
Department of Computer Science Institute for System Architecture, Operating Systems Group

CARSTEN WEINHOLD

SECURITY
ARCHITECTURES

TU Dresden Security Architectures

Motivation

2

■ Common observations:

■ Complex software has security bugs

■ Users are plagued by malware

■ Companies, governments are high
value targets

■ Critical data gets stolen

■ User PCs become bots

■ Sad truth: threats won‘t go away

TU Dresden Security Architectures

Mobile Platforms
■ It‘s all the same for mobile devices

■ Malware in Android Store: trojan horse
downloaded by millions of users

■ Security-critical bugs:

■ Drivers [1,2], USB stacks [6], boot loaders

■ Messaging apps [7], web browser, ...

■ „Jailbreaking“ = attack on security:

■ Requires physical access ...
■ ... or visit special website [8]

3

TU Dresden Security Architectures

Classical
Architectures

4

TU Dresden Security Architectures

Isolation
■ Isolation in commodity OSes based

on user accounts

■ Problems:

■ Same privileges for all apps

■ Permissive interfaces (e.g., ptrace to
manipulate other address spaces)

■ No isolation within application

■ Efforts to restrict privileges:

■ SELinux, AppArmor, Seatbelt, ...
5

TU Dresden Security Architectures

Physical Isolation
■ Separate computers

■ Applications and data
physically isolated

■ Effective, but ...

■ High costs

■ Needs more space

■ Inconvenient

■ Exposure to network
may pose threat

6

OS

Hardware

App

Hardware

OS

App

PC 1 PC 2

TU Dresden Security Architectures

Virtual Machines
■ Multiple VMs, OSes

■ Isolation enforced by
virtualization layer

■ Saves space, energy,
maintenance effort

■ But still ...

■ Switching between
VMs is inconvenient

■ Even more code
7

OS

Virtualization Layer

App

Hardware

OS

App

VM 1 VM 2

TU Dresden Security Architectures

Little Effect ...

■ Huge code bases remain

■ Many targets to attack:

■ Application, Commodity OS

■ Virus scanner, firewall, ...

■ Expensive communication via
(virtual) Ethernet

■ High resource consumption even for
small applications

8

TU Dresden Security Architectures

Security
Architectures

9

TU Dresden Security Architectures

TCB--; Security++;
■ To further improve security:

■ Reduce size of TCB = attack surface

■ First idea:

■ Port application to microkernel-based
multi-server OS

■ Remove huge legacy OS from TCB

■ Remove unneeded libc backends, etc.

■ Possible approaches discussed in
lecture on „Legacy Containers“

10

TU Dresden Security Architectures

Loader

Nizza Architecture

11

Microkernel

GUINames User
Auth

Secure
Storage

I/O
Support

Legacy OS

Legacy
App

Signing
App

E-Commerce
App

Banking
App

TU Dresden Security Architectures

Nizza Key Principles

12

■ Nizza architecture based on basic
design concepts:

■ Strong isolation

■ Application-specific TCBs

■ Legacy reuse

■ Trusted wrapper

■ Trusted Computing

TU Dresden Security Architectures

App-specific TCBs

13

Loader

Microkernel

GUINames User
Auth

Secure
Storage

I/O
Support

Key Mgt

IP Stack Signing
App

Virtual
Ethernet

Network
App

Legacy OS

Legacy
App

TU Dresden Security Architectures

App-specific TCBs

■ Reflects principle of least privilege

■ TCB of an application includes only
components its security relies upon

■ TCB does not include unrelated
applications, services, libraries

■ Mechanisms:

■ Address spaces for strong isolation

■ Well-defined interfaces

14

TU Dresden Security Architectures

Splitting
Components

15

TU Dresden Security Architectures

Split Applications
■ Problems with porting applications:

■ Dependencies need to be satisfied

■ Can be complex, even infeasible

■ Stripped down applications may lack
functionality / usability

■ Better idea: split application

■ Make only security-critical parts run
on microkernel-based OS

■ Reduces size of TCB even further
16

TU Dresden Security Architectures

Example 1: eMail

17

■ Critical functionality to support
digitally signed e-mails:

■ Handling of signature keys

■ Requesting passphrase to unlock
secret signature key

■ Presenting e-mail message:
■ Before sending: „What You See Is What

You Sign“
■ After receiving: verify signature, identify

sender

TU Dresden Security Architectures

Split eMail Signing

18

Nitpicker

DOpE

L4Linux

Mozilla
Thunderbird

X Window System

GnuPG
Proxy

L4GnuPG

Video Device Input DevicesHardware

Trusted

computing

base

Figure 8. Application scenario.

5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction

with widely used commodity applications, let us present an

application scenario.

Mail readers such as Mozilla Thunderbird are popular

because of their rich features (e. g., spam filtering, powerful

searching functions) and good usability. This convenience

comes at the cost of an enormous complexity of the appli-

cation and the needed OS support. With regard to the con-

fidentiality of private keys for signing emails, such appli-

cations are a nightmare. For the concrete example of us-

ing Mozilla Thunderbird on the GNU/Linux platform, the

complexity of the Linux kernel, the privileged daemon pro-

cesses, the X window system, Mozilla Thunderbird and

concurrently running user processes of the same user ac-

cumulate to millions of lines of code that potentially put the

secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-

vacy Guard (GnuPG) [4]—actually needs the private keys

for operation. We ported GnuPG to the L4 platform, cre-

ating L4GnuPG, and complemented it with a trusted text

viewer. We interfaced L4GnuPG with Thunderbird by cre-

ating a L
4
Linux proxy process that redirects Thunderbird’s

calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as

its widget set, which is running within an isolated address

space. In this scenario, L4GnuPG is the only process in the

whole system that can access the confidential signing key

of the user. Figure 8 presents an overview about the compo-

nents of this scenario. When the user activates the signing

function of Thunderbird, our L
4
Linux proxy process trans-

fers the email to L4GnuPG. L4GnuPG presents this email

in a DOpE window that is displayed within a correspond-

ing view of Nitpicker. The user can now decide to sign

the email or cancel the operation. If he decides to sign the

email, L4GnuPG requests a pass-phrase, signs the email and

transfers the result to Thunderbird via the L
4
Linux proxy

Mozilla

Terminal

orphaned

area

Terminal

Mozilla

Terminal

Mozilla

Figure 9. Orphaned area on screen.

process.

In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco

(15,000 LOC), trusted L4 services (35,000 LOC) and

L4GnuPG (55,000 LOC). The isolation of the legacy X11

window system and the GUI of the trusted application de-

pends only on the L4/Fiasco kernel and Nitpicker (1,500

LOC). We obtain the powerful features and great usabil-

ity of a commodity application while extremely minimaliz-

ing the trusted computing base (TCB) of a security-sensitive

function with regard to its GUI. The scenario underlines the

biggest strengths of Nitpicker: low complexity and the sup-

port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review

the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There

are view layouts that leave orphaned areas unlabeled on

screen (Figure 9). Although the dimming technique in

X-ray mode prevents confusion about the focused view, a

shading policy as described in [12] could be deployed to

encounter such cases by blanking out orphaned areas. This

will be implemented in a future version.

Nitpicker performs graphical output via software graph-

ics routines. Making hardware-accelerated graphics usable

by Nitpicker and untrusted clients at the same time is a chal-

lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work

about techniques and approaches that inspired the design of

Nitpicker.

J. Epstein addressed the problem of expressive and

unique labeling of windows for the Trusted X11 in [12].

Beside estimating different labeling techniques for mark-

ing classified information, he introduces a technique to de-

tect and blank out orphaned window areas. The dimming

of non-focused windows was inspired by Apple’s Exposé

feature in Mac OS X. J. Shapiro described the dimming

Figure taken from [4]

TU Dresden Security Architectures

Benefit of Splitting

19

■ >1,500,000 SLOC no longer in TCB:

■ Linux kernel, drivers, X-Server

■ C and GUI libraries, Thunderbird

■ TCB size reduced to ~150,000 SLOC:

■ GNU Privacy Guard, e-mail viewer

■ Basic L4 system

■ At least 10 times less code in TCB

■ Method not restricted to applications

TU Dresden Security Architectures

Reuse OS Services?

■ Beyond applications:

■ New OS? Do not reinvent the wheel!

■ Existing software can be reused:
■ Protocol stacks (e.g., TCP/IP)
■ Commodity OSes (e.g., Linux)

■ Virtualization is important enabler

20

TU Dresden Security Architectures

Reuse Made Easy
■ Run legacy OS in VM

■ Reuse service: net, files, ...

■ Legacy infrastructure
isolated from applications

■ But:

■ Applications still depend on
legacy services -- in TCB?

■ Interfaces reused, security
issues as well?

21

Basic
Services

Legacy OS

App

Microkernel

TU Dresden Security Architectures

Reuse OS Services
■ Network and file system stacks are

virtually essential subsystems

■ Generally well tested

■ Ready for production use

■ ... but not bug free:

■ Month of Kernel Bugs 2006 [1,2]:
■ 14 exploitable flaws in file systems:

UFS, ISO 9660, Ext3, SquashFS, ...
■ WiFi drivers: remotely exploitable bugs

22

TU Dresden Security Architectures

Trusted Wrappers

■ Complex protocol stacks should not
be part of TCB

■ Reuse untrusted infrastructure
through trusted wrapper:

■ Add security measures around
existing APIs
■ Cryptography
■ Redundancy

■ Similar approaches: SSL, VPN
23

TU Dresden Security Architectures

Example 2: VPN
■ SINA box used by German „BSI“:

24

■ VPN gateway

■ Implements IPSec & PKI

■ Intrusion detection &
response

■ Used for secure access
to government
networks, e.g. in
German embassies Image source:

http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/

http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/

TU Dresden Security Architectures

SINA Box Overview

■ Hardware:

■ Different kinds of networks interfaces:
■ Red: plaintext, no protection
■ Black: encrypted, MACs

■ Tamper / EM protected casing

■ Software:

■ Minimized and hardened Linux

■ Runs only from CD-ROM or Flash
25

TU Dresden Security Architectures

Linux is Complex
■ Linux is complex!

■ SLOC for Linux 2.6.18:

■ Architecture specific: 817.880

■ x86 specific: 55.463

■ Drivers: 2.365.256

■ Common: 1.800.587

■ Typical config: ~ 2.000.000

■ Minimized & hardened: > 500.000
26

TU Dresden Security Architectures

Mikro-SINA

■ Research project Mikro-SINA:

■ Reduce TCB of VPN gateway

■ Enable high-level evaluation for high
assurance scenarios

■ Ensure confidentiality and integrity of
sensitive data within the VPN

■ Exploit microkernel architecture

27

TU Dresden Security Architectures

IPSec in a Nutshell
■ Protocol suite for securing

IP-based communication
■ Authentication header (AH)
■ Integrity
■ Authentication

■ Encapsulating Security
Payload (ESP)
■ Confidentiality

■ Tunnel mode / transport mode
28

Data Link Layer

IPSec

IP

TCP / UDP

Application

TU Dresden Security Architectures

IPSec in L4Linux

■ IPSec is security critical component

■ ... but is integrated into Linux kernel

29

Microkernel

L4Linux

IP Stack

IPSec

TU Dresden Security Architectures

IPSec „Viaduct“
■ Better: isolate IPSec in „Viaduct“

■ IPSec packets sent/received through
TUN/TAP device

30

Microkernel

L4Linux

IP Stack
IPSec

„Viaduct“
eth0

tun0

TU Dresden Security Architectures

Fragmentation
■ Problem: Routers can fragment

IPSec packets on the way

■ Let L4Linux reassemble them

31

Microkernel

L4Linux

IP Stack
IPSec

„Viaduct“
eth0

tun0
AH /
ESP

TU Dresden Security Architectures

L4LinuxL4Linux

Confidentiality
■ Untrusted L4Linux must not see both

plaintext and encrypted data

■ Dedicated L4Linux for black/red networks

32

Microkernel

L4Linux

IP Stack
IPSec

„Viaduct“
eth0

tun0
AH /
ESP

L4Linux

IP Stack
eth1

tun0

TU Dresden Security Architectures

Mikro-SINA Results

■ Trusted wrapper for VPN

■ Small TCB:

■ 5.000 SLOC for „Viaduct“

■ Fine grain isolation
■ Principle of least privilege

■ Extensive reuse of legacy code
(Drivers, IP stack, ...)

■ More details in [5]
33

TU Dresden Security Architectures

Loader

Example 3: Storage

34

Microkernel

GUINames User
Auth

Secure
Storage

I/O
Support

Legacy OS

Legacy
App

Signing
App

E-Commerce
App

Banking
App

How to provide secure and reliable
storage for trusted applications?

TU Dresden Security Architectures

Loader

Split File System

35

Microkernel

GUINames User
Auth

Secure
Storage

I/O
Support

Legacy OS

Untrusted
Storage Proxy

Signing
App

Idea: build something like a virtual
private network (VPN) for files:

Virtual Private File System (VPFS)

TU Dresden Security Architectures

Design Space

36

Protection

Disk Driver

Block Layer

File System

VFS

App

Buffer Cache

■ First end of design space:
Protect whole file system at
block layer:

■ Common solution (e.g.,
dm_crypt in Linux)

■ Easy protection for all data

■ Requires a complete file
system in the TCB

■ Limit reuse

TU Dresden Security Architectures

Design Space

■ Second end of design space:
Protect individual files near
VFS / API layer:

■ Stacked file system (e.g.,
ecryptfs in Linux)

■ Flexible protection policies

■ Most parts of file system
stack not part of TCB

■ Ideal for trusted wrapper

37

Protection

Disk Driver

Block Layer

File System

VFS

App

Buffer Cache

TU Dresden Security Architectures

VPFS Architecture

38

Wrapper

Disk Driver

Block Layer

File System

VFS

Trusted App

Buffer Cache

Crypto Layer

Proxy Stub

Buffer Cache

FS Proxy

Untrusted Trusted

TU Dresden Security Architectures

Protection Goals

39

■ Confidentiality: only authorized
applications can access file system,
all untrusted software cannot get any
useful information

■ Integrity: all data and meta data is
correct, complete, and up to date;
otherwise report integrity error

■ Recoverability: damaged data in
untrusted file system can be
recovered from trusted backup

TU Dresden Security Architectures

File Encryption

40

■ Files in untrusted legacy file system
are arrays of encrypted blocks

■ Trusted part of VPFS takes care of
encryption / decryption on the fly

■ Only buffer cache contains plaintext

TU Dresden Security Architectures

File Integrity

41

0 1 2 3 4 5 6 7 8

■ Hash tree embedded in files

■ Parents authenticate child nodes

TU Dresden Security Architectures

Meta Data Integrity

42

Master Hash File

File

„Small Secure
Storage“

File File File

Dir

Dir

Dir

TU Dresden Security Architectures

Maximizing Reuse

43

■ VPFS reuses Linux file system stack:

■ Drivers, block device layer

■ Optimizations (buffer cache, read
ahead, write batching, ...)

■ Allocate / free disk storage for files

■ What about metadata?

■ Naming and lookup functionality

■ Directories and hierarchies

TU Dresden Security Architectures

Validity Checks

44

■ How to trust untrusted meta data?

■ „File exists“ / „File does not exist“:
■ Validated inside TCB using cryptographic

proof and hash tree
■ Efficient solution possible

■ Directory listings:
■ Efficient solution requires functionality to

be implemented in TCB

■ Details in [3]

TU Dresden Security Architectures

VPFS Summary

45

■ Trusted wrapper shown to work for
file systems

■ VPFS is general purpose file system

■ Significant reduction in code size:

■ VPFS adds 4,000 to 4,600 SLOC to
application TCB

■ Standard Linux file system stack
comprises >50,000 SLOC

TU Dresden Security Architectures

User Interfaces

46

TU Dresden Security Architectures

Sharing The Screen

47

■ Isolated applications run in different
domains of trust, but separate
screens are inconvenient

■ The Nitpicker solution [4]:

■ Let all windows share the same screen

■ ... but securely:
■ Make windows & applications identifiable
■ Prevent them from spying on each other:

route input securely, no screenshots

TU Dresden Security Architectures

Concepts

48

Buffers

Views

TU Dresden Security Architectures

How It Works

49

Buffers

Views

TU Dresden Security Architectures

Nitpicker In Action

50

TU Dresden Security Architectures

Demo

51

TU Dresden Security Architectures

Summary

52

■ Secure reuse of untrusted legacy
infrastructure

■ Splitting of applications and OS
services to reduces size of TCB

■ Nizza secure system architecture:

■ Strong isolation

■ Application-specific TCBs

■ Legacy Reuse

■ Trusted Wrapper

TU Dresden Security Architectures

Coming up next ...

53

■ Next week, January 25th:

■ Lecture on „Trusted Computing“:
■ Where does VPFS store its secrets?
■ How does VPFS detect corrupt data?
■ How can we trust in what Nitpicker

shows on the screen?

■ Also next week:

■ Exercise „Capability Systems“

TU Dresden Security Architectures

References
■ [1] http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454

■ [2] http://projects.info-pull.com/mokb/

■ [3] Carsten Weinhold and Hermann Härtig, „VPFS: Building a Virtual Private File System with a
Small Trusted Computing Base“, Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, 2008, Glasgow, Scotland UK

■ [4] Norman Feske and Christian Helmuth, „A Nitpicker's guide to a minimal-complexity secure
GUI“, ACSAC '05: Proceedings of the 21st Annual Computer Security Applications Conference,
2005, Washington, DC, USA

■ [5] Christian Helmuth, Alexander Warg, Norman Feske, „Mikro-SINA - Hands-on Experiences with
the Nizza Security Architecture“, D.A.CH Security 2005, 2005, Darmstadt, Germany

■ [6] http://support.apple.com/kb/HT4013

■ [7] http://support.apple.com/kb/HT3754

■ [8] http://jailbreakme.com

54

http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454
http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454
http://projects.info-pull.com/mokb/
http://projects.info-pull.com/mokb/
http://projects.info-pull.com/mokb/
http://projects.info-pull.com/mokb/
http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454
http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454
http://projects.info-pull.com/mokb/
http://projects.info-pull.com/mokb/

