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AGENDA
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■ done: time

■ today: misc. resources

■ architectures for resource management

■ solutions for specific resources

■ upcoming: applications, legacy support
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KERNEL 
RESOURCES
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PROBLEM
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■ kernel manages

■ tasks

■ threads

■ capabilities

■ mapping database

■ it all comes down to memory

■ kernel memory is limited

■ opens the possibility of DoS attacks
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IDEA
■ memory management policy should not 

be in the kernel

■ manage kernel memory in userland

■ kernel provides memory control 
mechanism

■ exception for bootstrapping:
initial kernel memory is managed by 
kernel
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SOLUTION
■ kernel-memory objects in L4.sec

■ extension of the recursive address space 
model

■ create kernel-memory object by 
converting user pages

■ userland apps pay for kernel memory 
allocated on their behalf

■ converted pages no longer accessible by 
userland
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SOLUTION

■ kernel uses kernel-memory objects for 
storing allocated data structures

■ supports map and unmap

■ reconvert on unmap

■ reconvert transfers object back to userland

■ recursively deletes all kernel structures

■ dependency graph must be cycle-free
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PRINCIPLE
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separate enforcement and 
management
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ARCHITECTURES
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EXOKERNEL
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Exokernel

Library OS

Application

Enforcement

Management



TU Dresden MOS: Resource Management

DESIGN
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■ provide primitives at the lowest possible 
level necessary for protection

■ use physical names wherever possible

■ resource management primitives:

■ explicit allocation

■ exposed revocation

■ protected sharing

■ ownership tracking
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CONSEQUENCES
■ each application can use its own library OS

■ library OS’es cannot trust each other

■ no central management for global resources

■ think of a file system

■ kernel manages disk ownership with block 
granularity

■ each library OS comes with its own 
filesystem implementation

■ one partition per application?
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SHARING
■ invariants in shared resources must be 

maintained

■ four mechanisms provided by the exokernel

■ software regions for sub-page memory 
protection, allows to share state

■ capabilities for access control

■ critical sections

■ wakeup predicates: code downloaded into 
the kernel for arbitrary checks
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MULTISERVER
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Low-Level 
Resource 
Manager

ApplicationHigher-Level 
Resource 
Manager

Client-Libs

L4 Microkernel
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LEVELS
■ different abstraction levels for resources
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basic resources
memory, CPU,

IO-ports, interrupts

hardware
block device, framebuffer, 

network card

compound 
resources

file, GUI window,
TCP session
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HIERARCHIES
■ applications use multiple resources that 

depend on other resources

■ resource tree of cooperating resource 
managers

■ isolation of resources allows managers to 
provide real-time guarantees for their 
specific resource

■ DROPS:
Dresden Real-time OPerating System
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HIERARCHIES

■ some resources are by themselves 
managed in a hierarchy

■ recursive virtual memory

■ hierarchy can differentiate service

■ different memory properties by different 
pagers
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EXAMPLES
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ANKH
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■ driver for physical 
network card

■ built with DDE using 
Linux 2.6 drivers

■ provides multiple 
virtual network cards

■ implements a simple 
virtual bridge

Ankh

lwip

wget
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wget

LWIP
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■ light-weight IP Stack

■ TCP/IP stack

■ also supports
UDP, ICMPAnkh

lwip
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WGET
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■ clients can use 
standard BSD socket 
interface

Ankh

lwip

wget
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WINDHOEK
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■ IDE driver to access 
hard disks

■ includes disk request 
scheduling

■ based on DDE

■ provides block device

■ ongoing work on USB 
block devices

Windhoek

Filesystem

L4Re VFS
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L4Re VFS

FILESYSTEM
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■ no real one 
implemented

■ we have a tmpfs 
using RAM as backing 
store

■ VPFS: securely reuse 
a Linux filesystem

Windhoek

Filesystem
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L4RE VFS

24

■ hierarchical name 
space

■ connects subtrees to 
different backend 
servers

■ aka mounting
Windhoek

Filesystem

L4Re VFS
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MAG
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■ multiplexes the 
frame buffer

■ no virtual desktops, 
but window merging

■ details in the legacy / 
security lectures

mag

DOpE

Terminal
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Terminal

DOPE
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■ widget drawing server

■ also handles mouse 
and keyboard input

■ distributed to 
applications

■ can also operate on 
raw framebuffer

■ real-time capable

mag

DOpE



TU Dresden MOS: Resource Management

TERMINAL
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■ DOpE client providing 
a terminal window

■ VT100 emulation

■ can support readline 
applications

■ shell

■ python

mag

DOpE

Terminal
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RESOURCE ACCESS
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SYSTEM DESIGN
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Kernel

Services

Applications
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DESIGN GOALS
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■ application-centric interfaces

■ object-based design

■ easy setup and destruction of subsystems

■ object invocation by message passing

■ uniform security model

■ all services virtualizable

■ flexible and efficient support for multicore
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EXAMPLE
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Service

Manager

Worker A Worker B
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GOOGLE CHROME
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■ separate processes

■ chrome parent

■ sandboxes for tabs

■ implementation on 
Linux: glorious mix 
of chroot(), clone() 
and setuid()

■ there must be a 
better way…
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TWO WORLDS
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POSIX POLA

operations allowed 
by default

nothing allowed by 
default

some limited 
restrictions apply

every right must 
be granted

ambient authority explicit authority
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L4RE

34

L4Re — the L4 Runtime Environment
set of libraries and system services on 

top of the Fiasco.OC microkernel

Microkernel L4Re
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CAPABILITIES
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■ Fiasco.OC and L4Re form an
object-capability system

■ actors in the system are objects

■ objects have local state and behavior

■ capabilities are references to objects

■ object interaction requires a capability

■ capabilities cannot be forged
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CAPABILITIES
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Fiasco.OC
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HOW TO USE?

37

■ invocation of any object requires a 
capability to that object

■ no global names

■ no sophisticated rights representation 
beyond capability ownership

■ just four rights bits on objects

■ C++ language integration

■ capabilities passed as message payload
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CAP TRANSFER
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A

Task A Task B
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CAP TRANSFER
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A

Task A Task B

1 2 3 4 5 1 2 3 4 5
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EXAMPLE

40

Manager

Service

Worker A Worker B
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How do you send an answer to a client?

■ Always include a backward capability in 
every request?

■ Establish backward capability once and 
cache?

■ call-return-semantics as the standard case

■ implicit reply capability

■ use-once, cannot be passed on

ANSWERING
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EXAMPLE
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Manager

Service

Worker A Worker B

mag
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mag

MAG
■ factory for new 

framebuffer sessions

■ session object

■ backing store memory

■ view: visible rectangle on 
the backing store

■ metadata, refresh method

■ How does it appear on 
the screen?

43

Factory S S

Manager
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mag

MAG
■ hardware framebuffer is 

memory with side effect

■ all memory is initially 
mapped to the root task

■ framebuffer driver

■ find framebuffer memory

■ wrap in FB-interface

■ same interface as mag’s

44

Factory S S

Memory

moe

fb-drv
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INTERFACES
■ L4Re uses one interface per resource

■ low-level system resources are managed 
by the kernel

■ CPU, memory, IRQ

■ minimal policy

■ user-level servers can reimplement and 
augment interfaces

■ virtualizable interfaces

45
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EXAMPLE
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Manager

Service

Worker A Worker B

mag
?



TU Dresden MOS: Resource Management

SUBSYSTEMS
Subsystem Life

■ subsystems are opaque

■ parents can restrict the resources

■ parents cannot restrict their sub-structure

Subsystem Death

■ How to deallocate resources in servers?

■ notify all servers used by the subsystem?

■ garbage collection
47
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CONCLUSION
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✔ coherent per-resource interfaces  

✔ all services provided as objects  

✔ garbage collection for server resources  

✔ invocation is the only system call  

✔ object-capability system  

✔ all interfaces can be interposed  

✔ RCU in kernel, user-level load balancing  
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SUMMARY

■ kernel resource management

■ basic resource management concepts

■ exokernel

■ multiserver

■ management details for specific resources

■ how capabilities work
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