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Motivation
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■ Common observations:

■ Complex software has security bugs

■ Users are plagued by malware

■ Companies, governments are high 
value targets

■ Critical data gets stolen

■ User PCs become bots

■ Sad truth: threats won‘t go away
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Mobile Platforms
■ It‘s all the same for mobile devices

■ Malware in Android Store: trojan horse 
downloaded by millions of users

■ Security-critical bugs:

■ Drivers [1,2], USB stacks [6], boot loaders

■ Messaging apps [7], web browser, ...

■ „Jailbreaking“ = attack on security:

■ Requires physical access ...
■ ... or visit special website [8]
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Classical 
Architectures
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Isolation
■ Isolation in commodity OSes based 

on user accounts

■ Problems:

■ Same privileges for all apps

■ Permissive interfaces (e.g., ptrace to 
manipulate other address spaces)

■ No isolation within application

■ Efforts to restrict privileges:

■ SELinux, AppArmor, Seatbelt, ...
5
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Physical Isolation
■ Separate computers

■ Applications and data 
physically isolated

■ Effective, but ...

■ High costs

■ Needs more space

■ Inconvenient

■ Exposure to network 
may pose threat
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Virtual Machines
■ Multiple VMs, OSes

■ Isolation enforced by 
virtualization layer

■ Saves space, energy, 
maintenance effort

■ But still ...

■ Switching between 
VMs is inconvenient

■ Even more code
7
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Little Effect ...

■ Huge code bases remain

■ Many targets to attack:

■ Application, Commodity OS

■ Virus scanner, firewall, ...

■ Expensive communication via 
(virtual) Ethernet

■ High resource consumption even for 
small applications

8
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Security 
Architectures
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TCB--; Security++;
■ To further improve security:

■ Reduce size of TCB = attack surface

■ First idea:

■ Port application to microkernel-based 
multi-server OS

■ Remove huge legacy OS from TCB

■ Remove unneeded libc backends, etc.

■ Possible approaches discussed in 
lecture on „Legacy Containers“

10
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Loader

Nizza Architecture 
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Nizza Key Principles

12

■ Nizza architecture based on basic 
design concepts:

■ Strong isolation

■ Application-specific TCBs

■ Legacy reuse

■ Trusted wrapper

■ Trusted Computing



TU Dresden Security Architectures

App-specific TCBs
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App-specific TCBs

■ Reflects principle of least privilege

■ TCB of an application includes only 
components its security relies upon

■ TCB does not include unrelated 
applications, services, libraries

■ Mechanisms:

■ Address spaces for strong isolation

■ Well-defined interfaces

14
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Splitting 
Components
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Split Applications
■ Problems with porting applications:

■ Dependencies need to be satisfied

■ Can be complex, even infeasible

■ Stripped down applications may lack 
functionality / usability

■ Better idea: split application

■ Make only security-critical parts run 
on microkernel-based OS

■ Reduces size of TCB even further
16
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Example 1: eMail
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■ Critical functionality to support 
digitally signed e-mails:

■ Handling of signature keys

■ Requesting passphrase to unlock 
secret signature key

■ Presenting e-mail message:
■ Before sending: „What You See Is What 

You Sign“
■ After receiving: verify signature, identify 

sender
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Split eMail Signing
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Figure 8. Application scenario.

5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction

with widely used commodity applications, let us present an

application scenario.

Mail readers such as Mozilla Thunderbird are popular

because of their rich features (e. g., spam filtering, powerful

searching functions) and good usability. This convenience

comes at the cost of an enormous complexity of the appli-

cation and the needed OS support. With regard to the con-

fidentiality of private keys for signing emails, such appli-

cations are a nightmare. For the concrete example of us-

ing Mozilla Thunderbird on the GNU/Linux platform, the

complexity of the Linux kernel, the privileged daemon pro-

cesses, the X window system, Mozilla Thunderbird and

concurrently running user processes of the same user ac-

cumulate to millions of lines of code that potentially put the

secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-

vacy Guard (GnuPG) [4]—actually needs the private keys

for operation. We ported GnuPG to the L4 platform, cre-

ating L4GnuPG, and complemented it with a trusted text

viewer. We interfaced L4GnuPG with Thunderbird by cre-

ating a L
4
Linux proxy process that redirects Thunderbird’s

calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as

its widget set, which is running within an isolated address

space. In this scenario, L4GnuPG is the only process in the

whole system that can access the confidential signing key

of the user. Figure 8 presents an overview about the compo-

nents of this scenario. When the user activates the signing

function of Thunderbird, our L
4
Linux proxy process trans-

fers the email to L4GnuPG. L4GnuPG presents this email

in a DOpE window that is displayed within a correspond-

ing view of Nitpicker. The user can now decide to sign

the email or cancel the operation. If he decides to sign the

email, L4GnuPG requests a pass-phrase, signs the email and

transfers the result to Thunderbird via the L
4
Linux proxy
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Figure 9. Orphaned area on screen.

process.

In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco

(15,000 LOC), trusted L4 services (35,000 LOC) and

L4GnuPG (55,000 LOC). The isolation of the legacy X11

window system and the GUI of the trusted application de-

pends only on the L4/Fiasco kernel and Nitpicker (1,500

LOC). We obtain the powerful features and great usabil-

ity of a commodity application while extremely minimaliz-

ing the trusted computing base (TCB) of a security-sensitive

function with regard to its GUI. The scenario underlines the

biggest strengths of Nitpicker: low complexity and the sup-

port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review

the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There

are view layouts that leave orphaned areas unlabeled on

screen (Figure 9). Although the dimming technique in

X-ray mode prevents confusion about the focused view, a

shading policy as described in [12] could be deployed to

encounter such cases by blanking out orphaned areas. This

will be implemented in a future version.

Nitpicker performs graphical output via software graph-

ics routines. Making hardware-accelerated graphics usable

by Nitpicker and untrusted clients at the same time is a chal-

lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work

about techniques and approaches that inspired the design of

Nitpicker.

J. Epstein addressed the problem of expressive and

unique labeling of windows for the Trusted X11 in [12].

Beside estimating different labeling techniques for mark-

ing classified information, he introduces a technique to de-

tect and blank out orphaned window areas. The dimming

of non-focused windows was inspired by Apple’s Exposé

feature in Mac OS X. J. Shapiro described the dimming

Figure taken from [4]
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Benefit of Splitting
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■ >1,500,000 SLOC no longer in TCB:

■ Linux kernel, drivers, X-Server

■ C and GUI libraries, Thunderbird

■ TCB size reduced to ~150,000 SLOC:

■ GNU Privacy Guard, e-mail viewer

■ Basic L4 system

■ At least 10 times less code in TCB

■ Method not restricted to applications
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Reuse OS Services?

■ Beyond applications:

■ New OS? Do not reinvent the wheel!

■ Existing software can be reused:
■ Protocol stacks (e.g., TCP/IP)
■ Commodity OSes (e.g., Linux)

■ Virtualization is important enabler

20
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Reuse Made Easy
■ Run legacy OS in VM

■ Reuse service: net, files, ...

■ Legacy infrastructure 
isolated from applications

■ But:

■ Applications still depend on 
legacy services -- in TCB?

■ Interfaces reused, security 
issues as well?

21
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Reuse OS Services
■ Network and file system stacks are 

virtually essential subsystems

■ Generally well tested

■ Ready for production use 

■ ... but not bug free:

■ Month of Kernel Bugs 2006 [1,2]:
■ 14 exploitable flaws in file systems: 

UFS, ISO 9660, Ext3, SquashFS, ...
■ WiFi drivers: remotely exploitable bugs

22
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Trusted Wrappers

■ Complex protocol stacks should not 
be part of TCB

■ Reuse untrusted infrastructure 
through trusted wrapper:

■ Add security measures around 
existing APIs
■ Cryptography
■ Redundancy

■ Similar approaches: SSL, VPN
23



TU Dresden Security Architectures

Example 2: VPN
■ SINA box used by German „BSI“:

24

■ VPN gateway

■ Implements IPSec & PKI

■ Intrusion detection & 
response

■ Used for secure access 
to government 
networks, e.g. in 
German embassies Image source:

http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/

http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
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SINA Box Overview

■ Hardware:

■ Different kinds of networks interfaces:
■ Red:  plaintext, no protection
■ Black:  encrypted, MACs

■ Tamper / EM protected casing

■ Software:

■ Minimized and hardened Linux

■ Runs only from CD-ROM or Flash
25
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Linux is Complex
■ Linux is complex!

■ SLOC for Linux 2.6.18:

■ Architecture specific:   817.880

■ x86 specific:      55.463

■ Drivers:        2.365.256

■ Common:        1.800.587

■ Typical config:     ~ 2.000.000

■ Minimized & hardened: > 500.000
26
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Mikro-SINA

■ Research project Mikro-SINA:

■ Reduce TCB of VPN gateway

■ Enable high-level evaluation for high 
assurance scenarios

■ Ensure confidentiality and integrity of 
sensitive data within the VPN

■ Exploit microkernel architecture

27



TU Dresden Security Architectures

IPSec in a Nutshell
■ Protocol suite for securing 

IP-based communication
■ Authentication header (AH)
■ Integrity
■ Authentication

■ Encapsulating Security 
Payload (ESP)
■ Confidentiality

■ Tunnel mode / transport mode
28
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IPSec in L4Linux

■ IPSec is security critical component

■ ... but is integrated into Linux kernel

29
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IPSec „Viaduct“
■ Better: isolate IPSec in „Viaduct“

■ IPSec packets sent/received through 
TUN/TAP device

30
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Fragmentation
■ Problem: Routers can fragment 

IPSec packets on the way

■ Let L4Linux reassemble them

31
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L4LinuxL4Linux

Confidentiality
■ Untrusted L4Linux must not see both 

plaintext and encrypted data

■ Dedicated L4Linux for black/red networks

32
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Mikro-SINA Results

■ Trusted wrapper for VPN

■ Small TCB:

■ 5.000 SLOC for „Viaduct“

■ Fine grain isolation 
■ Principle of least privilege

■ Extensive reuse of legacy code 
(Drivers, IP stack, ...)

■ More details in [5]
33
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Loader

Example 3: Storage
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How to provide secure and reliable 
storage for trusted applications?
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Loader

Split File System
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Idea: build something like a virtual 
private network (VPN) for files:

Virtual Private File System (VPFS)
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Design Space

36
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VFS

App
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■ First end of design space: 
Protect whole file system at 
block layer:

■ Common solution (e.g., 
dm_crypt in Linux)

■ Easy protection for all data

■ Requires a complete file 
system in the TCB

■ Limit reuse
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Design Space

■ Second end of design space: 
Protect individual files near 
VFS / API layer:

■ Stacked file system (e.g., 
ecryptfs in Linux)

■ Flexible protection policies 

■ Most parts of file system 
stack not part of TCB

■ Ideal for trusted wrapper
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VPFS Architecture
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Protection Goals
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■ Confidentiality: only authorized 
applications can access file system, 
all untrusted software cannot get any 
useful information

■ Integrity: all data and meta data is 
correct, complete, and up to date; 
otherwise report integrity error

■ Recoverability: damaged data in 
untrusted file system can be 
recovered from trusted backup
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File Encryption
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■ Files in untrusted legacy file system 
are arrays of encrypted blocks

■ Trusted part of VPFS takes care of 
encryption / decryption on the fly

■ Only buffer cache contains plaintext
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File Integrity

41

0 1 2 3 4 5 6 7 8

■ Hash tree embedded in files

■ Parents authenticate child nodes
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Meta Data Integrity
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Maximizing Reuse
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■ VPFS reuses Linux file system stack:

■ Drivers, block device layer

■ Optimizations (buffer cache, read 
ahead, write batching, ...)

■ Allocate / free disk storage for files

■ What about metadata?

■ Naming and lookup functionality

■ Directories and hierarchies
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Validity Checks
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■ How to trust untrusted meta data?

■ „File exists“ / „File does not exist“:
■ Validated inside TCB using cryptographic 

proof and hash tree
■ Efficient solution possible

■ Directory listings:
■ Efficient solution requires functionality to 

be implemented in TCB 

■ Details in [3]
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VPFS Summary
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■ Trusted wrapper shown to work for 
file systems

■ VPFS is general purpose file system

■ Significant reduction in code size:

■ VPFS adds 4,000 to 4,600 SLOC to 
application TCB

■ Standard Linux file system stack 
comprises >50,000 SLOC
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User Interfaces
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Sharing The Screen
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■ Isolated applications run in different 
domains of trust, but separate 
screens are inconvenient

■ The Nitpicker solution [4]:

■ Let all windows share the same screen

■ ... but securely:
■ Make windows & applications identifiable
■ Prevent them from spying on each other: 

route input securely, no screenshots
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Concepts
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How It Works
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Nitpicker In Action
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Demo
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Summary

52

■ Secure reuse of untrusted legacy 
infrastructure

■ Splitting of applications and OS 
services to reduces size of TCB

■ Nizza secure system architecture:

■ Strong isolation

■ Application-specific TCBs

■ Legacy Reuse

■ Trusted Wrapper
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Coming up next ...
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■ Next week, January 25th:

■ Lecture on „Trusted Computing“:
■ Where does VPFS store its secrets?
■ How does VPFS detect corrupt data?
■ How can we trust in what Nitpicker 

shows on the screen?

■ Also next week:

■ Exercise „Capability Systems“ 
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