
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Björn Döbel

Microkernel-Based
Operating Systems

Exercise 3: Capability-based systems

Before we start

• Yet another build...

$> wget
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/exercise3.tar.bz2

$> tar xjf exercise3.tar.bz2

$> cd mos3

$> make setup

$> make

http://os.inf.tu-dresden.de/Studium/KMB/WS2010/exercise3.tar.bz2

Capabilities

• Kernel-protected
– Per-task capability table
– Mapped using IPC

• Security
– Local name spaces
– Explicit delegation of communication rights

• Flexibility
– “Every problem in computer science can be solved by

adding another layer of indirection.”
(David Wheeler – not David A. Wheeler!)
“... except the problem of having too many layers of
indirection.”

Local Names

Address
Space

Address
Space

Kernel

1 2 3 4 1 2 3 4

Flexibility through indirection

Task A Task B

Kernel
C

Flexibility through indirection

Monitor

Task A Task B

Kernel
CC'

Indirection: Use Cases

• Communication tracing

• Stackable security policies

Disk partition server

Hard disk driver

Hard disk 1 Hard disk 2

Disk partition server

Ext3 File System Ext4 File SystemReiserFS File System

Not so obvious: Valgrind

• Dynamic binary analysis framework
– Memory leak detector
– Keeps track of app's memory layout

• In Linux
– Initially parse /proc/self/maps
– Monitor all mmap() system calls

• In L4Re:
– Memory can come through arbitrary IPC

» Check all system calls for mappings inefficient→

Valgrind Address space
VG Mem
Layout

VG ClientL4Re
Region mapper

Virtualizing objects

• L4Re comprises objects
– IRQs
– Data spaces
– Log facility
– …

• Referenced through capabilities

• Interception works by replacing objects with a
redirector object: IPC gate

Example: Hello world

int main(void) {
 printf(“Hello world!\n”);
 return 0;
}

results in invocation of the Log capability:

puts() → putc_unlocked()
 → __stdio_wcommit()
 → __stdio_WRITE()
 → write()
 → default_stdout_ops::write()
 → L4Re::Log::printn(...)
 → l4_vcon_write(...)

Starting hello on L4Re

• L4Re is configured through Lua scripts
• Starting hello (mos3/src/l4/conf/hello.lua):

require(“L4”);
local ldr = L4.default_loader;
ldr:start({ }, “rom/hello”);

• Go to mos3/obj/l4/x86

• Run
$> make qemu E=hello

Virtualizing the LOG interface

• Required:
– An own implementation of a LOG server

• mos3/src/l4/pkg/logger
– A communication channel for the logger created in the

Lua startup script:
local log_chan = ldr:new_channel();

ldr:start({ caps =
 { logger = log_chan:svr() } },
 “rom/logger”);

– An environment for “hello” to use the new log channel
 local env = L4.App_env.new();
 env.log = log_chan;
 ldr:startv(env, “rom/hello”);

– See mos3/src/l4/conf/hello-complex.lua

What do we need to do?

• Edit mos3/src/l4/pkg/logger/server/src/main.cc

– Implement the dispatch function
• Log Message is completely in the UTCB message registers
• mr[0] opcode (should be 0 for log::write)→
• mr[1] length of message in characters→
• mr[2...] message→

– First take:
• Simply implement a server that prints messages once it

receives them.

– Later:
• Add extended functionality

Extending the LOG server

• Some ideas:
– Keyword highlighting

• Keep a list of keywords
• When a keyword is encountered in a log message, make it

appear bold or colored
– Text formatting

• Support log messages containing some markup
– e.g., a subset of HTML
– Or some own sequences for making things colored or bold

– Log indexing
• Keep track of log messages
• Add a function that allows to re-print all messages that

contain a certain word
• Support regular expression queries

	Introduction
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

