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Virtualization 

A virtual machine is defined to be an 

 „efficient, isolated duplicate of a real machine“ 

      Popek & Goldberg (1974) 

The x86 instruction set used to contain „virtualization holes“ 

Possible ways to address these virtualization holes: 
– Paravirtualization 
– Binary Translation 
– Make changes to the architecture  

VT-x designed to close x86 virtualization holes by introducing 
new processor modes of operation 

– VMX root mode / VMX non-root mode 
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Intel® Virtualization Technology (VT-x) 

VM Exit 

• Guest-to-Hypervisor transition 
• External Events (Interrupts) 

• Sensitive Instructions 

• Save guest state in VMCS 

• Load host state from VMCS 

VM Entry 

• Hypervisor-to-Guest transition 

• Save host state in VMCS 

• Load guest state from VMCS 

• Possibility to inject events 
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VMX root mode 

Hypervisor 

VMX non-root mode 

VM VM 

OS Kernel OS Kernel 

Apps Apps 

VM Exit VM Entry 
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Optimization of VT Transition Latencies 
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Virtual-Machine Control Structure (VMCS) 

• Holds guest/host register state in physical memory region 

• Accessed via VMREAD/VMWRITE instructions 

• Enables processor implementations to cache VMCS data on-die 

 Significant 
reductions of 
VT transition 
latencies over 
the years 
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State of the Art: Monolithic Hypervisors 

A monolithic hypervisor is a single point of failure. 
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VMX non-root mode 

VMX root mode 

Monolithic Hypervisor 

x86 Virtualization 

VM VM VM 

Device Drivers 

Management Storage 

Network 
> 100,000 lines of code 

*Other names, brands, and logos may be claimed as the property of others. 

* * * 
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Trusted Computing Base 

The trusted computing base is defined as 
• „the collection of hardware, software, and setup 

information on which the security of a system depends“ 
• „a small amount of software and hardware that security 

depends on and that we distinguish from a much larger 
amount that can misbehave without affecting security“ 

      Butler Lampson (1992) 

From a security perspective it is desirable to 

• Implement fine-grained functional disaggregation 

• Enforce the principle of least authority (POLA) 

• Minimize the TCB for each application and VM 

 
7 Udo Steinberg Intel Labs  / GML 



Example: Xen* 
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Xen Hypervisor 

Hardware 

Domain0 

 
PV-Linux 

with Drivers 

libxc QEMU PV Domain 

PV OS 

App App 

HVM Domain 

Legacy OS 

App App 

Event Channels 

xend 

 P. Barham, B. Dragovic, K. Fraser, S. 
Hand, T. Harris, A. Ho, R. Neugebauer, I. 
Pratt, A. Warfield (2003): 

 „Xen and the Art of Virtualization“ 

 

> 100,000 LOC 

> 200,000 LOC 

> 140,000 LOC 

??? LOC for Drivers 

*Other names, brands, and logos may be claimed as the property of others. 
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Example: KVM* 
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Linux Kernel + KVM Module + Drivers 

Hardware 

VM 

Guest OS 

App App 

VM 

Guest OS 

App App 

VM 

Guest OS 

App App 

QEMU QEMU QEMU App App 

  

> 220,000 LOC 

> 140,000 LOC 

??? LOC for Drivers 

*Other names, brands, and logos may be claimed as the property of others. 

 A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori (2007): 
 „KVM: The Linux Virtual Machine Monitor“ 
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VMware vSphere ESX* 

10 

vmkernel 

Hardware 

VM 

Guest OS 

App App 

VM 

Guest OS 

App App 

VM 

Guest OS 

App App 

VMM VMM VMM 

~200,000 LOC Drivers Mgmt. Storage 

Network 

 O. Agesen, A. Garthwaite, J. Sheldon, P. Subrahmanyam (2010): 
 „The Evolution of an x86 Virtual Machine Monitor“ 

*Other names, brands, and logos may be claimed as the property of others. 
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Security in Virtualized Environments 

Virtualization layer is a security-critical part of the system 

• Can contain exploitable vulnerabilities 

• Replaces physical isolation with logical isolation 

• Increases the trusted computing base 

• Requires additional configuration and maintenance 

 

Loss of isolation has severe impact 

• Subversion of the hypervisor compromises all VMs at once 

• Facilitates attacks from below the OS kernel 
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Vulnerabilities are Real 

12 

VMware ESX* 

• CVE-2008-2100: 

 „Multiple buffer overflows in VIX API” 

• CVE-2009-1244: 

 „Unspecified vulnerability in the virtual machine display function” 

Xen* 

• CVE-2007-4993: 

 „pygrub allows local users in the guest domain to execute arbitrary commands in domain0” 

• CVE-2008-3687: 

  „Heap-based buffer overflow in the flask_security_label function” 

• CVE-2012-0217: 

 „64-bit PV guest privilege escalation vulnerability“ 
 

*Other names, brands, and logos may be claimed as the property of others. 
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Securing the Virtualization Layer 

General idea: Make the virtualization layer as small as possible 

• Use virtualization features of modern Intel® CPUs to reduce 
software complexity 

– VT-x, VT-d, Nested Paging 
– No Paravirtualization, No Binary Translation 

 

• Fine-grained functional disaggregation, multiple components 
– Microhypervisor (privileged) 
– User-level virtual-machine monitor per VM (deprivileged) 
– User-level device drivers and applications (deprivileged) 

 

• Principle of least privilege among all components 
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NOVA OS Virtualization Architecture 
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Source code available: https://github.com/IntelLabs/NOVA 

VMX non-root mode 

VMX root mode 

Microhypervisor 

Partition Manager 

VMM 

Applications Device Drivers 
User 

Kernel 

VM 

VMM VMM 

VM VM 

9,000 LOC 

20,000 LOC 

7,000 LOC 

* * * 

*Other names, brands, and logos may be claimed as the property of others. 
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NOVA Microhypervisor 

Combines hypervisor and 3rd-gen. microkernel functionality 
– Based upon previous microkernel research, mostly L4 
– Inspired by features from EROS, Pebble 

Goals 
– High-performance, low-complexity, secure and scalable hypervisor 

• Use modern hardware virtualization features 
– Co-host secure applications and VMs (legacy reuse) 
– Fix some shortcomings of original L4 kernels 

• Lack of Communication Control 
• Lack of MP Support 
• Priority Inversion during Synchronous IPC 

Research and Development 
– 2006-2011 Technische Universität Dresden 
– Since 2012 Intel Labs 
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Capabilities 

• Reference to a kernel or hardware object plus auxiliary data 
– Immutable to the user - cannot be inspected, modified or accessed directly 

• User references a capability via an integral number (capability selector) 
– Implementation 

• Align all kernel objects on a cacheline boundary 
• Store access permissions in lower 5 bits of the pointer 

• Types 
– Memory Capability 
– I/O Port Capability 
– Object Capability 

• Operations 
– Invocation 
– Delegation, Revocation, Translation 
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Microhypervisor Abstractions 

Microhypervisor implements 5 types of objects: 
 
• Protection Domain 
• Execution Context 
• Scheduling Context 
• Portal 
• Semaphore 

 
 
 
 Hypercall interface uses capabilities for all operations. 
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Communication 
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Server PD Client PD 

PTA 

PTB 

ECC 

Capability Space 

ECc 

PTA 

ECS 

Capability Space 

ECS 

PTA 

PTB 

call (2, msg) 

reply (msg) 

• Communication is 
• Synchronous 
• CPU-Local 

• Destination is a portal, 
not a specific thread 

• Internal PD structure not 
revealed to other party 

• Reply capability refers to 
caller, auto-destructed 
on invocation 
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Synchronous IPC: Issues in Classic L4 

• During IPC, client donates its 
timeslice to the server 

– Kernel switches from thread C to thread S 
without changing the current timeslice. 

– Bypasses the scheduler during IPC and 
thereby improves IPC performance 

• Effect is priority inheritance, but 
only until S is preempted 

– If the kernel fails to recognize the 
dependency between C and S after the 
preemption, S will consume its own 
timeslice s instead of timeslice c. 

Result: Priority Inversion 
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C 
c 

S 

C 
c 

S 

request 

response 

s 

s 

Details: A Real-Time Programmer’s Tour of General-Purpose L4 Microkernels, EURASIP 2008 
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Priority Inversion 
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L 

H 

M 

S 

• High-priority thread H blocked by 
low-priority thread L holding S. 

 

• Unbounded priority inversion if M 
prevents L from running and thus 
from releasing S. 

 

• Solution: Priority Inheritance 
– Server inherits priority of all its clients for 

the duration of their requests 
– Hypervisor tracks dependencies 
– Servers do not need time of their own 

 

Shared Resource 
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Helping and Donation 
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C 

T 

S 

C 

H 

S 

Donation 
Donation 

Helping 

T 

Donation: 
• Scheduler follows communication 

link from C to S 

Helping: 
• H retries its operation; switches 

to S if rendezvous fails 

Both mechanisms are transitive 
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VM Exit Handling 
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• User-level VMM implements 
complex x86 interface 

• Transfer of guest state between 
VM and VMM via synchronous 
message passing (IPC) 

VMX non-root mode 

VMX root mode 

User 

Kernel 

Microhypervisor 

VM 

VMM Disk Driver 

x86 Emulation Block I/O 

I/O Instr. 
VM Exit 

IPC Call 
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Interrupt Handling 
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• Interrupt fan-out to multiple 
components via semaphores 

• Recall of virtual CPUs to inject 
interrupt vectors 

VMX non-root mode 

VMX root mode 

User 

Kernel 

Microhypervisor 

VM 

VMM Disk Driver 
VM Resume 
Inject Vector SHMEM 

Recall 
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Memory Management 

Each protection domain has up to 3 different page tables 

• Host page table (2 or 4 levels) 
– Defines the layout of applications running directly on top of the hypervisor 
– 3 GB (32bit) or 128 TB (64bit) host-virtual address space 
– Upper portion used by the hypervisor itself 

• Nested page table (4 levels) 
– Defines the physical memory layout of virtual machines 
– Zero-based contiguous guest-physical memory 

• DMA page table (up to 6 levels) 
– Defines DMA regions of host-virtual or guest-physical address space 
– DMA access to other regions aborted by IOMMU 
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Nested Page Table 

Memory Virtualization with Nested Paging 
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Guest Page Table 

CR3 

PML4E 

PDPTE 

PDE 

PTE 

EPTP L4 L3 L2 L1 

EPTP L4 L3 L2 L1 

EPTP L4 L3 L2 L1 

EPTP L4 L3 L2 L1 

Guest-Linear 
Address 

EPTP L4 L3 L2 L1 

TLB 

Host-Physical 
Address 

Nested paging increases page walk from 4 levels up to 24 levels 
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Memory Virtualization without Nested Paging 

 On processors without 
support for nested paging, 
the hypervisor must 

• Walk the guest page table 
• Walk the host page table 
• Create a shadow page table 

 

MMU configured to use the 
shadow page table 

• Hypervisor must intercept all 
guest page faults and TLB 
flushes 
 

Behavior of a virtual TLB 
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Guest-Linear 
Address 

Host-Physical 
Address 

Guest Page Table 

Nested Page Table 

Guest-Physical 
Address Shadow Page Table 
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Device Drivers 

Device drivers are the most prominent source of bugs 

• Move device drivers out of the privileged code base 

• Implement them as regular user-level applications 

 

Virtual machines benefit from having direct access to devices 

• No need to emulate a virtual device in software 

• Higher performance due to fewer VM exits 

 

Virtualization layer must control use of DMA and interrupts. 
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DMA Remapping Engine (IOMMU) 

Intel® Virtualization Technology (VT-d) 
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B:D:F Addr Len 

Memory Access with 
Physical Address 

Translation 
Cache 

Context 
Cache 

Context Table 

Address Translation 
Structures: Domain A 

Address Translation 
Structures: Domain B 

Device 1 
Device 2 

Device n 

Udo Steinberg Intel Labs  / GML 



Impact of Attacks in NOVA  

Attack from Guest OS 

• Hypervisor attack surface is message-passing interface 

• VM can compromise or crash its associated VMM 
 
Attack from VMM 
• Hypervisor attack surface includes hypercall interface 
• Access to other components controlled by capabilities 
 
Attack from Device Driver 
• DMA and interrupt usage restricted by IOMMU 
• Hypervisor resources never exposed to user level 
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Interrupt-Style Execution Model 
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• One kernel stack per core 
• No unwinding due to „noreturn“ 

functions 

• Continuations 
• Encode the remaining execution 

path of blocked or preempted 
execution contexts 

• Resume at the top of the kernel 
stack 

• Kernel entry and exit 
directly inside the TCB 
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Preemption Points 
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• Kernel stack contents lost 
during context switch 

• Thread switch in interrupt 
context impossible 

• Set hazard field instead 

• Check for preemptions in 
long-running code paths 

• Save continuation state 
• Perform context switch 
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Performance Implications 

• Single-stack design reduces cache and TLB footprint 
– No need to restore caller-saved registers 
– No misaligned return stack after context switch 
– Return to user from anywhere on the kernel stack 

• Only long-running operations enable interrupts 
– Short code paths can keep interrupts disabled 
– Some code paths MUST have interrupts enabled to avoid deadlock 
– Deferred context switch at next serializable point 

• Hazards 
– Efficient means to encode special conditions that can be checked later, e.g. 

when returning to user mode 
– Example: Preemption, Recall, FPU active, RCU quiescent state 
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IPC Performance Comparison 
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-33% same PD 

-23% other PD 
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Roundtrip Inter-Process Communication between two threads 

 



Overhead of the Virtualization Layer 
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*Other names, brands, and logos may be claimed as the property of others. 

Details: NOVA: A Microhypervisor-Based Secure Virtualization Architecture, Eurosys 2010 

 

Kernel-Compile Benchmark: 
CPU: Intel® Core™ i7 2.67 GHz 

VM Configuration: 
Single virtual CPU, virtual disk 
512 MB Guest Memory, EPT+VPID 
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Performance and TCB Size Comparison 
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*Other names, brands, and logos may be claimed as the property of others. 

Kernel-Compile Benchmark: 
CPU: Intel® Core™ i7 2.67 GHz 

VM Configuration: 
Single virtual CPU, virtual disk 
512 MB Guest Memory, EPT+VPID 

 

Details: NOVA: A Microhypervisor-Based Secure Virtualization Architecture, Eurosys 2010 
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Status 

Microhypervisor 

• Runs on x86 machines with Intel® VT-x or AMD*-V 

• Supports 32-bit and 64-bit, SMP, Nested Paging, IOMMU 

• Works with different user-level environments 

User-Level Virtual Machine Monitor 

• Implements virtual device models: NIC, SATA, VGA, PCI, ... 

• Supports direct assignment of host devices to VMs 

• No 64-bit support yet 
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Summary 

• Disaggregated virtualization layer provides additional 
isolation boundaries and improves security 

 

• Excellent performance using Intel® hardware virtualization 
features: VT-x, VT-d, Nested Paging 

 

• NOVA microhypervisor is a research prototype 
– Reduced size of the trusted computing base by an order of magnitude, 

compared to monolithic hypervisors, while exceeding their performance 
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