
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Security - Introduction

Dresden, 2010-12-21

Benjamin Engel

Security Slide 2 / 482010-12-21

Overview

• Basics: Security policies and mechanisms

• Bell – La Padula & Biba

• Access control

• Capabilities

• Naming

• Information Flow (Control)

• Non-Interference

• Formal methods: verification and evaluation

Security Slide 3 / 482010-12-21

Confidentiality, Integrity, Availability

Confidentiality: Data is only accessible to
those with appropriate rights; no statement
about integrity

Integrity: Data is either unmodified (authentic)
or tampering is provable; no statement about
confidentiality

Availability: Timely access to resources is
guaranteed to authorized users

Security Slide 4 / 482010-12-21

Secure Systems

Secure System*: A secure system is a system
that starts in an authorized state and cannot
enter an unauthorized state.

Security Policy*: A security policy partitions
the states of the system into a set of
authorized, or secure, states and a set of
unauthorized, or nonsecure, states.

* Matt Bishop: Computer Security – Art and Science

Security Slide 5 / 482010-12-21

Security Policies vs. Mechanisms

Security Policy:
– A security policy states what is allowed,

and what isn't.
– e.g.: SELinux policy, /etc/passwd

Security Mechanism:
– A security mechanism is a method, tool, or

procedure for enforcing a security policy
– e.g.: Capabilities, ACLs, MMU ...

Security Slide 6 / 482010-12-21

Principle Of Least Authority – POLA

“Every program and every user of the system
should operate using the least set of

privileges necessary to complete the job.”
(Saltzer and Schroeder, 1974)

Security Slide 7 / 482010-12-21

Bell – La Padula Model

• Developed in the 1970s, demand for access
control mechanisms solving problems of
security in computer systems

• Main focus on Confidentiality

• State transition system: Define a set of secure
states, transition function ensures to stay in
this set (enter no insecure state)

Security Slide 8 / 482010-12-21

Elements of the Model

 {S1, S2, ... Sn}

 {O1, O2, ... Om}

 {C1, C2, ... Cq}

 {C1 > C2 > ... >Cq }

 {K1, K2, ... Kn}

 S

 O

 C

 K

Subjects; processes in execution

Classifications; clearance level of a
subject, classification of an object

Objects; data, files, programs, subjects

Needs-to-know categories; project
number, access privileges

Set Elements Semantics

Security Slide 9 / 482010-12-21

Classification and Categories

Unclassified

Confidential

Secret

Top Secret {National, Foreign}

{}

{National} {Foreign}

Classification C Categories K

Subjects and objects have a security label (C,K)
consisting of a security level C and a category
set K, both are orthogonal to each other

dominates relation: C1 ≥ C2 && K1 ⊇ K2

Security Slide 10 / 482010-12-21

Bell – La Padula Transition Rules

• Example: Label L1 (Top Secret, {National})
dominates Label L2 (Unclassified,{})

• Simple Security Condition: S can read O if S
dominates O (no reads up)

• *-Property: S can write to O if O dominates S
(no writes down)

• Declassification through trusted subjects

No reads up – no writes down

Security Slide 11 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}

Security Slide 12 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres} ✔

Security Slide 13 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}

✔

Security Slide 14 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}

✔
✔

Security Slide 15 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}
• lutins, {lettres} write enfants, {lettres}

✔
✔

Security Slide 16 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}
• lutins, {lettres} write enfants, {lettres}

✔


✔

Security Slide 17 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}
• lutins, {lettres} write enfants, {lettres}
• p.noel, {} read lutins, {rodolphe}

✔


✔

Security Slide 18 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}
• lutins, {lettres} write enfants, {lettres}
• p.noel, {} read lutins, {rodolphe}

✔




✔

Security Slide 19 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}
• lutins, {lettres} write enfants, {lettres}
• p.noel, {} read lutins, {rodolphe}
• p.noel, {rodolphe} read lutins, {rodolphe}

✔




✔

Security Slide 20 / 482010-12-21

Bell – La Padula Example

Classification : p.noel > lutins > enfants
Categories : cadeaux, rodolphe, lettres

No reads up – no writes down

• enfants, {} write p.noel, {lettres}
• lutins, {lettres, cadeaux} read enfants, {lettres}
• lutins, {lettres} write enfants, {lettres}
• p.noel, {} read lutins, {rodolphe}
• p.noel, {rodolphe} read lutins, {rodolphe}

✔




✔

✔

Security Slide 21 / 482010-12-21

Bell – La Padula Summary

• Information flow policy, that preserves
confidentiality

• Very simple model, proof of model's security
properties is trivial, practical proof is hard

• No integrity concerns in the model (use Biba)

• Shortcomings:
– Too simple, many scenarios cannot be

expressed by this model (e.g. device drivers
has to be used by all security levels)

– Purely confidentiality centric
– Central, system wide, policy (global labels)

Security Slide 22 / 482010-12-21

Biba Model

• Developed in the 1970s (after Bell – La Padula)

• In contrast to the Bell – La Padula model, it
focuses on data integrity

• Many similarities to Bell – La Padula:
– Facilitates also a state transition system
– Objects are ordered by integrity levels
– Rules are inverse to BLP (no reads from lower

integrity levels, no writes to higher ones)

No reads down – no writes up

Security Slide 23 / 482010-12-21

Access Control

• Information flow describes how data is
spread throughout the system

• Information flow control states which flows
are allowed (policy) and restricts distribution
of data accordingly (mechanism)

• In contrast access control states who can
access what using which operation

• Prominent example : Access Control Matrix

Security Slide 24 / 482010-12-21

DAC, RBAC, MAC

• Discretionary access control
– privileged instance (e.g. owner) related to an

object decides who is allowed to access it,
permissions might be passed to other subjects

• Role-based access control
– Operations are permitted based on roles, not

directly on subjects
– Powerful enough to simulate DAC and MAC

• Mandatory access control
– system rules, that cannot be altered by an

individual user (SELinux, AppArmor)

Security Slide 25 / 482010-12-21

Access Control Matrix: ACL vs. Caps

S1

S2

S3

...

Sm

O1 O2 O3 ... On

r,w r

x w

w,x m

a c,d

Capabilities

Access Control List

read, write, execute, append, create, delete, map, ...

Security Slide 26 / 482010-12-21

Access Control List

• Tied to the objects (classic example: file
access rights in Unix/Windows)

• For each object (or group of objects): which
subjects are allowed to perform which
operation

• Changing of permissions easy: right at the
object

Security Slide 27 / 482010-12-21

Capabilities

• Bound to the subject (compare: ticket system)

• States which permissions a subject has on
specific objects

• Hard to express group relations (indirection)

• Changing (revoking) permissions is difficult ...
“Whom I gave access rights to foobar?”
– Tracking of granted permissions
– How to invalidate a ticket once given it away

Security Slide 28 / 482010-12-21

Capabilities – Name and Rights

• Designate/name a specific object plus access
rights to that object

• Sole possession of a cap is sufficient to prove
ones authority to perform an operation

• Implementation using hardware support,
memory protection mechanisms or
cryptography

Security Slide 29 / 482010-12-21

Capability Systems

• KeyKOS: Persistence, one run 17 years
• EROS: Extremely Reliable OS
• Coyotos: Towards formally verification
• Amoeba: Transparent distributed system
• SeL4: First formally verified Microkernel
• Fiasco.OC: Successor to Fiasco
• NOVA: Microhypervisor

Security Slide 30 / 482010-12-21

Capabilities: Kernel vs. User

• Kernel
– Protected by kernel
– User gets only a handle
– Compare to File Descriptor in Unix
– Easier to revoke

• User
– protect against tampering (Amoeba: a cap is a

128 bit value, protected by cryptography)
– Persistency: user responsibility, for the kernel

it's just a value

Security Slide 31 / 482010-12-21

Capabilities – Usage

• Server offers its service by
– Creating a portal (=kernel object)
– Get a new (portal) capability at cap index 7
– Send the capability at index 7 to its clients

• Clients receive the capability locally at index
23 or 42 and send messages to this portal

23Client 1 Client 2

Server

23 42

7

Security Slide 32 / 482010-12-21

Capabilities – Implementation

3

OS • Within the address space of a
task, accessible by the OS only, is
a capability space

• Double indirection: user gets an
index (3) into an array of pointer
to kernel objects

• When creating new kernel
objects, a new capability is
created, user needs to specify
where to put the handle

• Backed by kernel memory

Stack

Text

Data
int cap = 3

Security Slide 33 / 482010-12-21

Capability space
0 1 2 4 7

• Application has references to kernel objects
• Referred via index into cap space
• Caps might be transferred to other tasks

Capability Space

Application

Kernel

OS protected

Thread
Semaphore

Portal Address space

Security Slide 34 / 482010-12-21

Capabilities - Bootstrapping

 or:

How do new applications get
their (initial) capabilities?

Security Slide 35 / 482010-12-21

Task Creation

• Child is created with
only one cap

• Further caps are
requested from the
parent or someone
else (servers, ...)

Parent

Child

• Predefined set of
initial caps at well-
known cap space
indices

• Receive further caps
via request + map

Parent

 Child

Security Slide 36 / 482010-12-21

Receiving Capabilities

• Initial Task Creation
– The creator possesses the capability to the

newly created task
– Task cap is very powerful, allows to place new

caps in its cap space

• Receive via IPC
– Prepare receive window, send a request to

someone (parent, server, ...) asking for caps
– During reply the requested caps will be

mapped to own cap space

Security Slide 37 / 482010-12-21

Initial Task Creation

• Initial set of caps
– Parent: capability to your parent
– Mem_alloc: memory allocator
– Log: logging facility
– Thread: first application thread
– Rm: region manager / pager
– Factory: factory to create objects
– Task: the task itself

Security Slide 38 / 482010-12-21

Receiving via IPC

Server

App

1

1 App invokes an IPC-Gate,
thereby calling the server
behind this gate

2 Server replies, sending the
requested cap along

3 During reply the kernel
transfers/copies the
specified capability to the
receiver

2 3

Security Slide 39 / 482010-12-21

L4Re Example

-- abbreviation
l = L4.default_loader;

-- new communication channel
c = l:new_channel();

-- start the server
l:start ({ caps = { service = c:srv()}},

“rom/server”);

-- start the client
l:start ({caps = { server = c}},

“rom/client”);

Security Slide 40 / 482010-12-21

From Capabilities to Naming

Service discovery

 Whom do I ask ?

 What do I ask for ?

Security Slide 41 / 482010-12-21

Name Resolution – Example

 Key server

Name server 7 Client 1

• Key server registers itself at the name server,
sending a cap along the message

• Name server receives name + cap
– Mapping “Key server” → cap 7

• Client queries Name server, receives cap to
the key server

• Client contacts key server for service

12
3

4

Security Slide 42 / 482010-12-21

Name Resolution – Havoc

 Key server

Name server 7 Client 1

• Dr. No contacts the name server, registers itself
under the name “key server”

• Key server tries to register itself, but fails since
the name “key server” has already been taken

• Client queries, gets a cap, contacts “key server”
(impersonated by Dr. No) → GAME OVER

2 3

4

Dr. No

1

Security Slide 43 / 482010-12-21

One Step Back

• Naming issues are coupled with security

• Where to get capabilities from

• How to name objects

• How does service discovery work

Names are resources, have to be managed

Security Slide 44 / 482010-12-21

Local vs. Global Name Spaces

• Global name spaces
– All instances share the same view

There is only one global key server,
impersonation doesn't work

– Classical in monolithic systems
– Easy to configure
– Recap: BLP security levels → global

• Local name spaces
– Instances have private name spaces
– Forwards principle of least privilege
– Common examples: BSD jails or chroot

Security Slide 45 / 482010-12-21

Problems with Global Names

• Communication
• Example: L4 thread ids were globally visible
• Everyone can send IPC to everyone

– Clans and chiefs
– Reference monitor
– Ports, endpoints, gates, portals, ...
– Language based approaches (Sing#)

• Denial of Service attacks are possible
• No full isolation (covert channels)

• Solution: local names = name spaces

Security Slide 46 / 482010-12-21

Local Names

• Task local name space
• Initially populated by task's creator

... whom you have to trust anyway
• Mapping from name to capability
• Additional entries through querying

– Name server
– Parent → hierarchical name resolution

(compare with DNS)

• Not perfect: Receiving a capability, how to
figure out if I already have it (cap compare)?

Security Slide 47 / 482010-12-21

Populating Local Name Spaces

• Ned creates a new Gate, receives a cap (4)
• Map this cap with server rights to Server's

address space (7), add a new entry in Server's
name space: “server” → cap

• Map the same cap with client rights to Client's
address space (13), add name space entry
there too, “service” → cap

Ned

Server 7 Client13
Gate

4

Security Slide 48 / 482010-12-21

• Review
– Security models (Bell – La Padula, Biba)
– Access Control Matrix
– Capabilities
– Naming

• Next lecture
– Information Flow
– Non-Interference
– Software verification

Review & outlook

