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00 Goals

Give you an overview about:

• virtualization and virtual machines in general,
• hardware virtualization on x86,
• our research regarding virtualization.

We will not discuss:

• lots and lots of details,
• language runtimes,
• how to use XEN/KVM/. . .
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00 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA
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01 The Hype
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01 Virtualization

virtual existing in essence or effect though not in actual fact

http://wordnetweb.princeton.edu

“All problems in computer science can be solved by another level of
indirection.”

Butler Lampson, 1972
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01 Emulation

Suppose you develop for a system G (guest, e.g. an ARM-base phone) on your
workstation H (host, e.g., an x86 PC). An emulator for V running on H precisely
emulates G’s

• CPU,
• memory subsystem, and
• I/O devices.

Ideally, programs running on the emulated G exhibit the same behaviour as when
running on a real G (except for timing).
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01 Emulation (cont’d)

The emulator

• simulates every instruction in software as its executed,
• prevents direct access to H’s resources from code running inside G,
• maps G’s devices onto H’s devices,
• may run multiple times on H.
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01 Mapping G to H

Both systems may have considerably different

• instructions sets and
• hardware devices

making emulation slow and complex (depending on emulation fidelity).
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01 G = H

If host and virtualized hardware architecture is (about) the same,

• interpreting every executed instruction seems not necessary,
• near-native execution speed should be possible.

This is (easily) possible, if the architecture is virtualizable.
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01 From Emulation to Virtualization

A virtual machine is defined to be an

“efficient, isolated duplicate of a real machine.”

(Popek, Goldberg 1974)

The software that provides this illusion is the Virtual Machine Monitor (VMM,
mostly used synonymous with Hypervisor).
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01 Virtualizable?

. . . is a property of the Instruction Set Architecture (ISA). Instructions are divided into
two classes:

A sensitive instruction
• changes the configuration

or mode of the processor,
or

• depends in its behavior on
the processor’s state.

A privileged instruction
• causes a trap

(unconditional control
transfer to privileged
mode)

in user mode.
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01 Trap & Emulate

If all sensitive instructions are privileged,
a VMM can be written.

• execute guest in unprivileged mode,
• emulate all instructions that cause traps.
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01 Trap & Emulate (cont’d)

Will be topic of seminar on December 14th:

Formal Requirements for
Virtualizable Third-Generation Architectures

http://portal.acm.org/citation.cfm?id=361073
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01 Where to put the VMM?
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01 Type 1 vs. Type 2

Type 1 are implemented on the bare metal:

• no OS overhead
• complete control over host resources
• high maintainance effort

Popular examples are

• Xen,
• VMware ESXi.
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01 Type 1 vs. Type 2 (cont’d)

Type 2 run as normal process on top of an OS:

• doesn’t reinvent the wheel
• performance may suffer

Popular examples are

• KVM,
• VMware Server/Workstation,
• VirtualBox,
• . . .
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01 Paravirtualization

Why all the trouble? Just “port” a guest operating system to the interface of your
choice.
Paravirtualization can

• provide better performance,
• simplify VMM

but at a maintainance cost and you need the source code!

Compromise: Use paravirtualized drivers for I/O performance (KVM virtio, VMware).

Examples are MkLinux, L4Linux, Xen, . . .
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01 Reimplementation of the OS Interface

E.g. wine reimplements (virtualizes) the Windows ABI.

• Run unmodified Windows binaries.
• Windows API calls are mapped to Linux/FreeBSD/Solaris/MacOS X

equivalents.
• Huge moving target!

Can also be used to recompile Windows applications as native applications linking
to winelib ⇒ API “virtualization”
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01 Recap

• Virtualization is an overloaded term. Classification criteria:
– Target

real hardware, OS API, OS ABI, . . .
– Emulation vs. Virtualization

Interpret some or all instructions?
– Guest Modifications?

Paravirtualization
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01 Recap (cont’d)

• A (Popek/Goldberg) Virtual Machine is an
– efficient,
– isolated
– duplicate of a real machine.

• The software that implements the VM is the Virtual Machine Monitor
(hypervisor).

• Type 1 hypervisors run on the bare metal.
• Type 2 hypervisors run as applications on a conventional OS.
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02 Outline

What’s Virtualization?

Very Short History

Virtualization on x86

Example: L4Linux

Example: NOVA
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“Virtual machines have finally arrived. Dismissed for a number of years
as merely academic curiosities, they are now seen as cost-effective
techniques for organizing computer systems resources to provide
extraordinary system flexibility and support for certain unique
applications.”

Survey of Virtual Machine Research
Robert P. Goldberg

1974
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02 Early History: IBM
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02 Early History: IBM

Virtualization was pioneered with IBM’s CP/CMS in ˜1967 running on System/360
and System/370:

CP Control Program
provided System/360 virtual machines.

CMS Cambridge Monitor System (later Conversational Monitor System)
single-user OS.

At the time more flexible and efficient than time-sharing multi-user systems.
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02 Early History: IBM (cont’d)

CP encodes guest state in a hardware-defined format.

SIE Start Interpretive Execution (instruction)
runs the VM until a trap or interrupt occurs. CP resume control
and handles trap.

CP provides:

• memory protection between VMs,
• preemptive scheduling.

Gave rise to IBM’s VM line of operating systems.
First release: 1972
Latest release: z/VM 6.1 (2009)
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02 Virtualization is Great

• Consolidation
– improve server utilization

• Isolation
– isolate services for security reasons or
– because of incompatibility

• Reuse
– run legacy software

• Development

. . . but is confined to the mainframe world for a very long time.
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. . . fast forward to the late nineties . . .
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03 Is x86 Virtualizable?

x86 has several virtualization holes that violate Popek&Goldberg requirement.

• Possibly to expensive to trap on every privileged instruction.
• popf (pop flags) silently ignores writes to the Interrupt Enable flag in user

mode. Should trap!
• More in the seminar.
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03 VMware Workstation: Binary Translation

First commercial virtualization solution for x86, introduced in ˜1999. Overcame
limitations of the x86 architecture:

• translate problematic instructions into appropriate calls to the VMM
• can avoid costly traps for privileged instructions

Provided decent performance but:

• requires complex runtime translation engine (self-modifying code. . . )

Other examples: KQemu, Virtual Box, Valgrind
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03 Hardware Support for Virtualization

Late Pentium 4 (2004) introduced hardware support for virtualization: Intel VT.
(AMD-V is conceptually very similar)

• root mode vs. non-root mode
– root mode runs hypervisor
– non-root mode runs guest

• situations that Intel VT cannot handle trap to root mode (VM Exit)
• special memory region (VMCS) holds guest state
• reduced software complexity

Supported by all major virtualization solutions today.
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03 Instruction Emulator

Intel VT and AMD-V still require an instruction emulator, e.g. for

• running 16-bit code (not in AMD-V, latest Intel VT),
– BIOS
– boot loaders

• handling MMIO (need to emulate instruction that caused a page fault)
– realized as non-present page in guest physical mode
– emulate offending instruction

• . . .
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03 MMU Virtualization

Early version of Intel VT do not completely virtualize the MMU. VMM has to handle
paging in guest.

Four different types of memory addresses:

HPA Host Physical Address

HVA Host Virtual Address

GPA Guest Physical Address

GVA Guest Virtual Address
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03 Drawbacks of Shadow Paging

Maintaining Shadow Page Tables causes significant overhead, because they need to
be updated/recreated on

• guest page table modification,
• guest address space switch.
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03 Shadow Paging

1. page fault in guest (GVA)

2. traps to VMM

3. parse guest page tables (GVA ⇒ GPA)

4. maybe inject page fault to guest (no mapping found, true pagefault)

5. translate to shadow page table entry (GPA ⇒ HVA ⇒ HPA)

6. create entry in shadow page table

7. resume guest
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03 Nested Paging

Introduced in the Intel Nehalem (EPT) and AMD Barcelona (Nested Paging)
microarchitectures, the CPU can handle

• guest and
• host page table

at the same time. Can reduce VM Exits by two orders of magnitude, but introduces

• measurable constant overhead (< 1%)
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03 Nested Paging (cont’d)

Event Nested Paging Shadow Paging
vTLB Fill 181,966,391
Guest Page Fault 13,987,802
CR Read/Write 3,000,321
vTLB Flush 2,328,044
INVLPG 537,270
Hardware Interrupts 174,558 239,142
Port I/O 610,589 723,274
Memory-Mapped I/O 76,285 75,151
HLT 3,738 4,027
Interrupt Window 2,171 3,371
Sum 867,341 202,864,793
Runtime (seconds) 470 645

(Linux Kernel Compile)
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04 Outline

What’s Virtualization?
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04 L4Linux

. . . is a paravirtualized Linux first presented at SOSP’97 running on the original
L4 kernel.

• L4Linux predates the x86 virtualization hype
• L4Linux 2.2 supported MIPS and x86
• L4Linux 2.4 first version to run on L4Env
• L4Linux 2.6 uses Fiasco.OC’s paravirtualization features

The current status:

• Linux 2.6.36
• x86 and ARM support
• SMP
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04 Porting Linux to L4

Regard L4 as new hardware platform. Port small architecture dependent part:

• system call interface
– kernel entry
– signal delivery
– copy from/to user space

• hardware access
– CPU state and features
– MMU
– interrupts
– memory-mapped and port I/O
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04 L4Linux Architecture

• L4 specific code is divided into:
– x86 and ARM specific code
– hardware generic code

• Linux kernel and Linux user processes run each with a single L4 task.
– L4Linux kernel task does not see a L4Linux process virtual memory
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04 L4Linux Challenges

The L4Linux kernel “server” has to:
• access user process data,
• manage page tables of its processes,
• handle exceptions from processes, and
• schedule them.

L4Linux user processes have to:
• “enter” the L4Linux kernel (living in a different address space).
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04 Kernel Entry

Normal Linux syscall interface (int 80h) causes trap.

• L4Linux server receives exception IPC.

Heavyweight compared to native Linux system calls:

• two address space switches,
• two Fiasco kernel entries/exits
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04 Interrupts

L4Linux has a thread for each virtual interrupt.

• Interrupts are received as messages.
• Interrupt threads have higher priority than normal Linux threads (Linux

semantics).
• Interrupt threads force running user process (or idle thread) into L4Linux

server.
• Linux uses CLI/STI to disable interrupts, L4Linux uses a lock.
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04 vCPUs

Simplify interrupt/exception handling by introducing vCPUs (Fiasco.OC):

• have dedicated interrupt entry points,
– need to differentiate between interrupt and systemcall

• can be rebound to different tasks,
– simulates address space switches

• can mask interrupts
– emulates Interrupt Enable flag
– don’t need that lock anymore
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04 Not Covered in Detail

• access to user process’ memory
– walk page tables of user process

• device drivers
– DMA is problematic
– IOMMU

• scheduling
– only one user process active at any time
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04 Hybrid Applications

• Linux applications that are “L4 aware”
• Need special handling by L4Linux server

– processes with ongoing IPC are marked UNINTERRUPTIBLE in L4Linux
– IPC is not disturbed
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04 Multiple L4Linux Instances

Of course, you can run multiple L4Linux instances.

• isolate applications for e.g. security reasons,
• communication via network or IPC
• devices need to be multiplexed (will be covered in resource management

lecture)
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04 L4Linux as Toolbox

Reuse large parts of code from Linux:

• filesystems,
• network stack,
• device drivers.

Use a hybrid application to provide this service to “native” L4 applications.
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05 Security and Virtualization

Virtualizing several insecure operating systems on one host is safe and secure,
because

• they cannot interfere with each other, and
• they are confined to their virtual machine.

Is it? Does virtualization add security?
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05 Recap

Xen runs its instruction emulator
and virtual devices in Ring 0 in
Root Mode.

KVM runs its instruction
emulator and virtual devices
(mostly) as normal Linux
application in Ring 3 in Root
Mode.

. . . but both share code for instruction emulation and virtual devices.
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05 Secunia Advisory SA25073
http://secunia.com/advisories/25073/

• “The size of ethernet frames is not correctly checked against the MTU before
being copied into the registers of the NE2000 network driver. This can be
exploited to cause a heap-based buffer overflow.”

• “ An error within the handling of the aam instruction can result in a division by
zero.”

• . . .
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05 TCB of Virtual Machines

The Trusted Computing Base of a Virtual Machine is the amount of hardware and
software you have to trust to guarantee this VM’s security. (More in lecture on
Security)
For e.g. KVM this (conservatively) includes:

• the Linux kernel,
• Qemu.
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05 NOVA Architecture

Reduce complexity of hypervisor:

• hypervisor provides low-level protection domains
– address spaces
– virtual machines

• VM exits are relayed to VMM as IPC with selective guest state,
• one VMM per guest in (root mode) userspace,

– possibly specialized VMMs to reduce attack surface
– only one generic VMM implement so far
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05 NOVA OS Virtualization Architecture
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05 Example: Low Complexity VMM
Diplomarbeit by Steffen Liebergeld

Idea: Reduce TCB of VMM by using paravirtualization and hardware-assisted
virtualization.

• Implemented on Fiasco using AMD-V
• Small VMM: 3800 LOC
• 300 LOC changed in Linux
• No instruction emulator required

– no MMIO
– no 16-bit code

• Only simple paravirtualized device models required: 2600 LOC
– salvaged from L4Linux
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05 Recap: Examples

• L4Linux is the paravirtualized workhorse on L4:
– reuse Linux applications,
– reuse Linux components.

• NOVA provides faithful virtualization with small TCB for VMs.

TU Dresden, 2010/11/30 Virtualization slide 70 of 72



05 Next Weeks

Today’s seminar (IPC) is in

INF E042

Next week’s lecture will be about Resource Management.

Don’t forget to read until December 14th:

Formal Requirements for
Virtualizable Third-Generation Architectures

http://portal.acm.org/citation.cfm?id=361073
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