
Department of Computer Science Institute of System Architecture, Operating Systems Group

MICHAEL ROITZSCH

EXERCISE 1:
GETTING STARTED

TU Dresden Getting Started

AGENDA

2

■ first contact with a microkernel OS

■ getting to know QEMU

■ compile Fiasco

■ compile minimal system environment

■ talk about system booting

■ the usual „Hello World“

■ review some stuff and play with the system

TU Dresden Getting Started

QEMU
■ developing your own kernel usually

requires a dedicated machine

■ we will use a virtual machine

■ QEMU is open-source software providing
a virtual machine by binary translation

■ it emulates a complete x86 PC

■ available for other architectures as well

■ our QEMU will boot from an ISO image
3

Setup

• download the source tarball from
http://os.inf.tu-dresden.de/Studium/
KMB/WS2010/Exercise1.tar.bz2

• unpack the tarball
• it comes with a working directory
• cd in there and have a look around

• initialize the environment with make setup in
the toplevel directory you unpacked

http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2
http://os.inf.tu-dresden.de/Studium/KMB/WS2010/Exercise1.tar.bz2

Test-Driving QEMU

• create a bootable ISO image
• create an iso subdirectory for the

ISO’s content
• run isocreator from src/l4/tool/bin on

this directory
• your ISO will contain a minimal grub installation
• launch QEMU with the resulting ISO:
qemu -cdrom boot.iso

Compiling the System

• run make within the toplevel directory

TU Dresden Getting Started

BOOTING

7

TU Dresden Getting Started

BIOS

8

■ Basic Input Output System

■ fixed entry point after „power
on“ and „reset“

■ initializes the CPU in 16-bit
real-mode

■ detects, checks and initializes
some platform hardware (like
RAM, PCI, ATA)

■ finds the boot device BIOS

TU Dresden Getting Started

BOOT SECTOR
■ first sector on boot disk

■ 512 bytes

■ contains first boot loader
stage and partition table

■ BIOS loads code into RAM
and executes it

■ problem: How to find and
boot an OS in 512 bytes?

9

BIOS

TU Dresden Getting Started

EFI
■ Extensible Firmware

Interface

■ plug-ins for new hardware

■ no legacy PC-AT boot
(no A20 gate)

■ built-in boot manager

■ more than four partitions,
no 2TB limit

■ boot from peripherals (USB)
10

EFI

TU Dresden Getting Started

MEMORY LAYOUT

11

BIOSPhysical Memory

Boot Code

BIOS, Video RAM

TU Dresden Getting Started

GRUB
■ popular boot loader

■ used by most (all?) Linux
distributions

■ uses a two-stage-approach

■ first stage fits in one sector

■ has hard-wired sectors of
second stage files

■ second stage can read
common file systems

12

BIOS

Boot Loader

TU Dresden Getting Started

GRUB
■ second stage loads a

menu.lst config file to
present a boot menu

■ from there, you can load your
kernel

■ supports loading multiple
modules

■ files can also be retrieved
from network

13

BIOS

Boot Loader

TU Dresden Getting Started

GRUB
■ switches CPU to 32-bit

protected mode

■ loads and interprets the
„kernel“ binary

■ loads additional modules into
memory

■ sets up multiboot info
structure

■ starts the kernel
14

BIOS

Boot Loader

TU Dresden Getting Started

MEMORY LAYOUT

15

BIOS

Boot Loader

Physical Memory

Grub

Multiboot Info

BIOS, Video RAM
Kernel Binary

Module
Module
Module
Module

TU Dresden Getting Started

BOOTSTRAP

16

■ our modules are ELF files:
executable and linkable
format

■ contain multiple sections

■ code, data, BSS

■ bootstrap interprets the ELF
modules

■ copies sections to final
location in physical memory BIOS

Boot Loader

Bootstrap

TU Dresden Getting Started

BOOTSTRAP
■ actual kernel is the first of the

modules

■ must know about the other
modules

■ bootstrap sets up a kernel
info page

■ contains entry point and stack
pointer of sigma0 and moe

■ passes control to the kernel
17

BIOS

Boot Loader

Bootstrap

TU Dresden Getting Started

MEMORY LAYOUT

18

BIOS

Boot Loader

Physical Memory

Bootstrap

Kernel

Multiboot Info

BIOS, Video RAM

Module

Code
Data

Code
Data

TU Dresden Getting Started

KERNEL LOADER
■ initial kernel code

■ basic CPU setup

■ detecting CPU features

■ setup various CPU-tables

■ sets up basic page table

■ enables virtual memory
mode

■ runs the actual kernel code
19

BIOS

Boot Loader

Bootstrap

Kernel Loader

TU Dresden Getting Started

MEMORY LAYOUT

20

BIOS

Boot Loader

Virtual Memory

Kernel

Kernel Memory

Bootstrap

Kernel Loader

Physical Memory
1:1 mapped

TU Dresden Getting Started

FIASCO

■ sets up kernel structures

■ sets up scheduling timer

■ starts first pager

■ starts first task

■ starts scheduling

■ scheduler hands control to
userland for the first time

21

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

TU Dresden Getting Started

SIGMA0
■ is the first pager in the

system

■ initially receives a 1:1
mapping of physical memory

■ … and other platform-level
resources (IO ports)

■ sigma0 is the root of the
pager hierarchy

■ pager for moe
22

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

σ0

TU Dresden Getting Started

MOE

■ manages initial resources

■ namespace

■ memory

■ VESA framebuffer

■ provides logging facility

■ mini-filesystem for read-only
access to boot-modules

23

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

Moeσ0

TU Dresden Getting Started

NED
■ script-driven loader for

further programs

■ startup-scripts written in Lua

■ additional software can be
loaded by retrieving binaries
via disk or network drivers

■ ned injects a common
service kernel into every
task

24

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

Ned

Moeσ0

Booting Fiasco

• copy some files to the ISO directory
• fiasco from the Fiasco build directory
obj/fiasco/ia32/

• bootstrap from
obj/l4/x86/bin/x86_586/

• sigma0, moe , l4re and ned from
obj/l4/x86/bin/x86_586/l4f/

Booting Fiasco

• edit iso/boot/grub/menu.lst:
title Getting Started
kernel /bootstrap -modaddr 0x01100000
module /fiasco
module /sigma0
module /moe
module /l4re
module /ned

• rebuild the ISO and run qemu

Preparing for Hello

• create the file hello.lua in the iso directory
with this content:
L4.default_loader:start({},
"rom/hello");

• pass ned this new startup script

• add this line to menu.lst:
module /hello.lua

• pass rom/hello.lua as parameter to moe
• load the future hello module in menu.lst

Exercise 1: Hello World

• create a directory for your hello-project
• create a Makefile with the following content:
PKGDIR ?= .
L4DIR ?= path to L4 source tree
OBJ_BASE = absolute path to L4 build tree
TARGET = hello
SRC_C = hello.c
include $(L4DIR)/mk/prog.mk

• fill in hello.c and compile with make

• run in qemu

Exercise 2: Ackermann Function

• write a program that spawns six threads
• you can use pthreads in our system
• add the line
L4_MULTITHREADED = y
to your Makefile

• each thread should calculate one value
a(3,0..5) of the Ackermann function:

• a(0,m) = m+1
• a(n,0) = a(n-1,1)
• a(n,m) = a(n-1,a(n,m-1))

