
L4 in Sydney:
seL4, OKL4 and Friends
Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia

©2012 Gernot Heiser NICTA 2

L4 Made in Australia

Pistachio
[ARM+MIPS

+Alpha]
2002

L4-embedded
[ARM+MIPS]

2004

OKL4
microkernel
[ARM+x86]

2007

OKL4
Microvisor

[ARM]
2009

seL4
[ARM+x86]

2009

TUD, June’12

©2012 Gernot Heiser NICTA 3

Track Record of Innovation

L4-embedded:

•  Fast context-switching on ARMv5
–  context switching without cache flush on virtually-addressed caches
–  155-cycle IPC on XScale
–  virtualized Linux faster than native

•  Event-based kernel (single kernel stack)
–  halved kernel memory use

•  Removed IPC timeouts, “long” IPC
–  reduced kernel complexity

•  Introduced asynchronous notifications

TUD, June’12

©2012 Gernot Heiser NICTA 4

Track Record of Innovation

OKL4 microkernel:

•  Dumped recursive address-space model
–  halved kernel memory use (again!)
–  reduced kernel complexity

•  First L4 kernel with capability-based access control

TUD, June’12

Commercially
deployed by the

billions!

©2012 Gernot Heiser NICTA 5

Track Record of Innovation

OKL4 Microvisor:

•  Removed synchronous IPC

•  Removed kernel-scheduled threads

TUD, June’12

To appear in
cars, military

phones

©2012 Gernot Heiser NICTA 6

Track Record of Innovation

seL4:

•  All memory management at user level
–  no kernel heap!

•  Formal proof of functional correctness

•  Formal proof of integrity enforcement

•  Sound worst-case execution-time model

•  Performance on par with fastest kernels
–  <200-cy IPC on ARM11 without assembler fastpath!

•  100% microkernel: 9 kLOC
–  smaller than all others

TUD, June’12

World first!

World first!

World first!

World first!

©2012 Gernot Heiser NICTA 7

What Mechanisms?

Hypervisor vs microkernel abstractions

Resource OKL4 Microvisor seL4 Microkernel

Memory Virtual MMU (vMMU) Address space

CPU Virtual CPU (vCPU) Thread or
scheduler activation

Interrupt Virtual IRQ (vIRQ) IPC message

Communication async Channel Message-passing IPC

Synchronization Virtual IRQ IPC message

TUD, June’12

©2012 Gernot Heiser NICTA 8

NICTA Vision: Trustworthy Systems

TUD, June’12

We will change the practice of designing and
implementing critical systems, using rigorous
approaches to achieve true trustworthiness

Hard
guarantees on
safety/security/

reliability

Suitable for
real-world
systems

©2012 Gernot Heiser NICTA 9

NICTA Trustworthy Systems Agenda

1.  Dependable microkernel (seL4) as a rock-solid base
–  Formal specification of functionality
–  Proof of functional correctness of implementation
–  Proof of safety/security properties

2.  Lift microkernel guarantees
to whole system
–  Use kernel correctness and integrity

to guarantee critical functionality
–  Ensure correctness of balance of

trusted computing base
–  Prove dependability properties of

complete system
•  despite 99 % of code untrusted!

TUD, June’12

©2012 Gernot Heiser NICTA 10

seL4 Design Goals

TUD, June’12

 Trustworthy Microkernel – seL4

 Policy Layer

 Processor

 Linux
 Server

Legacy App.
Legacy App.

 Legacy
 Apps

 Trusted
 Service

 Sensitive
 App 1.  Isolation

•  Strong
partitioning!

2.  Formal verification
•  Provably

trustworthy!
3.  Performance

•  Suitable for
real world!

©2012 Gernot Heiser NICTA 11

Requirements for Trustworthy Systems

Safety Security

Functional
Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

TUD, June’12

Isolation!

©2012 Gernot Heiser NICTA 12

Brief History of Microkernels

1st Generation: mid-1980 (Mach, Chorus etc)
•  Stripped-down monolithic OSes

•  Lots of functionality and policy

•  Big

•  Slow: 100 µs IPC

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

TUD, June’12

©2012 Gernot Heiser NICTA 13

Brief History of Microkernels

2nd Generation: mid-1990s – L4
•  “Radical” approach

[Liedtke’93, Liedtke ‘95]:
–  Strict minimality
–  From-scratch design and

implementation
•  Fast!

0

100

200

300

400

0 1000 2000 3000 4000 5000
Message Length [B]

Mach

L4 with cache flush

L4

raw copy

[µs]

IPC, MMU abstr.
Scheduling

Kernel memory

TUD, June’12

©2012 Gernot Heiser NICTA 14

Brief History of Microkernels

3rd Generation: seL4 [Elphinstone et al 2007, Klein et al 2009]
•  Security-oriented design

–  capability-based access control
–  strong isolation

•  Hardware resources subject to user-defined policies
–  including kernel memory (no kernel heap)
–  except time 

•  Designed for formal verification
IPC, MMU abstr.

Scheduling

Memory-
mgmt
library

TUD, June’12

©2012 Gernot Heiser NICTA 15

Issues of 2G L4 Kernels

•  L4 solved performance issue [Härtig et al, SOSP’97]
 … but left a number of security issues unsolved

•  Problem: ad-hoc approach to protection and resource management
–  Global thread name space ⇒ covert channels
–  Threads as IPC targets ⇒ insufficient encapsulation
–  Single kernel memory pool ⇒ DoS attacks
–  Insufficient delegation of authority ⇒ limited flexibility, performance

Addressed
by seL4

TUD, June’12

©2012 Gernot Heiser NICTA 16

Traditional L4: Recursive Address Spaces

•  Mappings are
page → page

•  Magic initial
address space
to anchor recursion

Map Grant
Unmap

Initial Address Space

Physical Memory

Reasons:
•  Complex & large mapping database

•  may account for 50% of memory use!
•  Lack of control over resource use

•  implicit allocation of mapping nodes
•  Potential covert channels

TUD, June’12

©2012 Gernot Heiser NICTA 17

Fundamental Design Decisions for seL4

1.  Memory management is user-level responsibility
–  Kernel never allocates memory (post-boot)
–  Kernel objects controlled by user-mode servers

2.  Memory management is fully delegatable
–  Supports hierarchical system design
–  Enabled by capability-based access control

3.  “Incremental consistency” design pattern
–  Fast transitions between consistent states
–  Restartable operations with progress guarantee

4.  No concurrency in the kernel
–  Interrupts never enabled in kernel
–  Interruption points to bound latencies
–  Clustered multikernel design for multicores

TUD, June’12

Isolation

Perfor-
mance

Verification

Real-time

©2012 Gernot Heiser NICTA 18

seL4 Concepts

•  Capabilities (Caps)
–  mediate access

•  Kernel objects:
–  Threads (thread-control blocks, TCBs)
–  Address spaces (page table objects, PDs, PTs)
–  IPC endpoints (EPs, AsyncEPs)
–  Capability spaces (CNodes)
–  Frames
–  Interrupt objects
–  Untyped memory

•  System calls
–  Send, Wait (and variants)
–  Yield

COMP9242 S2/2011 W01

©2012 Gernot Heiser NICTA 19

Inter-Process Communication (IPC)

•  Fundamental microkernel operation
–  Kernel provides no services, only mechanisms
–  OS services provided by (protected) user-level server processes
–  invoked by IPC

•  seL4 IPC uses a handshake through endpoints:
–  Transfer points without storage capacity
–  Message must be transferred instantly

•  One partner may have to block
•  Single copy user ➞ user by kernel

•  Two endpoint types:
–  Synchronous (Endpoint) and asynchronous (AsyncEP)

COMP9242 S2/2011 W01

seL4

Client Server

IPC

send receive

©2012 Gernot Heiser NICTA 20

Synchronous Endpoint

•  Threads must rendez-vous for message transfer
–  One side blocks until the other is ready

•  Message copied from sender’s to receiver’s message registers
–  Message is combination of caps and data words

•  presently max 121 words (484B, incl message “tag”)

COMP9242 S2/2011 W01

 …....

Thread1
Running Blocked

Thread2
Blocked Running

Send (ep_cap, …)

….. Wait (ep_cap, …)

 Send (ep_cap, …)

 …....
Wait (ep_cap, …)

 …....

©2012 Gernot Heiser NICTA 21

Asynchronous Endpoint

•  Avoids blocking
–  send transmits 1-word message, OR-ed to receiver data word
–  no caps can be sent

•  Receiver can poll or wait
–  waiting returns and clears data word
–  polling just returns data word

•  Similar to interrupt (with small payload)
COMP9242 S2/2011 W01

 …....

Thread1
Running Blocked

Thread2
Blocked Running

 w = Poll (ep_cap, …)

 …... w = Wait (ep_cap,…)
 ….... Send (ep_cap, …)

Send (ep_cap, …)

©2012 Gernot Heiser NICTA 22

Receiving from Sync and Async Endpoints

Server with synchronous and asynchronous interface
•  Example: file system

–  synchronous (RPC-style) client protocol
–  asynchronous notifications from driver

•  Could have separate threads waiting on endpoints
–  forces multi-threaded server, concurrency control

•  Alternative: allow single thread to wait on both EP types
–  Mechanism:

•  AsyncEP is bound to thread with BindAEP() syscall
•  thread waits on synchronous endpoint
•  async message delivered as if been waiting on AsyncEP

COMP9242 S2/2011 W01

Server
Client Driver

©2012 Gernot Heiser NICTA 23

seL4 User-Level Memory Management

Global Resource Manager

RAM Kernel
Data

GRM
Data

Resource Manager

RM
Data

Resource Manager

RM
Data

Addr
Space

AS

Addr
Space

Addr
Space

RM

RM
Data

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

“Untyped” (unallocated) memory

Delegation
can be
revoked

TUD, June’12

©2012 Gernot Heiser NICTA 24

seL4 Memory Management Mechanics: Retype

UT0

Retype (Untyped, 21)

UT1 UT2 F0 F3 F2 F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

 … …

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

… …

Capability
storage

User
memory

Thread
control
block

Capability
to “untyped”

TUD, June’12

©2012 Gernot Heiser NICTA 25

Incremental Consistency

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

Avoids concurrency in (single-core) kernel

TUD, June’12

•  Consistency
•  Restartability
•  Progress

©2012 Gernot Heiser NICTA 26

Example: Destroying IPC Endpoint

Actions:

1.  Disable EP cap (prevent new messages)
2.  while message queue not empty do
3.  remove head of queue (abort message)
4.  check for pending interrupts
5.  done

Client1
Server

Client2

IPC
endpoint

Message
queue

TUD, June’12

©2012 Gernot Heiser NICTA 27

Difficult Example: Revoking IPC “Badge”

State to keep across preemptions
•  Badge being removed
•  Point in queue where preempted
•  End of queue at time operation started
•  Thread performing revocation

Need to squeeze into endpoint data structure!

Client1
Server

Client1
state

Client2 Client2
state

Badge

Removing
orange
badge

Invariants to
maintain!

TUD, June’12

©2012 Gernot Heiser NICTA 28

Approaches for Multicore Kernels

TUD, June’12

 Core

User
thread

 Kernel

User
thread

 Core Core

User
thread

User
thread

 Core

 Kernel Kernel

 Core

User
thread

 Kernel

User
thread

 Core

SMP
big lock

SMP
fine-grained locks

Multikernel
no locks

©2012 Gernot Heiser NICTA 29

Multicore Kernel Trade-Offs

Property Big Lock Fine-grained
Locking

Multikernel

Data structures shared shared distributed
Scalability poor good excellent
Concurrency in
kernel

zero high zero

Kernel
complexity

low high low

Resource
management

centralised centralised distributed

TUD, June’12

 Core

User
threa
d

 Kernel

User
threa
d

 Core Core

User
threa
d

User
threa
d

 Core

 Kernel Kernel

 Core

User
threa
d

 Kernel

User
threa
d

 Core

©2012 Gernot Heiser NICTA 30

Reality of Multicore is NUMA!

TUD, June’12

Core
HW
context

HW
context

 L1 cache

Core
HW
context

HW
context

 L1 cache

 L2 cache

 L3 cache / Main memory

Core
HW
context

HW
context

 L1 cache

 L2 cache

Core

 L1 cache

Core
HW
context

HW
context

 L1 cache

Multi-threading Fast
communi-

cation

Slow
communi-

cation

©2012 Gernot Heiser NICTA 31

Microkernel Principle: Policy Freedom

TUD, June’12

Core
HW
context

HW
context

 L1 cache

Core
HW
context

HW
context

 L1 cache

 L2 cache

 L3 cache / Main memory

Core
HW
context

HW
context

 L1 cache

 L2 cache

Core
HW
context

HW
context

 L1 cache

Share (SMP)
where it is

cheap!

Don’t share
(multikernel) where

it is expensive!

•  Kernel must not dictate policy
•  Kernel must not introduce avoidable overhead

©2012 Gernot Heiser NICTA 32

Performance of Big Kernel Lock

TUD, June’12

100
80
60
40
20

0

10
8

6
4

2

100
80

60
40 20

U
til

iz
at

io
n

(%
)

Kernel Time (%)

H/W Contexts

Scales to ≥8
threads if

kernel time is
low! Should be

for good
microkernel

Limit of shared
L2 cache

©2012 Gernot Heiser NICTA 33

Resulting Design: Clustered Multikernel

TUD, June’12

Core
HW
context

HW
context

 L1 cache

Core
HW
context

HW
context

 L1 cache

 L2 cache

 L3 cache / Main memory

Core
HW
context

HW
context

 L1 cache

 L2 cache

Core
HW
context

HW
context

 L1 cache

 Kernel

User
thread

User
thread

User
thread

User
thread

 Kernel

User
thread

User
thread

User
thread

User
thread

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

 SMP Linux

Still no
concurrency
in the kernel!

©2012 Gernot Heiser NICTA 34

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness
Functional

Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

TUD, June’12

©2012 Gernot Heiser NICTA 35

Proving Functional Correctness

TUD, June’12

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

30–35 py
4.5 years
30–35 py
4.5 years

Refinement: All
possible

implementation
behaviours are

captured by model

Refinement: All
possible

implementation
behaviours are

captured by model

117,000 lop

50,000 lop

©2012 Gernot Heiser NICTA 36

Why So Long for 9,000 LOC?

TUD, June’12

seL4 call
graph

©2012 Gernot Heiser NICTA 37

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

Integrity

TUD, June’12

©2012 Gernot Heiser NICTA 38

Integrity: Limiting Write Access

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

TUD, June’12

To prove:
•  Domain-1 doesn’t have write capabilities to Domain-2 objects
⇒ no action of Domain-1 agents will modify Domain-2 state

•  Specifically, kernel does not modify on Domain-1’s behalf!
–  Prove kernel only allows write upon capability presentation

 Domain 1 Domain 2

©2012 Gernot Heiser NICTA 39

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

✔

Availability

TUD, June’12

©2012 Gernot Heiser NICTA 40

Availability: Ensuring Resource Access

•  Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

TUD, June’12

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

 Domain 1 Domain 2

©2012 Gernot Heiser NICTA 41

seL4 as Basis for Trustworthy Systems

TUD, June’12

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

Integrity

Confident. /
Info Flow

✔

Confident. /
Info Flow

✔

©2012 Gernot Heiser NICTA 42

Confidentiality: Limiting Read Accesses

To prove:
•  Domain-1 doesn’t have read capabilities to Domain-2 objects
⇒ no action of any agents will reveal Domain-2 state to Domain-1

TUD, June’12

 Domain 1 Domain 2
Violation not
observable

by Domain 2!

Non-interference proof in progress:
•  Evolution of Domain 1 does not depend on Domain-2 state
•  Presently cover only overt information flow

©2012 Gernot Heiser NICTA 43

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

✔

✔

TUD, June’12

✔

Timeliness

©2012 Gernot Heiser NICTA 44

Timeliness

 Domain 1 Domain 2

Microkernel

Makes
arbitrary
system

calls

IRQ

Delivery
with

bounded
latency

Non-
preemptible

TUD, June’12

Need worst-case execution time (WCET) analysis of kernel

©2012 Gernot Heiser NICTA 45

Result

TUD, June’12

378
99.5

0 100 200 300

Observed
Computed

Pessimism due to
under-specified

hardware

 µs

WCET presently limited by verification practicalities
•  10 µs seem achievable

©2012 Gernot Heiser NICTA 46

Trustworthy Systems – seL4 is the Foundation!

TUD, June’12

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrity

Confident. /
Info Flow

✔

✔

Thank You!
mailto:gernot@nicta.com.au

Twitter: @GernotHeiser
Google: “nicta trustworthy systems”

