#### Harmonic QAS – Priority Assignment

- $T = \{T_1, \dots, T_n\}$  divide into m subsets  $S_1, \dots, S_m$  $T_i, T_j \in S_k$  iff  $d(T_i) = d(T_j)$
- Subsets ordered according to length of period
- Tasks in  $S_k$  ordered according to QM

Claude-J. Hamann

- Priorities in  $S_k$  higher than priorities in  $S_l$  if k < l
- Per  $S_k$ : priorities of X higher than priorities of Y

Real-Time Scheduling in DROPS

### QRMS – Quality-Rate-Monotonic Scheduling

Real-Time Scheduling in DROPS

3

- Task priorities according to RMS
- Reservation time r:
  - $= r_i^{\prime} = \min(r \in \mathbb{R} \mid P(X_i + Y_i \leq r) \geq q_i)$
  - $= r_i = \max(r_i^{\prime}, w_i)$
- Admission test for harmonic periods:



Claude-J. Hamann





# QRMS vs. QAS



#### - QRMS & QAS: Not optimal

Claude-J. Hamann

Real-Time Scheduling in DROPS

# **Scheduling and Admission Overhead**

Admission time t<sub>Adm</sub> (QAS, uniform periods) complexity  $o(v^2)$ 

v: number of values of the random variables

| v                   | 500    | 1,000  | 2,500  | 5,000  | 10,000 | 25,000 | 50,000  |
|---------------------|--------|--------|--------|--------|--------|--------|---------|
| t <sub>Adm</sub> ∕s | 0.015  | 0.053  | 0.304  | 1.204  | 5.017  | 75.774 | 609.191 |
| q <sub>ach</sub>    | 91.4 % | 90.7 % | 90.3 % | 90.3 % | 90.1 % | 90.0 % | 90.1 %  |

Claude-J. Hamann

5

Real-Time Scheduling in DROPS



