
Department of Computer Science Institute of System Architecture, Operating Systems Group

MICHAEL ROITZSCH

RESOURCE
MANAGEMENT

TU Dresden MOS: Resource Management

AGENDA

2

■ done: time

■ today: misc. resources

■ architectures for resource management

■ solutions for specific resources

■ upcoming: applications, legacy support

TU Dresden MOS: Resource Management

KERNEL
RESOURCES

3

TU Dresden MOS: Resource Management

PROBLEM

4

■ kernel manages

■ tasks

■ threads

■ capabilities

■ mapping database

■ it all comes down to memory

■ kernel memory is limited

■ opens the possibility of DoS attacks

TU Dresden MOS: Resource Management

IDEA
■ memory management policy should not

be in the kernel

■ manage kernel memory in userland

■ kernel provides memory control
mechanism

■ exception for bootstrapping:
initial kernel memory is managed by
kernel

5

TU Dresden MOS: Resource Management

SOLUTION
■ kernel-memory objects in L4.sec

■ extension of the recursive address space
model

■ create kernel-memory object by
converting user pages

■ userland apps pay for kernel memory
allocated on their behalf

■ converted pages no longer accessible by
userland

6

TU Dresden MOS: Resource Management

SOLUTION

■ kernel uses kernel-memory objects for
storing allocated data structures

■ supports map and unmap

■ reconvert on unmap

■ reconvert transfers object back to userland

■ recursively deletes all kernel structures

■ dependency graph must be cycle-free

7

TU Dresden MOS: Resource Management

PRINCIPLE

8

separate enforcement and
management

TU Dresden MOS: Resource Management

ARCHITECTURES

9

TU Dresden MOS: Resource Management

EXOKERNEL

10

Exokernel

Library OS

Application

Enforcement

Management

TU Dresden MOS: Resource Management

DESIGN

11

■ provide primitives at the lowest possible
level necessary for protection

■ use physical names wherever possible

■ resource management primitives:

■ explicit allocation

■ exposed revocation

■ protected sharing

■ ownership tracking

TU Dresden MOS: Resource Management

CONSEQUENCES
■ each application can use its own library OS

■ library OS’es cannot trust each other

■ no central management for global resources

■ think of a file system

■ kernel manages disk ownership with block
granularity

■ each library OS comes with its own
filesystem implementation

■ one partition per application?
12

TU Dresden MOS: Resource Management

SHARING
■ invariants in shared resources must be

maintained

■ four mechanisms provided by the exokernel

■ software regions for sub-page memory
protection, allows to share state

■ capabilities for access control

■ critical sections

■ wakeup predicates: code downloaded into
the kernel for arbitrary checks

13

TU Dresden MOS: Resource Management

MULTISERVER

14

Low-Level
Resource
Manager

ApplicationHigher-Level
Resource
Manager

Client-Libs

L4 Microkernel

TU Dresden MOS: Resource Management

LEVELS
■ different abstraction levels for resources

15

basic resources
memory, CPU,

IO-ports, interrupts

hardware
block device, framebuffer,

network card

compound
resources

file, GUI window,
TCP session

TU Dresden MOS: Resource Management

HIERARCHIES
■ applications use multiple resources that

depend on other resources

■ resource tree of cooperating resource
managers

■ isolation of resources allows managers to
provide real-time guarantees for their
specific resource

■ DROPS:
Dresden Real-time OPerating System

16

TU Dresden MOS: Resource Management

HIERARCHIES

■ some resources are by themselves
managed in a hierarchy

■ recursive virtual memory

■ hierarchy can differentiate service

■ different memory properties by different
pagers

17

TU Dresden MOS: Resource Management

EXAMPLES

18

TU Dresden MOS: Resource Management

ANKH

19

■ driver for physical
network card

■ built with DDE using
Linux 2.6 drivers

■ provides multiple
virtual network cards

■ implements a simple
virtual bridge

Ankh

lwip

wget

TU Dresden MOS: Resource Management

wget

LWIP

20

■ light-weight IP Stack

■ TCP/IP stack

■ also supports
UDP, ICMPAnkh

lwip

TU Dresden MOS: Resource Management

WGET

21

■ clients can use
standard BSD socket
interface

Ankh

lwip

wget

TU Dresden MOS: Resource Management

WINDHOEK

22

■ IDE driver to access
hard disks

■ includes disk request
scheduling

■ based on DDE

■ provides block device

■ ongoing work on USB
block devices

Windhoek

Filesystem

L4Re VFS

TU Dresden MOS: Resource Management

L4Re VFS

FILESYSTEM

23

■ no real one
implemented

■ we have a tmpfs
using RAM as backing
store

■ VPFS: securely reuse
a Linux filesystem

Windhoek

Filesystem

TU Dresden MOS: Resource Management

L4RE VFS

24

■ hierarchical name
space

■ connects subtrees to
different backend
servers

■ aka mounting
Windhoek

Filesystem

L4Re VFS

TU Dresden MOS: Resource Management

MAG

25

■ multiplexes the
frame buffer

■ no virtual desktops,
but window merging

■ details in the legacy /
security lectures

mag

DOpE

Terminal

TU Dresden MOS: Resource Management

Terminal

DOPE

26

■ widget drawing server

■ also handles mouse
and keyboard input

■ distributed to
applications

■ can also operate on
raw framebuffer

■ real-time capable

mag

DOpE

TU Dresden MOS: Resource Management

TERMINAL

27

■ DOpE client providing
a terminal window

■ VT100 emulation

■ can support readline
applications

■ shell

■ python

mag

DOpE

Terminal

TU Dresden MOS: Resource Management

RESOURCE ACCESS

28

TU Dresden MOS: Resource Management

SYSTEM DESIGN

29

Kernel

Services

Applications

TU Dresden MOS: Resource Management

DESIGN GOALS

30

■ application-centric interfaces

■ object-based design

■ easy setup and destruction of subsystems

■ object invocation by message passing

■ uniform security model

■ all services virtualizable

■ flexible and efficient support for multicore

TU Dresden MOS: Resource Management

EXAMPLE

31

Service

Manager

Worker A Worker B

TU Dresden MOS: Resource Management

GOOGLE CHROME

32

■ separate processes

■ chrome parent

■ sandboxes for tabs

■ implementation on
Linux: glorious mix
of chroot(), clone()
and setuid()

■ there must be a
better way…

TU Dresden MOS: Resource Management

TWO WORLDS

33

POSIX POLA

operations allowed
by default

nothing allowed by
default

some limited
restrictions apply

every right must
be granted

ambient authority explicit authority

TU Dresden MOS: Resource Management

L4RE

34

L4Re — the L4 Runtime Environment
set of libraries and system services on

top of the Fiasco.OC microkernel

Microkernel L4Re

TU Dresden MOS: Resource Management

CAPABILITIES

35

■ Fiasco.OC and L4Re form an
object-capability system

■ actors in the system are objects

■ objects have local state and behavior

■ capabilities are references to objects

■ object interaction requires a capability

■ capabilities cannot be forged

TU Dresden MOS: Resource Management

CAPABILITIES

36

Fiasco.OC

Task A

A B C D E

Task B
C

ap
ab

ili
ty

 Ta
b

le 1
2
3
4
5 C

ap
ab

ili
ty

 Ta
b

le1
2
3
4
5

TU Dresden MOS: Resource Management

HOW TO USE?

37

■ invocation of any object requires a
capability to that object

■ no global names

■ no sophisticated rights representation
beyond capability ownership

■ just four rights bits on objects

■ C++ language integration

■ capabilities passed as message payload

TU Dresden MOS: Resource Management

CAP TRANSFER

38

A

Task A Task B

TU Dresden MOS: Resource Management

CAP TRANSFER

39

A

Task A Task B

1 2 3 4 5 1 2 3 4 5

TU Dresden MOS: Resource Management

EXAMPLE

40

Manager

Service

Worker A Worker B

TU Dresden MOS: Resource Management

How do you send an answer to a client?

■ Always include a backward capability in
every request?

■ Establish backward capability once and
cache?

■ call-return-semantics as the standard case

■ implicit reply capability

■ use-once, cannot be passed on

ANSWERING

41

TU Dresden MOS: Resource Management

EXAMPLE

42

Manager

Service

Worker A Worker B

mag

TU Dresden MOS: Resource Management

mag

MAG
■ factory for new

framebuffer sessions

■ session object

■ backing store memory

■ view: visible rectangle on
the backing store

■ metadata, refresh method

■ How does it appear on
the screen?

43

Factory S S

Manager

TU Dresden MOS: Resource Management

mag

MAG
■ hardware framebuffer is

memory with side effect

■ all memory is initially
mapped to the root task

■ framebuffer driver

■ find framebuffer memory

■ wrap in FB-interface

■ same interface as mag’s

44

Factory S S

Memory

moe

fb-drv

TU Dresden MOS: Resource Management

INTERFACES
■ L4Re uses one interface per resource

■ low-level system resources are managed
by the kernel

■ CPU, memory, IRQ

■ minimal policy

■ user-level servers can reimplement and
augment interfaces

■ virtualizable interfaces

45

TU Dresden MOS: Resource Management

EXAMPLE

46

Manager

Service

Worker A Worker B

mag
?

TU Dresden MOS: Resource Management

SUBSYSTEMS
Subsystem Life

■ subsystems are opaque

■ parents can restrict the resources

■ parents cannot restrict their sub-structure

Subsystem Death

■ How to deallocate resources in servers?

■ notify all servers used by the subsystem?

■ garbage collection
47

TU Dresden MOS: Resource Management

CONCLUSION

48

✔ coherent per-resource interfaces

✔ all services provided as objects

✔ garbage collection for server resources

✔ invocation is the only system call

✔ object-capability system

✔ all interfaces can be interposed

✔ RCU in kernel, user-level load balancing

TU Dresden MOS: Resource Management

SUMMARY

■ kernel resource management

■ basic resource management concepts

■ exokernel

■ multiserver

■ management details for specific resources

■ how capabilities work

49

