
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Security - Verification

Dresden, 2011-01-11

Benjamin Engel

Security : Verification Slide 2 / 412010-01-05

Overview

• Type systems

• Information flow

• System software verification

Security : Verification Slide 3 / 412010-01-05

Recap

• Bell – La Padula model
– Subjects and objects have a security level

(confidential, top secret, ...) associated
– Security levels are ordered

• Access to an object is granted if the
accessor's label dominates the accessed
object

• Too limited for many real-world scenarios
(model not expressive enough)

 → Type Systems

Security : Verification Slide 4 / 412010-01-05

Type Systems – Introduction

• Suitable to reason on programs and to prove
properties like non-interference

• Most prominent example: Data type
systems in programming languages (C, Java)
– Define meaning of data (bit patterns) and

which operations are allowed
– Assure data type compatibility
– Normally this should not type check (without

automatic type conversion):

int i = 0;
float f = i;

Security : Verification Slide 5 / 412010-01-05

Theory : Data Type Systems

• If e1 is an expression of type integer and e2
also, then e1 + e2 can also be typed as integer

• Formal inference rule:

• Rules for statements, expressions, variables, ...
• A program is said to be well-typed if it follows

the typing rules

 e1 : int
 e2 : int
 e1 + e2 : int

⊤
⊤

⊤

 – type environment
e1, e2, e1 + e2 – expressions

Security : Verification Slide 6 / 412010-01-05

Type Inference vs. Type Checking

• Some expressions
are initially typed

• Types are inferred by
typing rules

 = {11,12 : int}

let a = 11 in
let b = 12 in
let c = a + b

• All types are known in
advance

• Soundness proof of
the types through
typing rules

 = {11,12,a,b,c : int}

int a = 11;
int b = 12;
int c = a + b;

Security : Verification Slide 7 / 412010-01-05

Flow Insensitivity vs. Flow Sensitivity

• Statically typed (type
of expressions never
changes)

• Order of evaluation
does not matter

• Dynamically typed
(types might change)

• Evaluation order can
influence , (type
environment)

 e1 : int
 e2 : int
 e1 + e2 : int

⊤
⊤

⊤

 e1 : int, ' ' e2 : int, ''
 e1 + e2 : int, ''

⊤
⊤

⊤

Security : Verification Slide 8 / 412010-01-05

Other Type Systems

• Const inference
– Compilers can optimize more heavily if

constness (read only) of a variable is known
– Programmer can declare a variable const, but

this is cumbersome and error-prone
– automatically infer as many “consts” as

possible using a feasible type system

• non-NULL inference
– Compile-time detection if null pointer

dereferences
– Proving/inferring a pointer to be non-NULL at

least removes the check

Security : Verification Slide 9 / 412010-01-05

Bobby Tables

• User-supplied input is not trustworthy

• Should not been used unless sanitized

http://xkcd.com/327

Security : Verification Slide 10 / 412010-01-05

Format String Vulnerabilities

• Type system for taint analysis
– User supplied input data is typed tainted
– Might get declassified as untainted by sanitize

functions
– If tainted data is used as a format string

→ Type error or bug

good: printf (“ %s” , buffer);
bad: printf (buffer);

Security : Verification Slide 11 / 412010-01-05

Non-interference

• Programs as input-output model
• Data is classified as confidential or public
• Confidential data is typed as high (H), public

data as low (L)
• Inputs and Outputs are typed H or L
• Low-typed outputs must not depend on high-

typed inputs
• Observing low-typed outputs reveals no

information about high-typed inputs

OK Bad

Security : Verification Slide 12 / 412010-01-05

Confidentiality Through Type Systems

• Variables and expressions are typed
according to the information they contain

• Security levels form a lattice (partially
ordered set), e.g. {low, high} with low ≤ high

• Confidentiality is preserved if no high
classified input variable writes to a low output

• e.g. e1 : low and e2 : high → e1 + e2 : high

 e1 : l1
 e2 : l2
 e1 + e2 : l1 ∪ l2

⊤
⊤

⊤

l1, l2 – security level
∪ – least upper bound

Security : Verification Slide 13 / 412010-01-05

• w.r.t. confidentiality left example well-typed
– Assignments: security level increases, thus no

information leakage
• Right example: not typeable, first assignment

already break it
– Never copy data from a variable with a higher

security level to one with a lower level
– Code is still secure (no information is leaked -

why?), but this cannot be proven by the type
system

medium := low;
high := medium;

Example: Well-typed and Untypeable

low := high;
low := 0;

Security : Verification Slide 14 / 412010-01-05

Static Type Systems (flow-insensitive)

• Secure programs with temporal information
leakage cannot be typed (in general) with a
static type system
low = high; to type this statement, low

would have to be typed high

low = 0; this fixes the temporal leakage,
but static typing cannot do that

• Static single assignment form (SSA) helps as
long as no pointers are involved (aliasing)
low_1 = high;
low_2 = 0;

Security : Verification Slide 15 / 412010-01-05

Dynamic Type Systems (flow-sensitive)

• Types (security level) of variables and
expressions change over time
lattice: ⊥ < L < H < ⊤

low = high; = {low:H; high:H}

low = 0; = {low:⊥; high:H}

• + more programs are typeable
• flow-sensitive → loops and function calls are

now a real problem

• Secure, but not typeable (semantic gap):
low = high;
low -= high;

Security : Verification Slide 16 / 412010-01-05

Flow-sensitive Type System

• Recap:
– Bell La-Padula: security levels, linearly ordered
– Static type systems

• finite lattice
• Static typing of variables and expressions
• No halting problem (loops)
• Flow-insensitive → cannot cover temporal

information leakage
– Dynamic type systems

• Type of variables and expressions might
change → solves temporal leakage

• Halting problem now an issue
• Very closely related to data flow analysis

Security : Verification Slide 17 / 412010-01-05

Types and Labels: Real Life Example

• HiStar OS: Explicit information flow
– Small kernel (18.000 SLOC)
– Designed towards information flow security

• Loki: Tagged memory
– every memory word has a tag field associated
– Fine-grained access control on physical memory
– FPGA prototype, checks tags in CPU pipeline

• LoStar: HiStar + Loki
– Monitor beneath kernel, translates HiStar labels

to Loki tags, kernel no longer trusted

Security : Verification Slide 18 / 412010-01-05

HiStar: Introduction

• Strict information flow control
• Few kernel objects: segments, address

spaces, devices, threads, containers, gates
• Most UNIX functionality is implemented in a

user-level library
• Labels: Set of categories

– Attached to kernel objects
– Describe security policy (read/write access)

• Categories: Describe kind of data (meaning)
– Processes, threads, UNIX file descriptors, UIDs

Security : Verification Slide 19 / 412010-01-05

HiStar: Labels

• Thread's label: which data it might access
• Threads can add categories to their label to

access secret data
• They cannot remove them later → security
• Threads have a clearance (set of categories),

limiting allowed accesses
• System calls on kernel objects:

– Kernel knows in advance which information
flow might occur

– Use labels of effected objects to determine if
this operation is allowed or not

Security : Verification Slide 20 / 412010-01-05

Example of HiStar Labels

Thread

Data

Label

{}

{Alice}

{}

{Alice}

{Alice}

✘ ✔

Access denied,
label not sufficient

Access granted

adjust label

Security : Verification Slide 21 / 412010-01-05

Loki: Tagged Memory

• Move labels from software into hardware
• Modified SPARC processor, 7 stage pipeline
• In-CPU permission(tag) cache, accessed at

instruction fetch and loads/stores
• Use tagged memory (32 bit word + 32 bit tag)

→ 100% memory overhead
• Multi-granular tagging scheme (per page, per

word) for fine-grained access control
• Special monitor mode to modify memory

tags/permission cache

Security : Verification Slide 22 / 412010-01-05

HiStar + Loki = LoStar

• Thin security monitor is put beneath the
kernel, translates labels to tags

• One logical kernel per thread
• Benefit: even a compromised kernel cannot

afflict unrelated processes

App 1
UNIX Lib

Kernel

App 2
UNIX Lib

Kernel

App 3
UNIX Lib

Kernel

Security monitor

tagged physical memory

Security : Verification Slide 23 / 412010-01-05

Microkernels and Data Flow Analysis

• Microkernel-based Operating Systems:
– Already well-defined components at user level
– Strong isolation, thin interface (if possible)

• Confidentiality and integrity concerns are
expressible in terms of information flow
– Private data should never “flow” (be revealed)

to an unauthorized subject
– No (unauthorized) data should “flow” (be written)

to objects with higher integrity (e.g. system files)

• Proving Non-interference of components

Security : Verification Slide 24 / 412010-01-05

Where does data come from ...
... and where does it go

Security : Verification Slide 25 / 412010-01-05

From Type Systems to Data Flow

• Generalize lattice → universal lattice (L,∪,∩)
– Every variable gets an unique identifier
– L = power set of the set of all IDs
– 2 variables a and b → L = {, {a}, {b}, {a,b}}

• Security level (or label, former low or high) of an
expression → set of IDs this expression depends
on (read from)
int a = b; = { a:{b} }

int c = d + e; = { c:{d,e} }

• Type of an expression: set of variable identifiers
that contributed to the value of this expression

Security : Verification Slide 26 / 412010-01-05

Data Flow Graph

• Transform source code of a program into an
abstract syntax tree (AST)

• Traverse tree, extract data dependencies
→ simulate program run (abstract interpretation)

• Use a memory model to keep track of state
changes (assignments)

• Compare inferred data flows with policy

Security : Verification Slide 27 / 412010-01-05

Abstract Syntax Tree: i + j

Security : Verification Slide 28 / 412010-01-05

Abstract Syntax Tree: i = i + i;

• Difference between E_variable and Variable
• E_variable node refers to Variable node
• Variables keep state, are accessed

(read/write) through E_variable expressions

Security : Verification Slide 29 / 412010-01-05

Assignment Statements

• Information flows solely within statements
• There is no flow between statements
• Between statements data is kept in the

memory (variables)

Security : Verification Slide 30 / 412010-01-05

Memory Model

• Precise memory layout: not relevant
• Variables → abstract storage locations
• Infinite pool of fresh locations
• New variable declaration → new location

location type name label

4711 int i {} int i;

Security : Verification Slide 31 / 412010-01-05

Memory Types

• Fundamental: char, int, float, bool
• Pointer/references: their type is the set of

abstract locations where they point to
• References are non-NULL const pointers

location type name label

1

2

3

int

float

ptr{1}

i

f

p

{⊥
i
}

{1,⊥
f
}

{}

int i = 23;
float f;
if (i) f = 0;
int *p = &i;
float& g = f;4 ref{2} g {}

Security : Verification Slide 32 / 412010-01-05

Memory Labels

• information flow type system: variables and
expressions have labels describing where
their data came from

• constants (literals) do not contain any
information → modeled as ⊥

int i,j
int k = i + j;
int *p;
if (flag)

p = &i;
else

p = &j;

location type name label

1

2

3

int

int

int

i

j

k

{}

{}

{1,2}

4 ptr{1,2} p {flag}

Security : Verification Slide 33 / 412010-01-05

If ~ Then ~ Else

if (flag) do_it(); else do_something();

• depending on the evaluation of the condition,
either do_it or do_something is executed

• therefore both run in the context of the
condition (and depend on it)

• Process then and else independently
• Merge results (least upper bound)

Security : Verification Slide 34 / 412010-01-05

If ~ Then ~ Else: Memory

a r r a y

if (flag) {
array[i] = array[i-1];
array[i+1] = what;

} else {
array[i+2] = array[i+4];
array[i+1] = ever;

}

i

Security : Verification Slide 35 / 412010-01-05

Strong vs. weak updates

• Writing to one known memory location
– Strong update

• Writing to some location of a known set
– weak updates on all elements of this set

• Example: array[i] = confidential
– If i is unknown → weak update on whole array

(pessimistic estimation)
– and assure i >= 0 && i < max_array_index

• Loss of information, less precise data flow
graph, might cause type checking to fail

Security : Verification Slide 36 / 412010-01-05

Uncertainty, Imprecision

• Why weak updates, why imprecision?
1) Data flow analysis at compile time, inputs not

(yet) available
2) Abstract interpretation → precise values of

variables are ignored

• The more precise the model is the more
complex it will be (quickly far too complex)

• e.g. variable values partially modeled:
– Ranges (for i = 0 to 9) x
– with steps (for i = 0 to 25 step 5) a•x
– plus an offset (for i = 5 to 30 step 5) a•x + b

Security : Verification Slide 37 / 412010-01-05

Model Checking & Theorem Proving

• Model checking
– Explore whole state space, reduce or cut of

unfeasible paths as soon as possible
– Example: if (flag) then ~ else → two states

• Theorem proving
– Use (complex) formula to represent program,

prove properties (e.g. array access never out of
bounds → no need to check index)

• Very simple programs: done automatically
• Often: semiautomatic, interactive, guided

Security : Verification Slide 38 / 412010-01-05

Does it work? SeL4!

• Third generation microkernel, based on L4,
influenced by EROS, roughly 9.000 SLOC

• Formally verified
– Systems programmer: bottom up
– Formal methods guys: top down
→ intermediate model in Haskell

• Start with a high level of abstraction
– Formal specification
– Refine model, prove correctness of refinement
– Finally prove refinement to C-code

• No null pointer dereference, no buffer
overflow, syscalls terminate, no out of kernel
memory

Security : Verification Slide 39 / 412010-01-05

Example: Scheduling

schedule =
threads : set = get_all_ready_threads;
thread : Thread = select threads;
switch_to thread or switch_to_idle_thread;

• Pseudo code
• Very high abstraction level

→ good for reasoning
→ far away from actual implementation

• Make a more precise model, prove that it
actually is a refinement

Security : Verification Slide 40 / 412010-01-05

Refinement

schedule =
prio = get_highest_priority;
queue : Queue = get_prio_queue prio;
thread : Thread = get_runnable_thread queue
switch_to thread

• Detailed model (priorities, queues, ready state)
• Obligation: proving this model is a refinement of

the former one
• Doing this iteratively → closer and closer to an

implementation
• Last step: actual C-code is also a refinement

Security : Verification Slide 41 / 412010-01-05

Summary

• Bell – La Padula: security levels + categories

• Type systems (const, non-Null, tainted, ...)

• Security type systems : non-interference

• HiStar and Loki: labels and tagged memory

• Data flow analysis, abstract interpretation

• Briefly: theorem proving, SeL4

