
The NOVA Microhypervisor

Udo Steinberg
Germany Microprocessor Lab, Intel Labs

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.
• All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without

notice.
• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the

product to deviate from published specifications. Current characterized errata are available on request.
• Nehalem, Westmere, Sandy Bridge and other code names featured are used internally within Intel to identify products that

are in development and not yet publicly announced for release. Customers, licensees and other third parties are not
authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of
Intel's internal code names is at the sole risk of the user.

• Performance tests and ratings are measured using specific computer systems and/or components and reflect the
approximate performance of Intel products as measured by those tests. Any difference in system hardware or software
design or configuration may affect actual performance.

• Intel, Intel Inside, Xeon, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
• Copyright © 2012 Intel Corporation.
• Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor

(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits
will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not
be compatible with all operating systems. Please check with your application vendor.

*Other names, brands, and logos may be claimed as the property of others.

2

Legal Disclaimer

Udo Steinberg Intel Labs / GML

Virtualization

A virtual machine is defined to be an

 „efficient, isolated duplicate of a real machine“

 Popek & Goldberg (1974)

The x86 instruction set used to contain „virtualization holes“

Possible ways to address these virtualization holes:
– Paravirtualization
– Binary Translation
– Make changes to the architecture

VT-x designed to close x86 virtualization holes by introducing
new processor modes of operation

– VMX root mode / VMX non-root mode

3 Udo Steinberg Intel Labs / GML

Intel® Virtualization Technology (VT-x)

VM Exit

• Guest-to-Hypervisor transition
• External Events (Interrupts)

• Sensitive Instructions

• Save guest state in VMCS

• Load host state from VMCS

VM Entry

• Hypervisor-to-Guest transition

• Save host state in VMCS

• Load guest state from VMCS

• Possibility to inject events

4

VMX root mode

Hypervisor

VMX non-root mode

VM VM

OS Kernel OS Kernel

Apps Apps

VM Exit VM Entry

Udo Steinberg Intel Labs / GML

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2005 2006 2007 2008

Ro
un

d-
tr

ip
 V

M
 e

xi
t/

en
tr

y
(C

yc
le

s)

Optimization of VT Transition Latencies

5

Virtual-Machine Control Structure (VMCS)

• Holds guest/host register state in physical memory region

• Accessed via VMREAD/VMWRITE instructions

• Enables processor implementations to cache VMCS data on-die

 Significant
reductions of
VT transition
latencies over
the years

Udo Steinberg Intel Labs / GML

State of the Art: Monolithic Hypervisors

A monolithic hypervisor is a single point of failure.

6

VMX non-root mode

VMX root mode

Monolithic Hypervisor

x86 Virtualization

VM VM VM

Device Drivers

Management Storage

Network
> 100,000 lines of code

*Other names, brands, and logos may be claimed as the property of others.

* * *

Udo Steinberg Intel Labs / GML

Trusted Computing Base

The trusted computing base is defined as
• „the collection of hardware, software, and setup

information on which the security of a system depends“
• „a small amount of software and hardware that security

depends on and that we distinguish from a much larger
amount that can misbehave without affecting security“

 Butler Lampson (1992)

From a security perspective it is desirable to

• Implement fine-grained functional disaggregation

• Enforce the principle of least authority (POLA)

• Minimize the TCB for each application and VM

7 Udo Steinberg Intel Labs / GML

Example: Xen*

8

Xen Hypervisor

Hardware

Domain0

PV-Linux

with Drivers

libxc QEMU PV Domain

PV OS

App App

HVM Domain

Legacy OS

App App

Event Channels

xend

 P. Barham, B. Dragovic, K. Fraser, S.
Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, A. Warfield (2003):

 „Xen and the Art of Virtualization“

> 100,000 LOC

> 200,000 LOC

> 140,000 LOC

??? LOC for Drivers

*Other names, brands, and logos may be claimed as the property of others.

Udo Steinberg Intel Labs / GML

https://dl.acm.org/citation.cfm?id=945445.945462

Example: KVM*

9

Linux Kernel + KVM Module + Drivers

Hardware

VM

Guest OS

App App

VM

Guest OS

App App

VM

Guest OS

App App

QEMU QEMU QEMU App App

> 220,000 LOC

> 140,000 LOC

??? LOC for Drivers

*Other names, brands, and logos may be claimed as the property of others.

 A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori (2007):
 „KVM: The Linux Virtual Machine Monitor“

Udo Steinberg Intel Labs / GML

http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf

VMware vSphere ESX*

10

vmkernel

Hardware

VM

Guest OS

App App

VM

Guest OS

App App

VM

Guest OS

App App

VMM VMM VMM

~200,000 LOC Drivers Mgmt. Storage

Network

 O. Agesen, A. Garthwaite, J. Sheldon, P. Subrahmanyam (2010):
 „The Evolution of an x86 Virtual Machine Monitor“

*Other names, brands, and logos may be claimed as the property of others.

Udo Steinberg Intel Labs / GML

https://dl.acm.org/citation.cfm?id=1899930

Security in Virtualized Environments

Virtualization layer is a security-critical part of the system

• Can contain exploitable vulnerabilities

• Replaces physical isolation with logical isolation

• Increases the trusted computing base

• Requires additional configuration and maintenance

Loss of isolation has severe impact

• Subversion of the hypervisor compromises all VMs at once

• Facilitates attacks from below the OS kernel

11 Udo Steinberg Intel Labs / GML

Vulnerabilities are Real

12

VMware ESX*

• CVE-2008-2100:

 „Multiple buffer overflows in VIX API”

• CVE-2009-1244:

 „Unspecified vulnerability in the virtual machine display function”

Xen*

• CVE-2007-4993:

 „pygrub allows local users in the guest domain to execute arbitrary commands in domain0”

• CVE-2008-3687:

 „Heap-based buffer overflow in the flask_security_label function”

• CVE-2012-0217:

 „64-bit PV guest privilege escalation vulnerability“

*Other names, brands, and logos may be claimed as the property of others.

Udo Steinberg Intel Labs / GML

Securing the Virtualization Layer

General idea: Make the virtualization layer as small as possible

• Use virtualization features of modern Intel® CPUs to reduce
software complexity

– VT-x, VT-d, Nested Paging
– No Paravirtualization, No Binary Translation

• Fine-grained functional disaggregation, multiple components
– Microhypervisor (privileged)
– User-level virtual-machine monitor per VM (deprivileged)
– User-level device drivers and applications (deprivileged)

• Principle of least privilege among all components

13 Udo Steinberg Intel Labs / GML

NOVA OS Virtualization Architecture

14

Source code available: https://github.com/IntelLabs/NOVA

VMX non-root mode

VMX root mode

Microhypervisor

Partition Manager

VMM

Applications Device Drivers
User

Kernel

VM

VMM VMM

VM VM

9,000 LOC

20,000 LOC

7,000 LOC

* * *

*Other names, brands, and logos may be claimed as the property of others.

Udo Steinberg Intel Labs / GML

https://github.com/IntelLabs/NOVA

NOVA Microhypervisor

Combines hypervisor and 3rd-gen. microkernel functionality
– Based upon previous microkernel research, mostly L4
– Inspired by features from EROS, Pebble

Goals
– High-performance, low-complexity, secure and scalable hypervisor

• Use modern hardware virtualization features
– Co-host secure applications and VMs (legacy reuse)
– Fix some shortcomings of original L4 kernels

• Lack of Communication Control
• Lack of MP Support
• Priority Inversion during Synchronous IPC

Research and Development
– 2006-2011 Technische Universität Dresden
– Since 2012 Intel Labs

15 Udo Steinberg Intel Labs / GML

Capabilities

• Reference to a kernel or hardware object plus auxiliary data
– Immutable to the user - cannot be inspected, modified or accessed directly

• User references a capability via an integral number (capability selector)
– Implementation

• Align all kernel objects on a cacheline boundary
• Store access permissions in lower 5 bits of the pointer

• Types
– Memory Capability
– I/O Port Capability
– Object Capability

• Operations
– Invocation
– Delegation, Revocation, Translation

 16 Udo Steinberg Intel Labs / GML

Microhypervisor Abstractions

Microhypervisor implements 5 types of objects:

• Protection Domain
• Execution Context
• Scheduling Context
• Portal
• Semaphore

 Hypercall interface uses capabilities for all operations.

17 Udo Steinberg Intel Labs / GML

Communication

18

Server PD Client PD

PTA

PTB

ECC

Capability Space

ECc

PTA

ECS

Capability Space

ECS

PTA

PTB

call (2, msg)

reply (msg)

• Communication is
• Synchronous
• CPU-Local

• Destination is a portal,
not a specific thread

• Internal PD structure not
revealed to other party

• Reply capability refers to
caller, auto-destructed
on invocation

Udo Steinberg Intel Labs / GML

Synchronous IPC: Issues in Classic L4

• During IPC, client donates its
timeslice to the server

– Kernel switches from thread C to thread S
without changing the current timeslice.

– Bypasses the scheduler during IPC and
thereby improves IPC performance

• Effect is priority inheritance, but
only until S is preempted

– If the kernel fails to recognize the
dependency between C and S after the
preemption, S will consume its own
timeslice s instead of timeslice c.

Result: Priority Inversion

19

C
c

S

C
c

S

request

response

s

s

Details: A Real-Time Programmer’s Tour of General-Purpose L4 Microkernels, EURASIP 2008

Udo Steinberg Intel Labs / GML

https://dl.acm.org/citation.cfm?id=1361158

Priority Inversion

20

L

H

M

S

• High-priority thread H blocked by
low-priority thread L holding S.

• Unbounded priority inversion if M
prevents L from running and thus
from releasing S.

• Solution: Priority Inheritance
– Server inherits priority of all its clients for

the duration of their requests
– Hypervisor tracks dependencies
– Servers do not need time of their own

Shared Resource

Udo Steinberg Intel Labs / GML

Helping and Donation

21

C

T

S

C

H

S

Donation
Donation

Helping

T

Donation:
• Scheduler follows communication

link from C to S

Helping:
• H retries its operation; switches

to S if rendezvous fails

Both mechanisms are transitive

Udo Steinberg Intel Labs / GML

VM Exit Handling

22

• User-level VMM implements
complex x86 interface

• Transfer of guest state between
VM and VMM via synchronous
message passing (IPC)

VMX non-root mode

VMX root mode

User

Kernel

Microhypervisor

VM

VMM Disk Driver

x86 Emulation Block I/O

I/O Instr.
VM Exit

IPC Call

Udo Steinberg Intel Labs / GML

Interrupt Handling

23

• Interrupt fan-out to multiple
components via semaphores

• Recall of virtual CPUs to inject
interrupt vectors

VMX non-root mode

VMX root mode

User

Kernel

Microhypervisor

VM

VMM Disk Driver
VM Resume
Inject Vector SHMEM

Recall

Udo Steinberg Intel Labs / GML

Memory Management

Each protection domain has up to 3 different page tables

• Host page table (2 or 4 levels)
– Defines the layout of applications running directly on top of the hypervisor
– 3 GB (32bit) or 128 TB (64bit) host-virtual address space
– Upper portion used by the hypervisor itself

• Nested page table (4 levels)
– Defines the physical memory layout of virtual machines
– Zero-based contiguous guest-physical memory

• DMA page table (up to 6 levels)
– Defines DMA regions of host-virtual or guest-physical address space
– DMA access to other regions aborted by IOMMU

24 Udo Steinberg Intel Labs / GML

Nested Page Table

Memory Virtualization with Nested Paging

25

Guest Page Table

CR3

PML4E

PDPTE

PDE

PTE

EPTP L4 L3 L2 L1

EPTP L4 L3 L2 L1

EPTP L4 L3 L2 L1

EPTP L4 L3 L2 L1

Guest-Linear
Address

EPTP L4 L3 L2 L1

TLB

Host-Physical
Address

Nested paging increases page walk from 4 levels up to 24 levels

Udo Steinberg Intel Labs / GML

Memory Virtualization without Nested Paging

 On processors without
support for nested paging,
the hypervisor must

• Walk the guest page table
• Walk the host page table
• Create a shadow page table

MMU configured to use the
shadow page table

• Hypervisor must intercept all
guest page faults and TLB
flushes

Behavior of a virtual TLB

26

Guest-Linear
Address

Host-Physical
Address

Guest Page Table

Nested Page Table

Guest-Physical
Address Shadow Page Table

Udo Steinberg Intel Labs / GML

Device Drivers

Device drivers are the most prominent source of bugs

• Move device drivers out of the privileged code base

• Implement them as regular user-level applications

Virtual machines benefit from having direct access to devices

• No need to emulate a virtual device in software

• Higher performance due to fewer VM exits

Virtualization layer must control use of DMA and interrupts.

27 Udo Steinberg Intel Labs / GML

DMA Remapping Engine (IOMMU)

Intel® Virtualization Technology (VT-d)

28

B:D:F Addr Len

Memory Access with
Physical Address

Translation
Cache

Context
Cache

Context Table

Address Translation
Structures: Domain A

Address Translation
Structures: Domain B

Device 1
Device 2

Device n

Udo Steinberg Intel Labs / GML

Impact of Attacks in NOVA

Attack from Guest OS

• Hypervisor attack surface is message-passing interface

• VM can compromise or crash its associated VMM

Attack from VMM
• Hypervisor attack surface includes hypercall interface
• Access to other components controlled by capabilities

Attack from Device Driver
• DMA and interrupt usage restricted by IOMMU
• Hypervisor resources never exposed to user level

 29 Udo Steinberg Intel Labs / GML

Interrupt-Style Execution Model

30

• One kernel stack per core
• No unwinding due to „noreturn“

functions

• Continuations
• Encode the remaining execution

path of blocked or preempted
execution contexts

• Resume at the top of the kernel
stack

• Kernel entry and exit
directly inside the TCB

Udo Steinberg Intel Labs / GML

Preemption Points

31

• Kernel stack contents lost
during context switch

• Thread switch in interrupt
context impossible

• Set hazard field instead

• Check for preemptions in
long-running code paths

• Save continuation state
• Perform context switch

Udo Steinberg Intel Labs / GML

Performance Implications

• Single-stack design reduces cache and TLB footprint
– No need to restore caller-saved registers
– No misaligned return stack after context switch
– Return to user from anywhere on the kernel stack

• Only long-running operations enable interrupts
– Short code paths can keep interrupts disabled
– Some code paths MUST have interrupts enabled to avoid deadlock
– Deferred context switch at next serializable point

• Hazards
– Efficient means to encode special conditions that can be checked later, e.g.

when returning to user mode
– Example: Preemption, Recall, FPU active, RCU quiescent state

32 Udo Steinberg Intel Labs / GML

IPC Performance Comparison

33

-33% same PD

-23% other PD

Udo Steinberg Intel Labs / GML

Roundtrip Inter-Process Communication between two threads

Overhead of the Virtualization Layer

34

*Other names, brands, and logos may be claimed as the property of others.

Details: NOVA: A Microhypervisor-Based Secure Virtualization Architecture, Eurosys 2010

Kernel-Compile Benchmark:
CPU: Intel® Core™ i7 2.67 GHz

VM Configuration:
Single virtual CPU, virtual disk
512 MB Guest Memory, EPT+VPID

Udo Steinberg Intel Labs / GML

http://os.inf.tu-dresden.de/papers_ps/steinberg_eurosys2010.pdf

Performance and TCB Size Comparison

35

*Other names, brands, and logos may be claimed as the property of others.

Kernel-Compile Benchmark:
CPU: Intel® Core™ i7 2.67 GHz

VM Configuration:
Single virtual CPU, virtual disk
512 MB Guest Memory, EPT+VPID

Details: NOVA: A Microhypervisor-Based Secure Virtualization Architecture, Eurosys 2010

Udo Steinberg Intel Labs / GML

http://os.inf.tu-dresden.de/papers_ps/steinberg_eurosys2010.pdf

Status

Microhypervisor

• Runs on x86 machines with Intel® VT-x or AMD*-V

• Supports 32-bit and 64-bit, SMP, Nested Paging, IOMMU

• Works with different user-level environments

User-Level Virtual Machine Monitor

• Implements virtual device models: NIC, SATA, VGA, PCI, ...

• Supports direct assignment of host devices to VMs

• No 64-bit support yet

36

*Other names, brands, and logos may be claimed as the property of others.

Udo Steinberg Intel Labs / GML

Summary

• Disaggregated virtualization layer provides additional
isolation boundaries and improves security

• Excellent performance using Intel® hardware virtualization
features: VT-x, VT-d, Nested Paging

• NOVA microhypervisor is a research prototype
– Reduced size of the trusted computing base by an order of magnitude,

compared to monolithic hypervisors, while exceeding their performance

37 Udo Steinberg Intel Labs / GML

	The NOVA Microhypervisor
	Legal Disclaimer
	Virtualization
	Intel® Virtualization Technology (VT-x)
	Optimization of VT Transition Latencies
	State of the Art: Monolithic Hypervisors
	Trusted Computing Base
	Example: Xen*
	Example: KVM*
	VMware vSphere ESX*
	Security in Virtualized Environments
	Vulnerabilities are Real
	Securing the Virtualization Layer
	NOVA OS Virtualization Architecture
	NOVA Microhypervisor
	Capabilities
	Microhypervisor Abstractions
	Communication
	Synchronous IPC: Issues in Classic L4
	Priority Inversion
	Helping and Donation
	VM Exit Handling
	Interrupt Handling
	Memory Management
	Memory Virtualization with Nested Paging
	Memory Virtualization without Nested Paging
	Device Drivers
	Intel® Virtualization Technology (VT-d)
	Impact of Attacks in NOVA	
	Interrupt-Style Execution Model
	Preemption Points
	Performance Implications
	IPC Performance Comparison
	Overhead of the Virtualization Layer
	Performance and TCB Size Comparison
	Status
	Summary

