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AGENDA
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■ first contact with a microkernel OS

■ getting to know QEMU

■ compile Fiasco

■ compile minimal system environment

■ talk about system booting

■ the usual „Hello World“

■ review some stuff and play with the system
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QEMU
■ developing your own kernel usually 

requires a dedicated machine

■ we will use a virtual machine

■ QEMU is open-source software providing 
a virtual machine by binary translation

■ it emulates a complete x86 PC

■ available for other architectures as well

■ our QEMU will boot from an ISO image
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Setup

• download the source tarball from
http://os.inf.tu-dresden.de/Studium/
KMB/WS2010/Exercise1.tar.bz2

• unpack the tarball
• it comes with a working directory
• cd in there and have a look around

• initialize the environment with make setup in 
the toplevel directory you unpacked

http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2


Test-Driving QEMU

• create a bootable ISO image
• create an iso subdirectory for the 

ISO’s content
• run isocreator from src/l4/tool/bin on 

this directory
• your ISO will contain a minimal grub installation
• launch QEMU with the resulting ISO:
qemu -cdrom boot.iso



Compiling the System

• run make within the toplevel directory
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BOOTING
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BIOS
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■ Basic Input Output System

■ fixed entry point after „power 
on“ and „reset“

■ initializes the CPU in 16-bit 
real-mode

■ detects, checks and initializes 
some platform hardware (like 
RAM, PCI, ATA)

■ finds the boot device BIOS
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BOOT SECTOR
■ first sector on boot disk

■ 512 bytes

■ contains first boot loader 
stage and partition table

■ BIOS loads code into RAM 
and executes it

■ problem: How to find and 
boot an OS in 512 bytes?
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BIOS
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EFI
■ Extensible Firmware 

Interface

■ plug-ins for new hardware

■ no legacy PC-AT boot
(no A20 gate)

■ built-in boot manager

■ more than four partitions,
no 2TB limit

■ boot from peripherals (USB)
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EFI
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MEMORY LAYOUT
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GRUB
■ popular boot loader

■ used by most (all?) Linux 
distributions

■ uses a two-stage-approach

■ first stage fits in one sector

■ has hard-wired sectors of 
second stage files

■ second stage can read 
common file systems

12

BIOS

Boot Loader
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GRUB
■ second stage loads a 

menu.lst config file to 
present a boot menu

■ from there, you can load your 
kernel

■ supports loading multiple 
modules

■ files can also be retrieved 
from network

13

BIOS

Boot Loader
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GRUB
■ switches CPU to 32-bit 

protected mode

■ loads and interprets the 
„kernel“ binary

■ loads additional modules into 
memory

■ sets up multiboot info 
structure

■ starts the kernel
14

BIOS

Boot Loader
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MEMORY LAYOUT
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BOOTSTRAP
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■ our modules are ELF files: 
executable and linkable 
format

■ contain multiple sections

■ code, data, BSS

■ bootstrap interprets the ELF 
modules

■ copies sections to final 
location in physical memory BIOS

Boot Loader

Bootstrap
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BOOTSTRAP
■ actual kernel is the first of the 

modules

■ must know about the other 
modules

■ bootstrap sets up a kernel 
info page

■ contains entry point and stack 
pointer of sigma0 and moe

■ passes control to the kernel
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MEMORY LAYOUT
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KERNEL LOADER
■ initial kernel code

■ basic CPU setup

■ detecting CPU features

■ setup various CPU-tables

■ sets up basic page table

■ enables virtual memory 
mode

■ runs the actual kernel code
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MEMORY LAYOUT
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FIASCO

■ sets up kernel structures

■ sets up scheduling timer

■ starts first pager

■ starts first task

■ starts scheduling

■ scheduler hands control to 
userland for the first time
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SIGMA0
■ is the first pager in the 

system

■ initially receives a 1:1 
mapping of physical memory

■ … and other platform-level 
resources (IO ports)

■ sigma0 is the root of the 
pager hierarchy

■ pager for moe
22
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MOE

■ manages initial resources

■ namespace

■ memory

■ VESA framebuffer

■ provides logging facility

■ mini-filesystem for read-only 
access to boot-modules
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NED
■ script-driven loader for 

further programs

■ startup-scripts written in Lua

■ additional software can be 
loaded by retrieving binaries 
via disk or network drivers

■ ned injects a common 
service kernel into every 
task
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Booting Fiasco

• copy some files to the ISO directory
• fiasco from the Fiasco build directory
obj/fiasco/ia32/

• bootstrap from
obj/l4/x86/bin/x86_586/

• sigma0, moe , l4re and ned from
obj/l4/x86/bin/x86_586/l4f/



Booting Fiasco

• edit iso/boot/grub/menu.lst:
title Getting Started
kernel /bootstrap -modaddr 0x01100000
module /fiasco
module /sigma0
module /moe
module /l4re
module /ned

• rebuild the ISO and run qemu



Preparing for Hello

• create the file hello.lua in the iso directory 
with this content:
L4.default_loader:start({},
"rom/hello");

• pass ned this new startup script

• add this line to menu.lst:
module /hello.lua

• pass rom/hello.lua as parameter to moe
• load the future hello module in menu.lst



Exercise 1: Hello World

• create a directory for your hello-project
• create a Makefile with the following content:
PKGDIR       ?= .
L4DIR        ?= path to L4 source tree
OBJ_BASE      = absolute path to L4 build tree
TARGET        = hello
SRC_C         = hello.c
include $(L4DIR)/mk/prog.mk

• fill in hello.c and compile with make

• run in qemu



Exercise 2: Ackermann Function

• write a program that spawns six threads
• you can use pthreads in our system
• add the line
L4_MULTITHREADED = y
to your Makefile

• each thread should calculate one value
a(3,0..5) of the Ackermann function:

• a(0,m) = m+1
• a(n,0) = a(n-1,1)
• a(n,m) = a(n-1,a(n,m-1))


