
Microkernel Construction
Capabilities

Nils Asmussen

05/07/2020

1 / 33



Outline

Introduction
Global Names
ACL

Capabilities in General

Capabilities in NOVA

2 / 33



Motivation

How do you find/access resources?

How do you restrict access to resources?

3 / 33



Global Names

One global namespace for (one type of) resources

Example: semaphores, processes, devices, . . . on UNIX

Pros & Cons

+ Simple

− Name clashes: people need to agree on names.

− What if a malicious process registers a name first?

− All resources are visible: just try to access them

4 / 33



Access Control Lists

Attach a list of permissions (subjects) to each object

Permission depends on who you are, not what you have

Pros & Cons

+ No need to give permissions explicitly

+ Makes it easy to restrict access to specific objects

− Makes it hard to restrict specific subjects

− POLA is more difficult to achieve

− Requires (global) names

− Confused deputy problem

5 / 33



Confused Deputy Problem

Compiler service: compile <source> <object>

Service stores billing information in file “bill”

Client executes: compile foo bill

Service has access to bill file, client does not

Problem: service is acting on behalf of the client, but opens
files with its own permissions

One solution: the client opens files and passes file descriptors
(capabilities) to service

6 / 33



Outline

Introduction

Capabilities in General
Overview
Operations

Capabilities in NOVA

7 / 33



Capabilities

Give each subject a local namespace

Operations to exchange objects between namespaces

Permission depends on what you have

Pros & Cons

+ Makes it easy to restrict specific subjects

+ Separation of subsystems, composable, independent

+ POLA is easy to achieve

− Need to give permissions explicitly

− Exchanging, especially revoking, capabilities is difficult

8 / 33



Overview

...

Process A

02

4

Thread Sem Process Thread

u
s
e
r

k
e
r
n
e
l

rw- r-- r-x

Selector Capability K. Object Cap Space

...

...

Process B

0 3
4

rw- r-- r-x ...rw-

1

File

9 / 33



Operations

Map/delegate:

Copy capability from one Cap Space to the other

Grant:

Move capability from one Cap Space to the other

Revoke:

Remove capability, recursively

Lookup:

Search capability by selector and return its permissions

Translate:

Translate selector from one Cap Space to the other

10 / 33



Hierarchical Organization

Microkernel

Root Task

Pager 1 Pager 2

Pager 3

Application Application

Phys. memory
1-to-1 mapped

11 / 33



Outline

Introduction

Capabilities in General

Capabilities in NOVA
Capability Spaces
Mapping Database
Delegate, Translate and Revoke
Data Types
Receive Windows

12 / 33



Capability Spaces

Each protection domain (Pd) has

Space obj: object capabilities

Space mem: memory capabilities (pages)

Space pio: I/O port capabilities

Similarities and differences

Shared: capability delegation, revocation, . . .

Differences:

Object caps are created and used via system calls
Port and memory caps are referring to existing resources
Passed to root task, distributed in the system via delegation
Memory capabilities lead to page table entries
Port capabilities lead to bits set in the I/O bitmap

13 / 33



Object Capability Space

...

Mapping DB Kernel Obj.Cap Table

on create
on create/update

syscall

14 / 33



Memory Capability Space

...

Mapping DB Phys. MemoryPage Table

on create/update

ld/st

15 / 33



I/O Capability Space

...

Mapping DB IO portsIO Bitmap

on create/update

in/out

16 / 33



Mapping Database

Pd1 Pd2

17 / 33



Mapping Database

Pd1 Pd2

17 / 33



Mapping Database – Delegate

Pd1 Pd2

18 / 33



Mapping Database – Delegate

Pd1 Pd2

18 / 33



Mapping Database – Translate

Pd1 Pd2

19 / 33



Mapping Database – Translate

Pd1 Pd2

19 / 33



Mapping Database – Revoke

Pd1 Pd2

20 / 33



Mapping Database – Revoke

Pd1 Pd2

20 / 33



Mapping Database – Revoke

Pd1 Pd2

20 / 33



IPC with Delegate

Kernel

Sender Receiver

EC ECUTCB UTCBPDPD

copy

delegate

21 / 33



UTCB Layout

untyped words typed words

CRD for translates

CRD for delegates

thread local storageh
e
a
d
e
r

untyped word 0

...

0

4096

d
a
t
a

typed word 0

...

typed word 1

22 / 33



Capability Range Descriptor

01231

Selector

7 2

Order Mask T

Order specifies the number of capabilities (2order )

Selector specifies the first capability

Selector has to be size aligned, i.e., a multiple of 2order

wrong: order=2, selector=6, okay: order=2, selector=8

Mask allows to reduce permissions

T specifies capability space (objects, memory, I/O)

23 / 33



Typed Words

01231

Hotspot 1H G D

Capability Range Descriptor

031

0

Capability Range Descriptor

Delegate:

Translate:

24 / 33



Capability Delegation: Order of Events

Receiver sets up receive window (writes CRD into UTCB)

Receivers waits for IPC

Sender puts typed item into UTCB

Sender calls portal

Kernel delegates typed item

Kernel puts typed item into UTCB, telling receiver about caps

Kernel switches to receiver

But: what if receive window and sent caps don’t match?

25 / 33



Matching Send and Receive Window (1)

Sender Receiver

Figure: Send window is smaller than receive window

26 / 33



Matching Send and Receive Window (2)

Sender Receiver

Figure: Send window is larger than receive window

27 / 33



Delegation Code (1)

void Pd::xfer_items (Pd *src, Crd xlt, Crd del,

Xfer *s, Xfer *d, unsigned long ti)

{

for (Crd crd; ti--; s--) {

crd = *s;

switch (s->flags() & 1) {

case 0:

xlt_crd (src, xlt, crd);

break;

case 1:

del_crd (src, del, crd, s->flags(), s->hotspot());

break;

}

if (d)

*d-- = Xfer (crd, s->flags());

}

}

28 / 33



Delegation Code (2)

void Pd::del_crd (Pd *pd, Crd del, Crd &crd,

mword sub, mword hot)

{

mword a = crd.attr() & del.attr();

mword sb = crd.base(), so = crd.order();

mword rb = del.base(), ro = del.order(), o = 0;

switch (del.type()) {

case Crd::MEM:

o = clamp (sb, rb, so, ro, hot);

delegate<Space_mem>(pd, sb, rb, o, a, sub);

break;

...

}

crd = Crd (del.type(), rb, o, a);

}

29 / 33



Delegation Code (3)

template <typename S>

void Pd::delegate (Pd *snd, mword snd_base, mword rcv_base,

mword ord, mword attr, mword sub)

{

Mdb *mdb;

for (mword addr = snd_base;

(mdb = snd->S::tree_lookup (addr, true));

addr = mdb->node_base + (1UL << mdb->node_order)) {

Mdb *node = new Mdb (static_cast<S *>(this), ...);

if (!S::tree_insert (node))

...

if (!node->insert_node (mdb, attr))

...

S::update (node);

}

}

30 / 33



Deleting Mapping DB Nodes and Kernel Objects

When revoking, kernel objects should be destructed

But what if somebody accesses them at the same time?

We could lock them during each access

But this is expensive

We don’t care that much when exactly they are destructed

Can’t we destruct them if nobody accesses them anymore?

31 / 33



Read-Copy-Update

Basically: copy-on-write with lazy delete

Don’t change objects, but copy them and change the copy

Don’t delete objects immediately, but when readers are done

In case of NOVA: no copy-on-write, but only lazy delete

On revoke, object is removed first

Then, the object is registered for deletion

Timer IRQ is used to delete only if all readers are gone

32 / 33



RCU Grace Period

time

remove

read

read

read

read

read

read

read

sync delete

CPU 0

CPU 1

CPU 2

CPU 3

33 / 33


