# **Microkernel Construction**

### Introduction

SS2013

Hermann Härtig Benjamin Engel



### **Class Goals**

Provide deeper understanding of OS mechanisms

Introduce L4 principles and concepts

Make you become enthusiastic L4 hackers

Propaganda for OS research at TU Dresden

Hermann Härtig Benjamin Engel

### **Administration**

- Thursday, 4<sup>th</sup> DS, 2 SWS
- Slides: http://www.tudos.org → Teaching → Microkernel Construction
- Subscribe to our mailing list: http://www.tudos.org/mailman/listinfo/mkc2013
- In winter term:
  - Construction of Microkernel-based Systems (2 SWS)
  - Various Labs

# "Monolithic" Kernel System Design



Hermann Härtig Benjamin Engel

# Monolithic Kernel OS (Propaganda)

- System components run in privileged mode
- → No protection between system components
  - Faulty driver can crash the whole system
  - More than 2/3 of today's OS code are drivers
- → No need for good system design
  - Direct access to data structures
  - Undocumented and frequently changing interfaces
- Big and inflexible
  - Difficult to replace system components

### Why something different?

More and more difficult to manage increasing OS complexity

# Microkernel System Design



Hermann Härtig Benjamin Engel

### Example – IBM Workplace OS / Mach



Hermann Härtig Benjamin Engel

TU Dresden
Operating
Systems Group

ARM

Mach Microkernel

PowerPC IA32 MIPS Alpha

## **Example – QNX / Neutrino**

- Embedded systems
- Message passing system (IPC)
- Network transparency



Hermann Härtig Benjamin Engel

TU Dresden
Operating
Systems Group

8

# **Example – Fiasco.OC**



Hermann Härtig Benjamin Engel

TU Dresden Operating Systems Group Fiasco.OC Microkernel

Hardware

# Visions vs. Reality

- Flexibility and Customizable
  - Monolithic kernels are modular
- Maintainability and complexity
  - Monolithic kernel have layered architecture

### ✓ Robustness

- Microkernels are superior due to isolated system components
- Trusted code size (i386)
  - Fiasco kernel: about 15.000 loc
  - Linux kernel: about 300.000 loc (without drivers)

### X Performance

- Application performance degraded
- Communication overhead (see next slides)

# Robustness vs. Performance (1)

- System calls
  - Monolithic kernel: 2 kernel entries/exits
  - Microkernel: 4 kernel entries/exits + 2 context switches



Hermann Härtig Benjamin Engel

## **Robustness vs. Performance (2)**

- Calls between system services
  - Monolithic kernel: 1 function call
  - Microkernel: 4 kernel entries/exits + 2 context switches





Hermann Härtig Benjamin Engel

### **Challenges**

- Build functional powerful and fast microkernels
  - Provide abstractions and mechanisms
  - Fast communication primitive (IPC)
  - Fast context switches and kernel entries/exits
- Subject of this lecture
- Build efficient OS services
  - Memory Management
  - Synchronization
  - Device Drivers
  - File Systems
  - Communication Interfaces
- Subject of lecture "Construction of Microkernel-based systems" (in winter term)

## **L4 Microkernel Family**

- Originally developed by Jochen Liedtke (GMD / IBM Research)
- Current development:
  - Uni Karlsruhe: Pistachio
  - UNSW/NICTA/OKLABS: OKL4, SEL4, L4Verified
  - TU Dresden: Fiasco.OC, Nova
- Support for hardware architectures:
  - X86, ARM, ...

# More Microkernels (Incomplete list)

#### Commercial kernels

- Singularity @ Microsoft Research
- K42 @ IBM Research
- velOSity/INTEGRITY @ Green Hills Software
- Chorus/ChorusOS @ Sun Microsystems
- PikeOS @ SYSGO AG
- OKL4

#### Research kernels

- EROS/CoyotOS @ John Hopkins University
- Minix @ FU Amsterdam
- Amoeba @ FU Amsterdam
- Pebble @ Bell Labs
- Grasshopper @ University of Sterling
- Flux/Fluke @ University of Utah

Hermann Härtig Benjamin Engel

### **L4 - Concepts**

- Jochen Liedtke: "A microkernel does no real work"
  - Kernel provides only inevitable mechanisms
  - No policies implemented in the kernel
- Abstractions
  - Tasks with address spaces
  - Threads executing programs/code
- Mechanisms
  - Resource access control
  - Scheduling
  - Communication (IPC)

### **Threads and Tasks**



Hermann Härtig Benjamin Engel

TU Dresden Operating Systems Group

17

### **Threads**

- Represent unit of execution
  - Execute user code (application)
  - Execute kernel code (system calls, page faults, interrupts, exceptions)
- Subject to scheduling
  - Quasi-parallel execution on one CPU
  - Parallel execution on multiple CPUs
  - Voluntarily switch to another thread possible
  - Preemptive scheduling by the kernel according to certain parameters
- Associated with an address space
  - Executes code in one task at one point in time
    - Migration allows threads move to another task
  - Several threads can execute in one task

### **Tasks**

- Represent domain of protection and isolation
- Container for code, data and resources
- Address space: capabilities + memory pages
- Three management operations:
  - Map: share page with other address space
  - Grant: give page to other address space
  - Unmap: revoke previously mapped page



### **Recursive Address Spaces**



Hermann Härtig Benjamin Engel

## **Messages: Copy Data**

- Direct and indirect data copy
- UTCB message (special area)
- Special case: register-only message
- Pagefaults during user-level memory access possible



### Message: Map References

- Used to transfer memory pages and capabilities
- Kernel manipulates page tables
- Used to implement the map/grant operations



Hermann Härtig Benjamin Engel

### **Communication and Resource Control**

- Need to control who can send data to whom
  - Security and isolation
  - Access to resources
- Approaches
  - IPC-redirection/introspection
  - Central vs. Distributed policy and mechanism
  - ACL-based vs. capability-based



### **Capabilities**



Hermann Härtig Benjamin Engel

### **Capabilities - Details**

- Kernel objects represent resources and communication channels
- Capability
  - Reference to kernel object
  - Associated with access rights
  - Can be mapped from task to another task
- Capability table is task-local data structure inside the kernel
  - Similar to page table
  - Valid entries contain capabilities
- Capability handle is index number to reference entry into capability table
  - Similar to file handle (in POSIX)
- Mapping capabilities establishes a new valid entry into the capability table

## **Page Faults and Pagers**

- Page Faults are mapped to IPC
  - Pager is special thread that receives page faults
  - Page fault IPC cannot trigger another page fault
- Kernel receives the flexpage from pager and inserts mapping into page table of application
- Other faults normally terminate threads



Hermann Härtig Benjamin Engel

### **Device Drivers**

- Hardware interrupts: mapped to IPC
- I/O memory & I/O ports: mapped via flexpages



Hermann Härtig Benjamin Engel

## **L4 Applications - L4Linux**

- Paravirtualized Linux kernel and native Linux applications run as user-level L4 tasks
- System calls / page faults are mapped to L4 IPC

L4 Microkernel



Hermann Härtig Benjamin Engel

TU Dresden
Operating
Systems Group

Mode

### **Lecture Outline**

- Introduction
- Address spaces, threads, thread switching
- Kernel entry and exit
- IPC
- Address space management
- Capabilities
- Synchronization
- Case Studies: Fiasco, Nova, SeL4
- Hands-on experience

Hermann Härtig Benjamin Engel