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Goals

1 Provide deeper understanding of OS mechanisms

2 Look at the implementation details of microkernels

3 Make you become enthusiastic microkernel hackers

4 Propaganda for OS research at TU Dresden
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Administration

Thursday, 4th DS, 2 SWS

Slides:

www.tudos.org → Teaching → Microkernel Construction

Subscribe to our mailing list:

www.tudos.org/mailman/listinfo/mkc2019

In winter term:

Microkernel-based operating systems (MOS)

Various labs
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Monolithic Kernel System Design
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Monolithic Kernel OS (Propaganda)

System components run in privileged mode
No protection between system components

Faulty driver can crash the whole system
Malicious app could exploit bug in faulty driver
More than 2/3 of today’s OS code are drivers

No need for good system design

Direct access to data structures
Undocumented and frequently changing interfaces

Big and inflexible

Difficult to replace system components
Difficult to understand and maintain

Why something different?
→ Increasingly difficult to manage growing OS complexity
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Microkernel System Design
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Example: QNX on Neutrino

1 Commercial, targets embedded systems

2 Network transparency
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Example: L4Re on Fiasco.OC

1 Developed at our chair, now at Kernkonzept

2 Belongs to the L4 family
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Example: Genode on NOVA

1 Genode is a spin-off of the chair

2 NOVA was built at our chair
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Example: M3

1 Started at our chair, now continued at Barkhausen Institut

2 Similar to L4, but for heterogeneous hardware
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Vision vs. Reality

l Flexibility and Customizable

Monolithic kernels are typically modular

l Maintainability and complexity

Monolithic kernels have layered architecture

3 Robustness

Microkernels are superior due to isolated system components
Trusted code size

NOVA: 9.000 LOC
Linux: > 1.000.000 LOC (without drivers, arch, fs)

7 Performance

Application performance degraded
Communication overhead (see next slides)

13 / 29



Performance vs. Robustness (1)

Monolithic kernel: 2 kernel entries/exits

Microkernel: 4 kernel entries/exits + 2 context switches
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Performance vs. Robustness (2)

Monolithic kernel: 2 function calls/returns

Microkernel: 4 kernel entries/exits + 2 context switches
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Hardware Hardware
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2 3

Network Network
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Challenges

1 Build functionally powerful and fast microkernels

Provide abstractions and mechanisms
Fast communication primitive (IPC)
Fast context switches and kernel entries/exits

→ Subject of this lecture

2 Build efficient OS services

Memory management
Synchronization
Device drivers
File systems
Communication interfaces

→ Subject of lecture ”Microkernel-based operating systems”
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L4 Microkernel Family

1 Originally developed by Jochen Liedtke
(GMD / IBM Research)

2 Current development:

UNSW/NICTA/OKLABS: OKL4, seL4
TU Dresden: Fiasco.OC, NOVA, (M3)

3 Support for hardware architectures:

x86, ARM, . . .
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More Microkernels (incomplete)

1 Commercial kernels:

Singularity @ Microsoft Research
K42 @ IBM Research
velOSity/INTEGRITY @ Green Hills Software
Chorus/ChorusOS @ Sun Microsystems
PikeOS @ SYSGO AG

2 Research kernels

EROS/CoyotOS @ John Hopkins University
Minix @ FU Amsterdam
Amoeba @ FU Amsterdam
Pebble @ Bell Labs
Grasshopper @ University of Sterling
Flux/Fluke @ University of Utah
Pistachio @ KIT
Barrelfish @ ETH Zurich
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L4 Concepts

1 Jochen Liedtke: “A microkernel does no real work”

Kernel provides only inevitable mechanisms
No policies implemented in the kernel

2 Abstractions

Tasks with address spaces
Threads executing programs/code

3 Mechanisms

Resource access control
Scheduling
Communication (IPC)
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Protection Domain (PD)

PD is a resource container

Object capabilities (e.g., PD, execution context, . . . )
Memory capabilities (pages)
I/O port capabilities (NOVA runs only on x86)

Capabilities can be exchanged between PDs

Typically, PD contains one or more execution contexts

Not hierarchical (in the kernel)

NOVA to Fiasco.OC

Protection Domain ' Task
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Execution Context (EC)

EC is the entity that executes code

User code (application)
Kernel code (syscalls, pagefaults, IRQs, exceptions)

Has a user thread control block (UTCB) for IPC

Belongs to exactly one PD

Receives time to execute from scheduling contexts

Pinned on a CPU (not migratable)

Three variants: Local EC, Global EC and VCPU

NOVA to Fiasco.OC

Execution Context + Scheduling Context ' Thread
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Scheduling Context (SC)

SC supplies an EC with time

Has a budget and a priority

NOVA schedules SCs in round robin fashion

Scheduling an SC, activates the associated EC

NOVA to Fiasco.OC

Execution Context + Scheduling Context ' Thread
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Portal (PT)

A portal is an endpoint for synchronous IPC

Each portal belongs to exactly one (Local) EC

Calling a portal, transfers control to the associated EC

Data and capability exchange via UTCB

No cross-core IPC

NOVA to Fiasco.OC

Portal ' IPC Gate
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Semaphore (SM)

A semaphore offers asynchronous communication (one bit)

Supports: up, down and zero

Can be used cross-core

Hardware interrupts are represented as semaphores

NOVA to Fiasco.OC

Semaphore ' IRQ
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Capabilities

Access to kernel objects is provided by capabilities

Capability is a pair: (pointer to kernel object, permissions)

Every PD has its own capability space (local, isolated)

Capabilites can be exchanged:

Delegate: copy capability from one Cap Space to the other
Revoke: remove capability, recursively

Applications use selectors to denote capabilities

NOVA to Fiasco.OC

Delegate = Map
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Capabilities Overview
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Interprocess Communication

Kernel
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Lecture Outline

Introduction

Threads and address spaces (April 18th)

Kernel entry and exit

Interprocess communication

Capabilities

Exercise: kernel entry, exit

Exercise: Linkerscript, Multiboot, ELF

Exercise: Thread switching

Case study: M3

Case study: Fiasco.OC?

Case study: Escape
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