
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Microkernel Construction

Introduction

SS2011

2

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Lecture GoalsLecture Goals

Provide deeper understanding of OS mechanisms

Illustrate an alternative system design concept

Promote OS research at TU Dresden

Make all of you enthusiastic kernel hackers

3

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

AdministrationAdministration
 Thursday, 4th DS, 2 SWS
 Theory (INF/E08) and practical exercises (INF/E046)

 Slides / Handouts available at

http://os.inf.tu-dresden.de/Studium/MkK/

 Mailinglist:

http://os.inf.tu-dresden.de/mailman/listinfo/mkc2011/

 In winter term:
– Construction of Microkernel-based Systems (2 SWS)

– Komplexpraktikum (2 SWS)

4

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

OS Design GoalsOS Design Goals

 Flexibility and Customizable
– Tailored resource management (scheduling algorithms)

– Scalability from embedded system to server systems

– Applicable for real-time systems and secure systems

– Adaptable to specific application scenarios

 Maintainability and complexity
– Reasonable system structure

– Well defined interfaces between components

 Robustness
– Protection and fault isolation of system components

– Small trusted code size (Trusted Computing Base)

 Performance
– User wants tasks done as fast as possible

5

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Monolithic Kernel System DesignMonolithic Kernel System Design

Process
Management

Drivers

File
Systems

Network
Subsystem

Memory
Management

Monolithic Kernel

Privileged
Mode

ApplicationApplication Unprivileged
Mode

Hardware

Application Application

6

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Monolithic Kernel OSMonolithic Kernel OS

 System components run in privileged mode
➔ No protection between system components

– Faulty driver can crash the whole system

– More than 2/3 of today's OS code are drivers

➔ No need for good system design
– Direct access to data structures

– Undocumented and frequently changing interfaces

➔ Big and inflexible
– Difficult to replace system components

Why something different?
 More and more difficult to manage increasing OS

complexity

7

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Microkernel System DesignMicrokernel System Design

Tasks Threads IPC Scheduling

Microkernel

Privileged
Mode

Unprivileged
Mode

Drivers

File
Systems

Network
Stacks

Memory
Management

Process
Management

System Services

Hardware

Application Application Application

8

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Microkernel OS - The Vision (1)Microkernel OS - The Vision (1)
 System components run as user-level servers
 Protection and isolation between system components

– More secure / safe systems

– Less error prone

– Small Trusted Computing Base

 Need for good system design
– Well defined interfaces to system services

– No dependencies between system services other than
explicitly specified through service interfaces

 Small and flexible
– Small OS kernel

– Easier to replace system components

9

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example – IBM Workplace OS / MachExample – IBM Workplace OS / Mach

ARM PowerPC MIPS AlphaIA32

Mach Microkernel

Default Pager Device Support Bootstrap Name Service

File Server Network Service Security Power Management

OS/2
Personality

DOS
Personality

OS/400
Personality

AIX
Personality

Windows
Personality

OS/2
Application

DOS
Application

OS/400
Application

AIX
Application

Windows
Application

10

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example – QNX / NeutrinoExample – QNX / Neutrino

 Embedded systems
 Message passing system (IPC)
 Network transparency

IPC Scheduler
Interrupt

Redirector
Network
Driver

Neutrino - Microkernel

Filesystem
Manager

Network
Manager

Device
Manager

Process
Manager

Hardware

Privileged
Mode

Unprivileged
Mode

Application Application Application

11

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Visions vs. RealityVisions vs. Reality

 Flexibility and Customizable
– Monolithic kernels are modular

 Maintainability and complexity
– Monolithic kernel have layered architecture

✔Robustness
– Microkernels are superior due to isolated system

components

– Trusted code size (i386)

• Fiasco kernel: about 30.000 loc

• Linux kernel: about 200.000 loc (without drivers)

✗ Performance
– Application performance degraded

– Communication overhead (see next slides)

12

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Robustness vs. Performance (1)Robustness vs. Performance (1)

 System calls
– Monolithic kernel: 2 kernel entries/exits

– Microkernel: 4 kernel entries/exits + 2 context switches

Microkernel

Driver

Application

Hardware

Monolithic kernel

Driver

Application

HardwareHardware

1

2 3

4

13

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Network
Subsystem

Robustness vs. Performance (2)Robustness vs. Performance (2)

 Calls between system services
– Monolithic kernel: 1 function call

– Microkernel: 4 kernel entries/exits + 2 context switches

Microkernel

Driver

Hardware

Monolithic kernel

Network
Subsystem

Hardware

Driver

1 2 34

14

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Challenges Challenges

 Build functional powerful and fast microkernels
– Provide abstractions and mechanisms

– Fast communication primitive (IPC)

– Fast context switches and kernel entries/exits

➔ Subject of this lecture

 Build efficient OS services
– Memory Management
– Synchronization
– Device Drivers
– File Systems

– Communication Interfaces

➔ Subject of lecture “Construction of Microkernel-based
systems” (in winter term)

15

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4 Microkernel FamilyL4 Microkernel Family

 Originally developed by Jochen Liedtke

(GMD / IBM Research)
 Development continues

– Uni Karlsruhe and UNSW Sydney (Hazelnut, Pistachio)

– TU Dresden (Fiasco, Nova)

 Different kernel API versions:
– V2: stable version

– X0, X2: derived experimental versions

– Currently many different proprietary APIs

 Support for hardware architectures:
– x86: (Fiasco, Nova, Pistachio)

– MIPS: (Pistachio)

– ARM: (Fiasco, Pistachio)

16

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

More MicrokernelsMore Microkernels

 Commercial kernels
– Singularity @ Microsoft Research

– K42 @ IBM Research

– velOSity/INTEGRITY @ Green Hills Software

– Chorus/ChorusOS @ Sun Microsystems

– PikeOS @ SYSGO AG

 Research kernels
– EROS/CoyotOS @ John Hopkins University

– Minix @ FU Amsterdam

– Amoeba @ FU Amsterdam

– Pebble @ IBM Research

– Grasshopper @ University of Sterling

– Flux/Fluke @ University of Utah

17

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4 - ConceptsL4 - Concepts

 Jochen Liedtke: “A microkernel does no real work”
– Kernel provides only inevitable mechanisms

– No policies implemented in the kernel

 Abstractions
– Tasks with address spaces

– Threads executing programs/code

 Mechanisms
– Resource access control

– Scheduling

– Communication (IPC)

18

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Threads and TasksThreads and Tasks

Microkernel

User
Stack

Kernel
Stack

Thread3

Task A Task B

User
Code

User
Code

Kernel
Code

Kernel
Stack

User
Stack

User
Stack

Kernel
Stack

Thread2

Thread2

19

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Threads (1)Threads (1)
 Represent unit of execution

– Execute user code (application)

– Execute kernel code (system calls, page faults, interrupts,
exceptions)

 Subject to scheduling
– Quasi-parallel execution on one CPU

– Parallel execution on multiple CPUs

– Voluntarily switch to another thread possible

– Preemptive scheduling by the kernel according to certain
parameters

 Associated with an address space
– Executes code in one task at one point in time

• Migration allows threads move to another task

– Several threads can execute in one task

20

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Threads (2)Threads (2)
Application's view:
– Processor context (IP, SP, GPRs, FPU state) and (user) stack
– Library hides implementation details

 Kernel's view:
– Processor context (IP, SP, GPRs) and (kernel) stack

– Object represented as Thread Control Block (TCB)

• Saved user processor context

• Scheduling

• Has associated task

• Transient state for system calls

– Need to be created, destructed and syncronized

– Threads can block inside the kernel and hold locks

 Basic mechanisms inside the kernel:
➔ Kernel entry/exit
➔ Thread switch

21

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Tasks (1)Tasks (1)

 Represent domain of protection and isolation
 Container for code, data and resources
 Address space consisting memory pages (flexpages)
 Three management operations:

– Map: share page with other address space

– Grant: give page to other address space

– Unmap: revoke previously mapped page

X

map

X

X

grant

X

X

unmap

X

22

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Pager 3

Application 1

Pager 1

Recursive Address SpacesRecursive Address Spaces

Physical Memory

Initial Pager

Pager 2

Application 2

23

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Tasks (2)Tasks (2)

 Application's view:
– Transparent container for code,data and resources

– Layout is managed by the application itself or an external
pager

 Kernel's view:
– Consists of a set of page tables

– Part is reserved for kernel code and data

– Kernel keeps track of mapping relationship (data structure
referred to as mapping database)

 Mechanisms inside the kernel
– Insert page into an address space

– Remove page from an address space

24

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Communication (IPC)Communication (IPC)

 Point-to-point reliable communication between two
threads
– Synchronous vs. asynchronous

– Buffering vs. no buffering inside the kernel

– Copy vs.map data

– Direct vs. indirect IPC

– With/without timeouts

 IPC types
– Send (to one thread)

– Receive from one thread (closed receive)

– Receive from any thread (open receive)

– Call (send and closed receive)

– Reply and wait (send and open receive)

25

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Copy-Data MessageCopy-Data Message

 Direct and indirect data copy
 UTCB message (special area)
 Special case: register-only message
 Pagefaults during user-level memory access possible

send(msg,…)
receive(msg, …)

copy

data area

Task A Task B

data word 2
data word 1

send string receive string
data word 2
data word 1

data area

msg msg

26

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Map-Data MessageMap-Data Message

 Used to transfer memory pages and capabilities
 Kernel manipulates page tables
 Used to implement the map/grant operations

Task A Task B

send(msg,…)

send flexpage

receive(msg, …)

flexpage

flexpage

map

memory page

received flexpage

receive window
msg msg

27

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

SchedulingScheduling

 Scheduling contexts represent scheduling entities
– Has priority and time quantum

– One thread can have one or more scheduling context

– One best-effort timeslice context in system

 Scheduling mechanism
– Round-robin scheduler with fixed priorities

– Thread with highest priority is selected

– L4 supports 256 priorites

– Scheduler has complexity O(1)

 Realtime extension
– Mechanisms to avoid priority inversion

– Reservation scheduling contexts with periods

– Additional syscalls

28

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Communication and Resource ControlCommunication and Resource Control

 Need to control who can send data to whom
– Security and isolation

– Access to resources

 Approaches
– IPC-redirection/introspection

– Central vs. Distributed policy and mechanism

– ACL-based vs. capability-based

IPC?

Task A Task B

Hardware
Resources

Resource Access?

Thread Thread

29

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Kernel-Object CapabilitiesKernel-Object Capabilities

Kernel
Object1

Kernel
Object2

Kernel
Object3

Kernel
Object4

Kernel
Object5

Task A Task B

C3 C5 C1 C2 C4C1 C3 C5

Capability Table Capability Table

13 1 2 1 2 2

Capability Handles Capability Handles

30

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Capabilities - DetailsCapabilities - Details
 Kernel objects represent resources and

communication channels
 Capability

– Reference to kernel object

– Associated with access rights

– Can be mapped from task to another task

 Capability table is task-local data structure inside the
kernel
– Similar to page table

– Valid entries contain capabilities

 Capability handle is index number to reference entry
into capability table
– Similar to file handle (in POSIX)

 Mapping capabilities establishes a new valid entry into
the capability table

31

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Page Faults and PagersPage Faults and Pagers

 Page Faults are mapped to IPC
– Pager is special thread that receives page faults

– Page fault IPC cannot trigger another page fault

 Kernel receives the flexpage from pager and inserts
mapping into page table of application

 Other faults normally terminate threads

L4 Microkernel

Privileged
Mode

Unnprivileged
Mode

Application Pager

2.receive1.Page Fault 3.send(X)4.Resume

X X
map

32

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Device DriversDevice Drivers

 Hardware interrupts: mapped to IPC
 I/O memory & I/O ports: mapped via flexpages

L4 Microkernel

1. Interrupt

Driver

2.receive(irq-id, …)

IO-Memory

IO-Memory

map

33

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example: L4V2 APIExample: L4V2 API

 Address Spaces
– l4_task_new create / delete address spaces

 Threads
– l4_thread_ex_regs create / modify threads

– l4_thread_schedule modify scheduling parameter

– l4_thread_switch switch to a different thread

 IPC
– l4_ipc send / receive date, map flexpage

– l4_fpage_unmap unmap flexpage

– l4_nchief return nearest communication
partner

34

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4Linux
Server

L4 Applications - LL4 Applications - L44LinuxLinux

 Paravirtualized Linux kernel and native Linux
applications run as user-level L4 tasks

 System calls / page faults are mapped to L4 IPC

L4 Microkernel

Linux
Application

System Services

Linux
Application

L4 Interface

Privileged
Mode

Unprivileged
Mode

35

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4 Applications - Virtual MachinesL4 Applications - Virtual Machines

 Several isolated OSes on top of a single physical
machine

 Used for server consolidation

 L4Linux L4Linux

System Services

 L4Linux

Web Server
Domain 1

Database
Server

Web Server
Domain 2

L4 Microkernel
Privileged

Mode

Unprivileged
Mode

36

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4 Applications - DROPSL4 Applications - DROPS

L4Linux

Privileged
Mode

Unprivileged
Mode

Application

System Services

Non-Real-Time
Domain

Real-Time
Domain

SCSI/IDE
Driver

Network
Driver

Display
Driver

Real-Time
Filesystem

Real-Time
Protocol

Application

Application

Application

System Services

L4 Microkernel

37

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

L4Linux

L4 Application - µSINAL4 Application - µSINA

VPN Gateway

L4Linux

Network Network

Local
Network

InternetEncryption /
Routing

secure side unsecure side

L4 Microkernel

System ServicesUnprivileged
Mode

Privileged
Mode

38

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Lecture OutlineLecture Outline

 Introduction
 Address spaces, threads, thread switching
 Kernel entry and exit
 Thread synchronization
 IPC
 Address space management
 Scheduling
 Portability
 Platform optimizations
 Virtualization

39

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Practical ExcercisesPractical Excercises

 Guide to build own very small kernel
 Thinking about design and implementation

– Threads and thread switches

– Kernel entry/exit

– Syscalls and Interrupts

– Address spaces and memory management

– Device programming

 Based on x86 architecture
 Qemu as test platform

40

Microkernel
Construction

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Next: Address spaces and ThreadsNext: Address spaces and Threads

 Implemenation of address space
 Threads and Thread control blocks (TCBs)
 Tasks
 Page tables
 Thread and task switching
 FPU switching

	Introduction
	Lecture Goals
	Administration
	Slide 4
	Motivation
	Monolithic Operating Systems
	Envisioned System Design
	The Microkernel Vision
	IBM Workplace OS
	Examples
	Visions vs. Reality – Disappointments
	Slide 12
	Slide 13
	Challenges
	L4 Microkernel
	Slide 16
	L4 Concepts
	Slide 18
	L4 – Threads
	Slide 20
	Slide 21
	L4 – Address Spaces
	Slide 23
	L4 – Communication (IPC)
	Slide 25
	Slide 26
	Slide 27
	L4 IPC – Restriction
	Slide 29
	Slide 30
	Slide 31
	L4 – Device I/O Support
	L4 – System Calls (L4 V2)
	L4Linux
	Virtual Machines
	DROPS – The Dresden Real-Time Operating System
	µSINA – Secure Microkernel-based System Architecture
	Lecture Outline
	Slide 39
	Slide 40

