Virtualization slide 69 of 72



05 Recap: Examples

• L4Linux is the paravirtualized workhorse on L4:
– reuse Linux applications,
– reuse Linux components.

• NOVA provides faithful virtualization with small TCB for VMs.

TU Dresden, 2010/11/30 Virtualization slide 70 of 72



05 Next Weeks

Today’s seminar (IPC) is in

INF E042

Next week’s lecture will be about Resource Management.

Don’t forget to read until December 14th:

Formal Requirements for
Virtualizable Third-Generation Architectures

http://portal.acm.org/citation.cfm?id=361073

TU Dresden, 2010/11/30 Virtualization slide 71 of 72

http://portal.acm.org/citation.cfm?id=361073


05 References

https://www.cs.ucsb.edu/~ravenben/papers/coreos/Gol74.pdf
http://www.diku.dk/hjemmesider/ansatte/jacobg/thesis.pdf
http://os.inf.tu-dresden.de/papers_ps/steinberg_eurosys2010.pdf
http://os.inf.tu-dresden.de/pubs/sosp97/

TU Dresden, 2010/11/30 Virtualization slide 72 of 72

https://www.cs.ucsb.edu/~ravenben/papers/coreos/Gol74.pdf
http://www.diku.dk/hjemmesider/ansatte/jacobg/thesis.pdf
http://os.inf.tu-dresden.de/papers_ps/steinberg_eurosys2010.pdf
http://os.inf.tu-dresden.de/pubs/sosp97/

	What's Virtualization?
	Very Short History
	Virtualization on x86
	Example: L4Linux
	Example: NOVA

