
Pre
lim

in
ar

y
NOVA Microhypervisor
Interface Specification

Udo Steinberg
Technische Universität Dresden

Operating Systems Group
udo@hypervisor.org

August 5, 2010

Pre
lim

in
ar

y

Copyright c© 2006–2010 Udo Steinberg, Technische Universität Dresden.

This specification is provided ”as is” and may contain defects or deficiencies which cannot or will not be
corrected. The author makes no representations or warranties, either expressed or implied, including but
not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement that the
contents of the specification are suitable for any purpose or that any practice or implementation of such
contents will not infringe any third party patents, copyrights, trade secrets or other rights.

The specification could include technical inaccuracies or typographical errors. Additions and changes
are periodically made to the information therein; these will be incorporated into new versions of the
specification, if any.

Pre
lim

in
ar

y

Contents

I Introduction 1

1 System Architecture 2

II Basic Abstractions 3

2 Kernel Objects 4
2.1 Protection Domain . 4
2.2 Execution Context . 4
2.3 Scheduling Context . 5
2.4 Portal . 5
2.5 Semaphore . 6

3 Mechanisms 7
3.1 Scheduling . 7
3.2 Communication . 7
3.3 Exceptions and Intercepts . 8
3.4 Interrupts . 8
3.5 Capability Delegation . 8
3.6 Capability Revocation . 9

III Application Programming Interface 10

4 Data Types 11
4.1 Capability . 11
4.2 Capability Selector . 12
4.3 Capability Range Descriptor . 13
4.4 Message Transfer Descriptor . 14
4.5 Quantum Priority Descriptor . 15
4.6 PCI Routing ID . 15
4.7 User Thread Control Block . 16

5 Hypercalls 18
5.1 Definitions . 18
5.2 Inter-Domain Communication . 19

5.2.1 Call . 19
5.2.2 Reply . 19

5.3 Capability Management . 20
5.3.1 Create Protection Domain . 20
5.3.2 Create Execution Context . 21
5.3.3 Create Scheduling Context . 21
5.3.4 Create Portal . 22
5.3.5 Create Semaphore . 22

i

Pre
lim

in
ar

y

5.3.6 Revoke Capability Range . 22
5.3.7 Lookup Capability Range . 23

5.4 Execution Control . 23
5.4.1 Recall Execution Context . 23
5.4.2 Semaphore Control . 24

5.5 Device Control . 24
5.5.1 Assign PCI Device . 24
5.5.2 Assign Global System Interrupt . 25

6 Booting 26
6.1 Root Protection Domain . 26
6.2 Hypervisor Information Page . 27

IV Application Binary Interface 30

7 ABI x86-32 31
7.1 Initial State . 31
7.2 Event-Specific Capability Selectors . 31
7.3 Message Transfer Descriptor . 33
7.4 UTCB Data Layout . 34
7.5 Calling Convention . 35

ii

Pre
lim

in
ar

yPart I

Introduction

1

Pre
lim

in
ar

y

1 System Architecture

The NOVA OS Virtualization Architecture facilitates the coexistence of multiple legacy guest operating
systems and a multi-server user environment on a single platform. The core system leverages virtualization
technology provided by recent x86 platforms and comprises the hypervisor and a virtual-machine monitor.

user

kernel

root
non-root

App VMM Driver

Guest VMGuest VM Guest VM

Microhypervisor

ServerApp

Figure 1.1: System Architecture

Figure 1.1 shows the structure of the system. The hypervisor is the only component running in privileged
root/kernel mode. It isolates the user-level servers, including the virtual-machine monitor, from one another
by placing them in different address spaces in unprivileged root/user mode. Each legacy guest operating
system runs in its own virtual-machine environment in non-root mode and is therefore isolated from the
other components. On platforms that do not provide hardware support for virtualization, legacy operating
systems can be supported through use of address spaces and paravirtualization.

Besides isolation, the hypervisor also provides mechanisms for partitioning and delegation of platform
resources, such as CPU time, physical memory, I/O ports and hardware interrupts and for establishing
communication paths between different protection domains.

The virtual-machine monitor handles virtualization faults and implements virtual devices that enable legacy
guest operating systems to function in the same manner as they would on bare hardware. Providing this
functionality outside the hypervisor in the VMM considerably reduces the size of the trusted computing
base for the multi-server user environment and for applications that do not require virtualization support.

The architecture and interfaces of the VMM and the multi-server user environment are not described in this
document.

2

Pre
lim

in
ar

yPart II

Basic Abstractions

3

Pre
lim

in
ar

y

2 Kernel Objects

2.1 Protection Domain

1. The protection domain (PD) is a unit of protection and isolation.

2. A protection domain is referenced by a protection domain capability CAPPD (4.1).

3. A protection domain is composed of a set of spaces that hold capabilities to platform resources or
kernel objects that can be accessed by execution contexts within the protection domain. These spaces
are:

• Memory Space

• I/O Space

• Object Space

4. The memory space of a protection domain holds capabilities to page frames.

5. The I/O space of a protection domain holds capabilities to I/O ports.

6. The object space of a protection domain holds capabilities to the following kernel objects:

• Protection Domain

• Execution Context

• Scheduling Context

• Portal

• Semaphore

2.2 Execution Context

1. The execution context (EC) is an abstraction for an activity within a protection domain.

2. An execution context is referenced by an execution context capability CAPEC (4.1).

3. The protection domain in which an execution context was created holds in its object space an EC
capability referencing that execution context.

4. An execution context is permanently bound to the protection domain in which it was created.

5. An execution context optionally has a scheduling context bound to it.

6. There exist two flavors of execution context:

• Kernel thread

• Virtual CPU

7. An execution context comprises the following information:

• Reference to protection domain (2.1)

4

Pre
lim

in
ar

y

• Scheduling context (2.3)

• UTCB (4.7)

• Event Selector Base (3.3)

• CPU registers (architecture dependent)

• FPU registers (architecture dependent)

• Reply capability register (4.1)

2.3 Scheduling Context

1. The scheduling context (SC) is a unit of dispatching and prioritization.

2. A scheduling context is referenced by a scheduling context capability CAPSC (4.1).

3. The protection domain in which a scheduling context was created holds in its object space an SC
capability referencing that scheduling context.

4. At any point in time, a scheduling context is bound to exactly one execution context.

5. Donation of a scheduling context to another execution context binds the scheduling context to that
other execution context.

6. A scheduling context is permanently bound to exactly one CPU.

7. A scheduling context comprises the following information:

• Reference to execution context (2.2)

• Time quantum

• Priority

2.4 Portal

1. A portal (PT) represents a dedicated entry point into the protection domain in which the portal was
created.

2. A portal is referenced by a portal capability CAPPT (4.1).

3. The protection domain in which a portal was created holds in its object space a portal capability
referencing that portal.

4. A portal is permanently bound to exactly one execution context.

5. A portal comprises the following information:

• Reference to execution context (2.2)

• Message transfer descriptor (4.4)

• Entry instruction pointer

• Portal identifier

5

Pre
lim

in
ar

y

2.5 Semaphore

1. A semaphore (SM) provides a means to synchronize execution and interrupt delivery by selectively
blocking and unblocking execution contexts.

2. A semaphore is referenced by a semaphore capability CAPSM (4.1).

3. The protection domain in which a semaphore was created holds in its object space a semaphore
capability referencing that semaphore.

6

Pre
lim

in
ar

y

3 Mechanisms

3.1 Scheduling

The microhypervisor implements a round-robin scheduler with multiple priority levels. Whenever an
execution context is ready to execute, the runqueue contains the highest-priority scheduling context bound
to that execution context. When an execution context blocks, the hypervisor removes the corresponding
scheduling context from the runqueue.

When the hypervisor needs to make a scheduling decision, it selects the highest-priority scheduling context
from the runqueue and dispatches the execution context bound to that scheduling context.

The parameters of a scheduling context influence the scheduling behavior of the system as follows:

• The priority defines the importance of a scheduling context. A higher-priority scheduling context
always has precedence and immediately preempts a lower-priority scheduling context.

• The time quantum defines the number of microseconds that the execution context bound to the
scheduling context can utilize the CPU when it is dispatched. A dispatched execution context
consumes the time quantum of its scheduling context until the quantum reaches zero; at that point
the execution context is descheduled until the time quantum has been replenished.

3.2 Communication

Message passing between protection domains is governed by portals. Each portal represents a dedicated
entry point into the protection domain where the portal was created. An execution context in a protection
domain can traverse any portal for which the protection domain holds a capability. Portal capabilities can
be delegated to establish cross-domain communication channels.

To initiate a message-passing operation from one protection domain to another, the caller execution context
presents a capability selector for a capability referencing the destination portal and a message transfer
descriptor of the data to be transmitted to the hypervisor. The hypervisor looks up the portal in the object
space of the source protection domain, determines the destination protection domain and loads the entry
instruction pointer for that domain from the portal.

An arbitrary number of portals can be bound to a callee execution context in a protection domain. The
callee provides the stack for handling one incoming request on any of these portals. If the callee is busy
handling another request at the time of portal traversal, the caller blocks until the callee becomes available,
unless the nonblocking flag has been specified.

Once the callee is available to handle a request and a caller exists for any portal bound to the callee, the
hypervisor arranges a rendezvous and transfers the specified message from the caller to the callee.

If the request established a reply capability for the callee, the callee may subsequently respond directly to
the caller through a reply operation without risking to block, because the caller is already waiting for the
response.

The following forms of message passing are currently supported:

7

Pre
lim

in
ar

y

Nondonating Call

During a nondonating call, the caller execution context traverses the destination portal, rendezvouses with
a callee execution context and transfers a message to it. The hypervisor establishes a reply capability in
the callee protection domain. The caller does not donate the current scheduling context to the callee. The
caller blocks on the instruction following the hypercall. The callee may later invoke the reply capability to
send a response directly to the blocked caller. Upon receiving the response the caller becomes unblocked.

Donating Call

A donating call differs from a nondonating call in that the caller donates the current scheduling context
to the callee. The donation mechanism implements priority and bandwidth inheritance from the caller
to the callee. The caller blocks on the instruction following the hypercall and the callee starts executing
immediately. The hypervisor also establishes a reply capability in the callee protection domain. When the
callee later invokes that reply capability to send a response, the hypervisor returns the previously donated
scheduling context from the callee back to the caller. Upon receiving the response the caller becomes
unblocked.

Reply and Wait

The reply-and-wait operation sends a message back to the caller identified by the reply capability and
revokes that capability. If the reply capability was established by a donating call, the hypervisor returns the
previously donated scheduling context back to the caller. The callee blocks until the next request arrives.

3.3 Exceptions and Intercepts

When an execution context triggers a hardware exception or VM intercept, the hypervisor adds the
exception number or intercept reason to SELEVT of the affected EC. If the resulting capability selector
refers to a portal capability CAPPT, the hypervisor arranges an implicit dcall hypercall for the execution
context through the corresponding portal; otherwise the execution context is shut down.

The entire handling of the exception or intercept is performed using the current scheduling context of the
execution context that triggered the event. Furthermore, that execution context remains blocked until the
handler has replied with a message to resolve the exception or intercept.

The number of capability selectors used for exception and intercept handling is conveyed in the hypervisor
information page (6.2). The translation of hardware exception numbers and intercept reasons to capability
selectors is described in the processor-specific ABI (IV).

3.4 Interrupts

The hypervisor provides a semaphore per global system interrupt (GSI). An execution context waits for
an interrupt by performing a semctl(down) hypercall to block on the corresponding semaphore. When the
interrupt occurs, the hypervisor issues a semctl(up) operation for the semaphore.

3.5 Capability Delegation

Delegation of capabilities from one protection domain to another is performed during inter-domain
communication. The execution context that sends a message specifies in its message transfer descriptor

8

Pre
lim

in
ar

y

which range of capabilites from the sender’s protection domain it offers to the receiver. The receiver
specifies which range of capabilities it is willing to accept and where they should be installed in the
receiver’s protection domain.

The hypervisor computes the intersection of the sender and receiver ranges and delegates only those
capabilities that are covered by both ranges. If the capabilities have access permissions associated
with them, the sender may optionally reduce the permissions so that the receiver obtains less privileged
capabilities.

If the capability ranges of the sender and receiver differ in size, the capability hotspot, specified by the
sender, is used for disambiguation as illustrated in Figure 3.1.

∼ HOT ∼
}

SELHOT

01920232431

SND 0
}

SELSND

0192031

RCV 0
}

SELRCV

0232431

RCV HOT 0
}

SELRCVdisambiguated

01920232431

Figure 3.1: Capability Range Disambiguation

In this example, the sender has specified a capability range of order 20, starting at SELSND, whereas the
receiver has specified a capability range of order 24, starting at SELRCV. There exist 24 possible locations
in the receiver range, where the sender range could be delegated. Whenever two capability ranges differ in
size, the hypervisor truncates the larger range by taking the ambiguous bits from the capability hotspot.

3.6 Capability Revocation

Accepting a capability delegation constitutes an implicit agreement that the capabilities may be revoked
again at any time without the receiver’s consent. Revoking a range of capabilities from a protection domain
additionally revokes that range from all protection domains that directly or indirectly inherited it from that
protection domain.

9

Pre
lim

in
ar

yPart III

Application Programming Interface

10

Pre
lim

in
ar

y

4 Data Types

4.1 Capability

A capability (CAP) is a reference to a kernel object plus associated auxiliary data, such as access
permissions. Capabilities are opaque and immutable to the user — they cannot be inspected, modified or
addressed directly; instead user programs access a capability via a capability selector (4.2). The following
types of capabilities exist:

Null Capability

A null capability CAP∅ does not reference anything.

Memory Capability

A memory capability CAPMEM references a 4KB page frame and defines read, write and execute
permissions for that page frame. It is stored in the memory space of a protection domain and can be
delegated and revoked as described in Section 3.5.

I/O Capability

An I/O capability CAPI/O references an I/O port. It is stored in the I/O space of a protection domain and
can be delegated and revoked as described in Section 3.5.

Object Capability

Object capabilities are stored in the object space of a protection domain and can be delegated and revoked
as described in Section 3.5. The following object capabilities are currently defined:

Protection Domain Capability

A protection domain capability CAPPD references a protection domain (2.1).

Execution Context Capability

An execution context capability CAPEC references an execution context (2.2).

Scheduling Context Capability

A scheduling context capability CAPSC references a scheduling context (2.3).

Portal Capability

A portal capability CAPPT references a portal (2.4).

Semaphore Capability

A semaphore capability CAPSM references a semaphore (2.5).

11

Pre
lim

in
ar

y

Reply Capability

A reply capability CAPRP references a caller execution context. It is stored in the reply register of an
execution context during inter-domain communication and automatically destroyed when invoked.

4.2 Capability Selector

A capability selector (SEL) is a user-visible abstract key for accessing a capability. The capability selector
serves as integer index for the memory space, I/O space or object space of a protection domain. All
capability selectors that do not refer to capabilities of another type refer to a null capability. For example,
in Figure 4.1 capability selector 2 refers to a capability for an execution context.

Portal

Portal

Execution Context

Null Capability
EC Capability
PT Capability
PT Capability

object space
with capabilities

kernel objects

2

0
1

3

capability selector

Figure 4.1: Capability Selector

12

Pre
lim

in
ar

y

4.3 Capability Range Descriptor

A capability range descriptor (CRD) refers to all capabilities of a particular type in the selector range
Base . . . Base + 2Order − 1. It must be naturally aligned such that Base ≡ 0 (mod 2Order).

Null Capability Range Descriptor

A null capability range descriptor CRD0 does not refer to any capabilities.

∼ 0
01231

Memory Capability Range Descriptor

A memory capability range descriptor CRDMEM refers to the memory capabilities located within the
specified range of the memory space. Each memory capability covers 212 bytes of memory.

The subspace bits are defined as follows:

d DMA page table is updated (1) or not updated (0).

e Guest page table is updated (1) or not updated (0).

The permissions bits are defined as follows:

r read permissions are inherited (1) or not inherited (0).

w write permissions are inherited (1) or not inherited (0).

x execute permissions are inherited (1) or not inherited (0).

Base Order e d x w r 1
01234567111231

I/O Capability Range Descriptor

An I/O capability range descriptor CRDI/O refers to the I/O capabilities located within the specified range
of the I/O space.

0 Base Order ∼ p p p 2
012345671112272831

Object Capability Range Descriptor

An object capability range descriptor CRDOBJ refers to the delegatable capabilities located within the
specified range of the object space.

13

Pre
lim

in
ar

y

Base Order ∼ p p p 3
01234567111231

4.4 Message Transfer Descriptor

The message transfer descriptor (MTD) specifies the contents of a message to be transferred from the
sender to the receiver. For inter-domain communication the MTD is provided by the sender execution
context. For exceptions and intercepts the MTD is provided by the portal associated with the event.

The hypervisor conveys the contents of a message in the message transfer result field in the UTCB (4.7) of
the receiver.

The following subsections describe the layout of the MTD for the different message types in detail.

Inter-Domain Communication

The message transfer descriptor for inter-domain communication comprises the following two fields:

Message Words:

Number of message words transferred from the sender UTCB to the receiver UTCB, starting at w0.

Transfer Items:

Number of transfer items immediately following the message words.

Transfer Items 0 Message Words
0910222331

Figure 4.2: Message Transfer Descriptor: Inter-Domain Communication

Exceptions, Intercepts

The message transfer descriptor for exceptions and interrupts comprises the following two fields:

Architectural State:

Architecture-specific bitfield. For each bit set to 1, the hypervisor transfers the processor state
controlled by that bit to or from the respective fields of the UTCB data area. The layout of the
bitfield and the fields in the UTCB data area are described in the processor-specific ABI (IV).

Transfer Items:

Number of transfer items immediately following the architectural state.

Transfer Items Architectural State
0222331

Figure 4.3: Message Transfer Descriptor: Exceptions, Intercepts

14

Pre
lim

in
ar

y

Time Quantum 0 Priority
078111231

Figure 4.4: Quantum Priority Descriptor

4.5 Quantum Priority Descriptor

The quantum priority descriptor (QPD) specifies the priority of a scheduling context and its time quantum
in microseconds. It has the following format:

4.6 PCI Routing ID

The PCI Routing ID (RID) specifies the address of a PCI or PCI-E device and is composed of a bus number,
a device number and a function number. It has the following format:

Bus Device Function
0237815

Figure 4.5: PCI Routing ID

With alternative routing-id interpretation (ARI), the format changes as follows:

Bus Function
07815

Figure 4.6: PCI Routing ID (ARI)

15

Pre
lim

in
ar

y

4.7 User Thread Control Block

Each execution context that acts as a kernel thread has an associated user thread control block (UTCB),
which comprises a header area and a data area as illustrated in Figure 4.7.

wn−1
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

w0


Data

TLS

reserved

reserved

CRDRCV

MTDMTR

reserved


Header

031

Figure 4.7: User Thread Control Block: General Layout

Header Area

The UTCB header fields are defined as follows:

MTDMTR

Message transfer result (4.4) of the last message received into the UTCB. The transfer result denotes
which UTCB fields contain valid data.

CRDRCV

Receive capability range descriptor (4.3). Denotes what type of capabilities the execution context is
willing to accept, if any.

TLS

This field is never written by the hypervisor and can be used to store thread-local data.

Data Area

The size of the data area is defined by the size of the UTCB minus the size of the header area. An
execution context uses its UTCB data area to send or receive message words. The data area is also used to
provide transfer items for capability delegation. The message transfer descriptor (4.4) defines the number
of message words and transfer items.

16

Pre
lim

in
ar

y

Message Word

The hypervisor transfers message words from the beginning of the UTCB data area. For example, a transfer
of x message words copies words w0...wx−1 from the sender to words w0...wx−1 in the UTCB data area of
the receiver. The hypervisor does not interpret the contents of the message words.

Data
}

w0

031

Figure 4.8: User Thread Control Block: Message Word

Transfer Item

The transfer items immediately follow the message words in the UTCB data area. Each transfer item
occupies two words as illustrated in Figure 4.9. For example, when y transfer items have been specified in
the MTD, the hypervisor interprets words wx...wx+2y−1 of the sender’s UTCB data area.

CRDSND

}
wx+1

SELHOT

}
wx

031

Figure 4.9: User Thread Control Block: Transfer Item

For each transfer item, the hypervisor compares the sender’s capability range descriptor CRDSND with the
capability range descriptor CRDRCV in the receiver’s UTCB header area. If the types match, the hypervisor
computes the range of capabilities to delegate from the sender to the receiver, using the hotspot SELHOT
for range disambiguation, as described in Section 3.5.

17

Pre
lim

in
ar

y

5 Hypercalls

5.1 Definitions

Hypercall Numbers

Each hypercall is identified by a unique number. Figure 5.1 lists the currently defined hypercalls.

Number Hypercall Section
0x0 CALL 5.2.1
0x1 REPLY 5.2.2
0x2 CREATE PD 5.3.1
0x3 CREATE EC 5.3.2
0x4 CREATE SC 5.3.3
0x5 CREATE PT 5.3.4
0x6 CREATE SM 5.3.5
0x7 REVOKE 5.3.6
0x8 LOOKUP 5.3.7
0x9 RECALL 5.4.1
0xa SEMCTL 5.4.2
0xb ASSIGN PCI 5.5.1
0xc ASSIGN GSI 5.5.2
Figure 5.1: Hypercall Numbers

Status Codes

Figure 5.2 shows the status codes returned to indicate success or failure of a hypercall.

Number Status Code
0x0 SUCCESS
0x1 TIMEOUT
0x2 BAD SYS
0x3 BAD CAP
0x4 BAD MEM
0x5 BAD FTR
0x6 BAD CPU
0x7 BAD DEV

Figure 5.2: Status Codes

18

Pre
lim

in
ar

y

5.2 Inter-Domain Communication

5.2.1 Call

Synopsis:

status = call (SELPT, MTD)

Parameters:

SELPT Capability Selector: Target Portal

MTD Message Transfer Descriptor

Flags:

0 DD DB
0127

DB Disable Blocking (0=blocking, 1=nonblocking)

DD Disable Donation (0=dcall, 1=ncall)

Description:

1. If the execution context (2.2), to which the destination portal referenced by SELPT is bound,
is busy, the hypervisor considers the ’disable blocking’ flag. If the flag is set, the hypercall
returns with a timeout. Otherwise the caller blocks until the callee execution context becomes
available.

2. The hypervisor transfers a message, whose contents is determined by the message transfer
descriptor, from the caller to the callee.

3. The hypervisor establishes a reply capability (4.1) in the reply register of the callee. The caller
blocks until the callee invokes the reply capability. If the ’disable donation’ flag is clear, the
current scheduling context, previously bound to the caller, is donated and thereby bound to the
callee.

4. The callee becomes ready.

5. The scheduler determines the current scheduling context and current execution context.

Status:

SUCCESS Hypercall completed successfully.

TIMEOUT A rendezvous could not be arranged immediately.

BAD CAP SELPT did not refer to a PT capability.

5.2.2 Reply

Synopsis:

reply (MTD)

Parameters:

MTD Message Transfer Descriptor

Description:

19

Pre
lim

in
ar

y

1. If the reply register contains a reply capability, the hypervisor transfers a message, whose
contents is determined by the message transfer descriptor, to the caller execution context
referenced by the reply capability.

2. If the caller had donated its scheduling context to the callee, the hypervisor binds that
scheduling context back to the caller, thereby terminating the donation.

3. The hypervisor revokes the reply capability by replacing it with a null capability CAP∅.

4. The callee blocks until a subsequent request arrives.

5. The caller becomes ready.

6. The scheduler determines the current scheduling context and current execution context.

Status:

This hypercall does not return. Instead, when one of the portals bound to the execution context is
called, the execution continues at the instruction pointer specified in that portal.

5.3 Capability Management

5.3.1 Create Protection Domain

Synopsis:

status = create pd (SELPD, CPU, UTCB, QPD, CRDOBJ)

Parameters:

SELPD Capability Selector: Created PD

CPU CPU Number

UTCB Virtual Address: UTCB Pointer

QPD Quantum Priority Descriptor (4.5)

CRDOBJ Object Capability Range Descriptor (4.3)

Description:

Creates a new protection domain and a bootstrap execution context in that protection domain. Prior
to the hypercall SELPD must refer to a null capability. The creator PD obtains in place of SELPD a
protection domain capability that references the created PD. The created PD obtains two capability
selectors: EXC+01 refers to an execution context capability for the bootstrap EC and EXC+1 refers
to a scheduling context capability for the bootstrap SC. The hypervisor sets SELEVT and SP of
the bootstrap EC to 0 and configures the bootstrap SC with the parameters specified by QPD.
Furthermore, the hypervisor delegates the capability range specified by CRDOBJ from the creator
PD to the created PD. When the bootstrap EC starts executing, it generates a startup exception and
vectors through the corresponding portal.

Status:

SUCCESS Hypercall completed successfully.

BAD CPU Invalid CPU number.

BAD MEM Invalid UTCB address.

BAD CAP SELPD did not refer to a null capability.

1EXC denotes the number of exception selectors as described in Section 6.2.

20

Pre
lim

in
ar

y

5.3.2 Create Execution Context

Synopsis:

status = create ec (SELEC, CPU, UTCB, SP, SELEVT)

Parameters:

SELEC Capability Selector: Created EC
CPU CPU Number
UTCB Virtual Address: UTCB Pointer
SP Virtual Address: Stack Pointer
SELEVT Capability Selector: Event Base

Flags:

0 L
017

L Local Thread (0=global, 1=local)

Description:

Creates a new execution context in the creator protection domain. Prior to the hypercall SELEC must
refer to a null capability. The creator PD obtains in place of SELEC an execution context capability
that references the created EC.

Status:

SUCCESS Hypercall completed successfully.
BAD CPU Invalid CPU number.
BAD FTR Virtual CPUs not supported.
BAD MEM Invalid UTCB address.
BAD CAP SELPD did not refer to a null capability.

5.3.3 Create Scheduling Context

Synopsis:

status = create sc (SELSC, SELEC, QPD)

Parameters:

SELSC Capability Selector: Created SC
SELEC Capability Selector: Target EC
QPD Quantum Priority Descriptor (4.5)

Description:

Creates a new scheduling context in the creator protection domain and binds it to the execution
context referred to by SELEC. Prior to the hypercall SELSC must refer to a null capability. The
hypervisor configures the SC with the parameters specified by QPD. The creator PD obtains in place
of SELSC a scheduling context capability that references the created SC.

Status:

SUCCESS Hypercall completed successfully.
BAD CAP SELSC did not refer to a null capability or SELEC did not refer to an EC capability or

binding the SC to the EC failed.

21

Pre
lim

in
ar

y

5.3.4 Create Portal

Synopsis:

status = create pt (SELPT, SELEC, MTDPT, IP)

Parameters:

SELPT Capability Selector: Created PT

SELEC Capability Selector: Callee EC

MTDPT Message Transfer Descriptor (4.4)

IP Virtual Address: Instruction Pointer

Description:

Creates a new portal and binds it to the callee execution context referred to by SELEC. Prior to the
hypercall SELPT must refer to a null capability. The creator PD obtains in place of SELPT a portal
capability that references the created portal.

Status:

SUCCESS Hypercall completed successfully.

BAD CAP SELPT did not refer to a null capability or SELEC did not refer to an EC capability.

5.3.5 Create Semaphore

Synopsis:

status = create sm (SELSM, CNT)

Parameters:

SELSM Capability Selector: Created Semaphore

CNT Unsigned: Initial Counter Value

Description:

Creates a new semaphore. Prior to the hypercall SELSM must refer to a null capability. The creator
PD obtains in place of SELSM a semaphore capability that references the created semaphore.

Status:

SUCCESS Hypercall completed successfully.

BAD CAP SELSM did not refer to a null capability.

5.3.6 Revoke Capability Range

Synopsis:

status = revoke (CRD)

Parameters:

CRD Capability Range Descriptor (4.3)

22

Pre
lim

in
ar

y

Flags:

0 SR
017

SR Self Revoke (0=only children, 1=including self)

Description:

Revokes the capabilities within the range specified by the capability range descriptor from all
protection domains that directly or indirectly obtained these capabilities through delegation from
the calling protection domain. If the self revoke bit is set, the capabilities will also be revoked from
the calling protection domain itself. Once all capabilities to a kernel object have been revoked and
no references to the kernel object exist anymore, the kernel object will be destroyed. This operation
never fails but can take a long time to complete if there are many capabilities to revoke.

Status:

SUCCESS Hypercall completed successfully.

5.3.7 Lookup Capability Range

Synopsis:

status = lookup (CRD)

Parameters:

CRD Capability Range Descriptor (4.3)

Description:

Looks up a range of capabilities in the caller’s protection domain. The caller must specify a base
address and type in the CRD prior to the hypercall. If a capability exists at the specified address,
the hypervisor returns a completely filled CRD describing the capability range. Otherwise a null
capability range descriptor is returned.

Status:

SUCCESS Hypercall completed successfully.

5.4 Execution Control

5.4.1 Recall Execution Context

Synopsis:

status = recall (SELEC)

Parameters:

SELEC Capability Selector: Execution Context

Description:

Pends an event for the specified execution context, which causes it to generate a recall exception
before its next return from the hypervisor.

23

Pre
lim

in
ar

y

Status:

SUCCESS Hypercall completed successfully.

BAD CAP SELEC did not refer to an execution context capability.

5.4.2 Semaphore Control

Synopsis:

status = semctl (SELSM)

Parameters:

SELSM Capability Selector: Semaphore

Flags:

0 OP
017

OP Operation (0=up, 1=down)

Description:

The down operation blocks the calling execution context if the semaphore counter is zero, otherwise
it decrements the counter. The up operation releases an execution context blocked on the semaphore
if one exists, otherwise it increments the counter.

Status:

SUCCESS Hypercall completed successfully.

BAD CAP SELSM did not refer to a semaphore capability.

5.5 Device Control

5.5.1 Assign PCI Device

Synopsis:

status = assign pci (SELPD, RIDPF, RIDVF)

Parameters:

SELPD Capability Selector: Protection Domain

RIDPF PCI Routing ID: Physical Function (4.6)

RIDVF PCI Routing ID: Virtual Function (4.6)

Description:

Assigns a PCI device to the specified protection domain. RIDPF identifies the physical function of
the device. RIDVF identifies the virtual function or must be set to 0.

Status:

SUCCESS Hypercall completed successfully.

BAD CAP SELPD did not refer to a protection domain capability or the PD is not DMA capable.

BAD DEV RIDPF or RIDVF did not refer to a valid PCI device.

24

Pre
lim

in
ar

y

5.5.2 Assign Global System Interrupt

Synopsis:

status = assign gsi (SELSM, CPU, RID)

Parameters:

SELSM Capability Selector: Interrupt Semaphore

CPU CPU Number

RID PCI Routing ID (4.6)

Description:

Assigns the global system interrupt identified by SELSM to the PCI device with the specified RID.
The interrupt will be routed to the given CPU and signaled on the corresponding interrupt semaphore.
For global system interrupts that are delivered through an IOAPIC, RID is ignored and should be set
to 0. For devices that generate MSI or MSI-X directly to a local APIC, a misconfigured RID will
cause interrupt remapping hardware to drop the interrupt.

In addition to the status, the hypercall returns a hint for the values that must be programmed into the
MSI registers of the PCI device for proper operation. Refer to Section 7.5 for details.

Status:

SUCCESS Hypercall completed successfully.

BAD CAP SELSM did not refer to an interrupt semaphore capability.

BAD CPU Invalid CPU number.

25

Pre
lim

in
ar

y

6 Booting

6.1 Root Protection Domain

When the hypervisor has initialized the system, it creates the root protection domain with a root execution
context and a root scheduling context.

The hypervisor interprets a capability delegation from the root protection domain to the root protection
domain as a request to delegate the specified physical memory regions, I/O ports, or interrupt semaphores
from the hypervisor to the root protection domain.

At bootup the root protection domain is configured as follows:

Memory Space

Program Segments

The hypervisor loads the program segments of the roottask into the memory space as specified by
the ELF program headers of the roottask image.

Hypervisor Information Page

The hypervisor information page is mapped into the memory space at a specific address that is passed
to the root execution context during startup.

UTCB

The UTCB of the root execution context is mapped into the memory space just below the HIP.

All other regions of the memory space are initially empty.

I/O Space

The I/O space is initially empty.

Object Space

The object space contains the following capabilities:

• Capability selector EXC + 0 refers to the root PD capability.

• Capability selector EXC + 1 refers to the root EC capability.

• Capability selector EXC + 2 refers to the root SC capability.

All other capability selectors refer to null capabilities.

26

Pre
lim

in
ar

y

6.2 Hypervisor Information Page

The hypervisor information page conveys information about the platform and configuration to the root
protection domain. The processor register that contains the virtual address of the hypervisor information
page during booting is ABI-specific (IV). Figure 6.1 shows the layout of the hypervisor information page.
All fields are unsigned values unless stated otherwise.

Auxiliary Type

Size

Address

MEM[]


+MO

reserved Package Core Thread FlagsCPU[]
{

+COhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Bus Freq TSC Freq
+0x30

UTCB Sizes PAGE Sizes
+0x28

GSI VMI
+0x20

EXC SEL
+0x18

API Version Feature Flags
+0x10

MEM Desc Size MEM Offset (MO) CPU Desc Size CPU Offset (CO)
+0x08

HIP Length Checksum Signature
+0x00

081624324863

Figure 6.1: Hypervisor Information Page

Signature:

A value of 0x41564f4e identifies the NOVA microhypervisor.

Checksum:

The checksum is valid if 16bit-wise addition the HIP contents produces a value of 0.

HIP Length:

Length of the HIP in bytes. This includes all CPU and memory descriptors.

CPU Offset:

Offset of the first CPU descriptor in bytes, relative to the HIP base.

CPU Desc Size:

Size of a CPU descriptor in bytes. The number of CPU descriptors is equal to the number of CPUs
supported and can be computed as follows: (MEM Offset - CPU Offset) / CPU Desc Size

MEM Offset:

Offset of the first MEM descriptor in bytes, relative to the HIP base.

MEM Desc Size:

Size of a MEM descriptor in bytes. The number of MEM descriptors can be computed as follows:
(HIP Length - MEM Offset) /MEM Desc Size

27

Pre
lim

in
ar

y

Feature Flags:

The hypervisor supports a particular feature if and only if the corresponding bit in the feature flags
is set to 1. The following features are currently defined:

0 SVM VMX 0
012331

VMX: Intel Virtual Machine Extensions

SVM: AMD Secure Virtual Machine

API Version:

API version number.

SEL:

Number of available capability selectors in each object space. Specifying a capability selector
beyond the maximum number supported wraps around to the beginning of the object space.

EXC:

Number of capability selectors used for exception handling (3.3).

VMI:

Number of capability selectors used for virtual-machine intercept handling (3.3).

GSI:

Number of global system interrupts (3.4).

PAGE Sizes:

If bit n is set, the implementation supports memory pages of size 2n bytes.

UTCB Sizes:

If bit n is set, the implementation supports user thread control blocks of size 2n bytes.

TSC Freq:

Time Stamp Counter Frequency in kHz.

BUS Freq:

Interconnect Frequency in kHz.

CPU Descriptor

Package, Core, Thread:

CPU multiprocessor topology information.

Flags:

CPU status flags.

0 CPU
Online

017

28

Pre
lim

in
ar

y

MEM Descriptor

Address:

Physical base address of memory region.

Size:

Size of memory region in bytes.

Type:

Type of memory region. Note that the allocates ranges overlap the available ranges.

Type Description
-2 Multiboot Module Allocated ranges-1 Microhypervisor
1 Available Memory

Available ranges2 Reserved Memory
3 ACPI Reclaim Memory
4 ACPI NVS Memory

Auxiliary:

Physical address of command line if type is ’Multiboot Module’, reserved otherwise.

29

Pre
lim

in
ar

yPart IV

Application Binary Interface

30

Pre
lim

in
ar

y

7 ABI x86-32

7.1 Initial State

Figure 7.1 details the state of the CPU registers when the hypervisor has finished booting and transfers
control to the root protection domain.

Register Description
CS Selector=∼, Base=0, Limit=0xFFFFFFFF, Code Segment, ro

SS,DS,ES,FS,GS Selector=∼, Base=0, Limit=0xFFFFFFFF, Data Segment, rw
EIP Address of entry point from ELF header
ESP Address of hypervisor information page

EAX,ECX,EDX,EBX,EBP,ESI,EDI ∼

EFLAGS 0x202
Figure 7.1: Initial State

7.2 Event-Specific Capability Selectors

For the delivery of exception and intercept messages, the hypervisor performs an implicit portal traversal.
The destination portal is determined by adding the event number to SELEVT of the affected execution
context.

Exceptions

Number Exception Number Exception Number Exception Number Exception
0x0 #DE 0x8 #DF1 0x10 #MF 0x18 reserved
0x1 #DB 0x9 reserved 0x11 #AC 0x19 reserved
0x2 reserved 0xa #TS1 0x12 #MC1 0x1a reserved
0x3 #BP 0xb #NP 0x13 #XM 0x1b reserved
0x4 #OF 0xc #SS 0x14 reserved 0x1c reserved
0x5 #BR 0xd #GP 0x15 reserved 0x1d reserved
0x6 #UD 0xe #PF 0x16 reserved 0x1e STARTUP
0x7 #NM1 0xf reserved 0x17 reserved 0x1f RECALL

31

Pre
lim

in
ar

y

VMX Intercepts

Number Intercept Number Intercept Number Intercept
0x0 Exception or NMI1 0x15 VMPTRLD 0x2a reserved
0x1 INTR1 0x16 VMPTRST 0x2b TPR Below Threshold
0x2 Triple Fault2 0x17 VMREAD 0x2c APIC Access
0x3 INIT2 0x18 VMRESUME 0x2d reserved
0x4 SIPI2 0x19 VMWRITE 0x2e GDTR/IDTR Access
0x5 I/O SMI 0x1a VMXOFF 0x2f LDTR/TR Access
0x6 Other SMI 0x1b VMXON 0x30 EPT Violation2

0x7 Interrupt Window 0x1c CR Access1 0x31 EPT Misconfiguration1

0x8 NMI Window 0x1d DR Access 0x32 INVEPT
0x9 Task Switch2 0x1e I/O Access2 0x33 RDTSCP
0xa CPUID2 0x1f RDMSR2 0x34 VMX Preemption Timer
0xb GETSEC2 0x20 WRMSR2 0x35 INVVPID
0xc HLT2 0x21 Invalid Guest State2 0x36 WBINVD
0xd INVD2 0x22 MSR Load Failure 0x37 XSETBV
0xe INVLPG1 0x23 reserved 0x38 reserved
0xf RDPMC 0x24 MWAIT 0x39 reserved

0x10 RDTSC 0x25 MTF 0x3a reserved
0x11 RSM 0x26 reserved 0x3b reserved
0x12 VMCALL 0x27 MONITOR 0x3c reserved
0x13 VMCLEAR 0x28 PAUSE 0xfe STARTUP
0x14 VMLAUNCH 0x29 Machine Check 0xff RECALL

SVM Intercepts

Number Intercept Number Intercept Number Intercept
0x0–0xf CR Read 0x6e RDTSC 0x81 VMMCALL

0x10–0x1f CR Write 0x6f RDPMC 0x82 VMLOAD2

0x20–0x2f DR Read 0x70 PUSHF 0x83 VMSAVE2

0x30–0x3f DR Write 0x71 POPF 0x84 STGI
0x40–0x5f Exception1 0x72 CPUID 0x85 CLGI2

0x60 INTR1 0x73 RSM 0x86 SKINIT2

0x61 NMI1 0x74 IRET 0x87 RDTSCP
0x62 SMI 0x75 INT 0x88 ICEBP
0x63 INIT2 0x76 INVD2 0x89 WBINVD
0x64 Interrupt Window 0x77 PAUSE 0x8a MONITOR
0x65 CR0 Selective Write 0x78 HLT2 0x8b MWAIT
0x66 IDTR Read 0x79 INVLPG 0x8c MWAIT (cond.)
0x67 GDTR Read 0x7a INVLPGA 0x8d reserved
0x68 LDTR Read 0x7b I/O Access2 0x8e reserved
0x69 TR Read 0x7c MSR Access2 0x8f reserved
0x6a IDTR Write 0x7d Task Switch 0xfc NPT Fault2

0x6b GDTR Write 0x7e FERR Freeze 0xfd Invalid Guest State2

0x6c LDTR Write 0x7f Triple Fault2 0xfe STARTUP
0x6d TR Write 0x80 VMRUN 0xff RECALL

1These events do not currently cause a portal traversal, because the microhypervisor handles them internally.
2These events are currently force-enabled by the microhypervisor or by hardware.

32

Pre
lim

in
ar

y

7.3 Message Transfer Descriptor

Figure 7.2 illustrates the format of the architectural bitfield of the message transfer descriptor for exceptions
and intercepts, as described in Section 4.4.

0 TSC STA INJ CTRL QUAL SYS DR CR IDTR GDTR LDTR TR CS
SS

FS
GS

DS
ES

EFL EIP ESP BSD ACDB

012345678910111213141516171819202122

Figure 7.2: Message Transfer Descriptor: Architectural Bitfield

The individual bits transfer the following processor state to/from their respective UTCB fields (7.4).

ACDB General-Purpose Registers EAX, ECX, EDX, EBX

BSD General-Purpose Registers EBP, ESI, EDI

ESP Stack Pointer ESP

EIP Instruction Pointer EIP, Instruction Length

EFL Flags Register EFLAGS

DS ES Segment Registers DS and ES (Selector, Base, Limit, Access Rights)

FS GS Segment Registers FS and GS (Selector, Base, Limit, Access Rights)

CS SS Segment Registers CS and SS (Selector, Base, Limit, Access Rights)

TR Task Register (Selector, Base, Limit, Access Rights)

LDTR Local Descriptor Table Register (Selector, Base, Limit, Access Rights)

GDTR Global Descriptor Table Register (Base, Limit)

IDTR Interrupt Descriptor Table Register (Base, Limit)

CR Control Registers CR0, CR2, CR3, CR4

DR Debug Register DR7

SYS SYSENTER MSRs for CS, ESP, EIP

QUAL Exit Qualification

CTRL Execution Controls

INJ Injection Info, Injection Error Code

STA Interruptibility State, Activity State

TSC TSC Offset

33

Pre
lim

in
ar

y

7.4 UTCB Data Layout

SYSENTER EIP SYSENTER ESP SYSENTER CS Instruction Length
+0x110

TSC Offset Secondary Exit Ctrl Primary Exit Ctrl
+0x100

reserved Secondary Exit Qual reserved Primary Exit Qual
+0xf0

Activity State Interruptibility State Injection Error Injection Info
+0xe0

reserved IDTR Base IDTR Limit reserved
+0xd0

reserved GDTR Base GDTR Limit reserved
+0xc0

reserved TR Base TR Limit TR AR TR Sel
+0xb0

reserved LDTR Base LDTR Limit LDTR AR LDTR Sel
+0xa0

reserved GS Base GS Limit GS AR GS Sel
+0x90

reserved FS Base FS Limit FS AR FS Sel
+0x80

reserved DS Base DS Limit DS AR DS Sel
+0x70

reserved SS Base SS Limit SS AR SS Sel
+0x60

reserved CS Base CS Limit CS AR CS Sel
+0x50

reserved ES Base ES Limit ES AR ES Sel
+0x40

DR7 reserved CR4 CR3
+0x30

CR2 CR0 EIP EFLAGS
+0x20

EDI ESI EBP ESP
+0x10

EBX EDX ECX EAX

34

Pre
lim

in
ar

y

7.5 Calling Convention

The following pages describes the calling convention for each hypercall. An execution context calls into
the hypervisor by loading the hypercall identifier and other parameters into the specified processor registers
and then executes the sysenter instruction.

The hypercall identifier consists of the hypercall number and hypercall-specific flags, as illustrated in
Figure 7.3.

0 hypercall flags hypercall number
078151631

Figure 7.3: Hypercall Identifier

The status code returned from a hypercall has the format shown in Figure 7.4.

∼ status
07831

Figure 7.4: Status Code

The assignment of hypercall parameters to general-purpose registers is shown on the left side; the contents
of the registers after the hypercall is shown on the right side.

Call

hypercall id EAX — Call −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELPT EDI EDI ≡

MTD ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Reply/Wait

hypercall id EAX — Reply/Wait −→ EAX PT→ID
return ESP ECX ECX ≡

– EDX EDX PT→IP
– EDI EDI ≡

MTD ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

35

Pre
lim

in
ar

y

Create Protection Domain

hypercall id EAX — Create PD −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELPD EDI EDI ≡

UTCB31−12 / CPU11−0 ESI sysenter ESI ≡

QPD EBX EBX ≡

CRDPT EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Create Execution Context

hypercall id EAX — Create EC −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELEC EDI EDI ≡

UTCB31−12 / CPU11−0 ESI sysenter ESI ≡

SP EBX EBX ≡

S ELEVT EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Create Scheduling Context

hypercall id EAX — Create SC −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELS C EDI EDI ≡

S ELEC ESI sysenter ESI ≡

QPD EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Create Portal

hypercall id EAX — Create PT −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELPT EDI EDI ≡

S ELEC ESI sysenter ESI ≡

MT DPT EBX EBX ≡

IP EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

36

Pre
lim

in
ar

y

Create Semaphore

hypercall id EAX — Create SM −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELS M EDI EDI ≡

CNT ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Revoke Capability Range

hypercall id EAX — Revoke −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

CRD EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Lookup Capability Range

hypercall id EAX — Lookup −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

CRD EDI EDI CRD
– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Recall Execution Context

hypercall id EAX — Recall −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELEC EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

37

Pre
lim

in
ar

y

Semaphore Control

hypercall id EAX — Semctl −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELS M EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Assign PCI Device

hypercall id EAX — Assign PCI −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELPD EDI EDI ≡

RIDPF ESI sysenter ESI ≡

RIDVF EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

Assign Global System Interrupt

hypercall id EAX — Assign GSI −→ EAX status code
return ESP ECX ECX ≡

return EIP EDX EDX ≡

S ELS M EDI EDI MSI Addr
CPU ESI sysenter ESI MSI Data
RID EBX EBX ≡

– EBP EBP ≡

– ESP ESP ECX
– EIP EIP EDX

38

	I Introduction
	1 System Architecture

	II Basic Abstractions
	2 Kernel Objects
	2.1 Protection Domain
	2.2 Execution Context
	2.3 Scheduling Context
	2.4 Portal
	2.5 Semaphore

	3 Mechanisms
	3.1 Scheduling
	3.2 Communication
	3.3 Exceptions and Intercepts
	3.4 Interrupts
	3.5 Capability Delegation
	3.6 Capability Revocation

	III Application Programming Interface
	4 Data Types
	4.1 Capability
	4.2 Capability Selector
	4.3 Capability Range Descriptor
	4.4 Message Transfer Descriptor
	4.5 Quantum Priority Descriptor
	4.6 PCI Routing ID
	4.7 User Thread Control Block

	5 Hypercalls
	5.1 Definitions
	5.2 Inter-Domain Communication
	5.2.1 Call
	5.2.2 Reply

	5.3 Capability Management
	5.3.1 Create Protection Domain
	5.3.2 Create Execution Context
	5.3.3 Create Scheduling Context
	5.3.4 Create Portal
	5.3.5 Create Semaphore
	5.3.6 Revoke Capability Range
	5.3.7 Lookup Capability Range

	5.4 Execution Control
	5.4.1 Recall Execution Context
	5.4.2 Semaphore Control

	5.5 Device Control
	5.5.1 Assign PCI Device
	5.5.2 Assign Global System Interrupt

	6 Booting
	6.1 Root Protection Domain
	6.2 Hypervisor Information Page

	IV Application Binary Interface
	7 ABI x86-32
	7.1 Initial State
	7.2 Event-Specific Capability Selectors
	7.3 Message Transfer Descriptor
	7.4 UTCB Data Layout
	7.5 Calling Convention

