Event-Driven Scheduling
(closely following Jane Liu’s Book)
Principles

Assign priorities to Jobs
At events, jobs are scheduled according to their “priorities”

Important properties:
• decisions, which job to execute next at events (not time instants) such as releases and completions of jobs
• a (timer) interrupt is an (implementation of a) special event
• never leaves a resource idle intentionally (“greedy”)
• schedule is computed on line, admission is computed on line or off line
• scheduling decisions must be simple (otherwise not possible on line)
Restrictions Given Up

some “restrictive” assumptions of time-driven systems are given up:

• fixed inter-release times
 \(\rightarrow\) minimum inter-release times

• fixed number of rt tasks in systems
 \(\rightarrow\) real-time and non real-time, number can vary

• a priori fairly well known parameters
 \(\rightarrow\) tasks come and go, overloading, ...
Priority Assignment Following “Criticality”

The more critical a task the higher its priority
T1: (2, 0.9) T2: (5, 2.3)
T2 more critical than T1

T1 misses deadline in Job 1 and 2/3, unnecessarily ...
Important Variants

• **Static vs dynamic allocation to processors**
 - static: jobs are assigned to processors once and stay there
 - dynamic: one queue served by all processors (jobs “migrate”)

• **static vs. dynamic priorities**
 - static: tasks do not change their priorities (unless new tasks arrive)
 - dynamic: priorities are recomputed frequently

 e.g., FIFO is dynamic priority scheduling

• **preemptive or non preemptive**
 - some tasks
 - all tasks
Preemptive vs. Non-Preemptive Scheduling, Example

2 processors,
Tasks: Notation used below: J_i, e_i
release time of J_5 is 4, all others 0; (!)

static priorities, assigned such that:
$i < k \Rightarrow \text{Prio}(J_i) \text{ higher than } \text{Prio}(J_k)$

Tasks can “migrate”
precedence graph:

- $J_1, 3$
- $J_2, 1$ \rightarrow $J_3, 2$ \rightarrow $J_4, 2$
- $J_5, 2$ \rightarrow $J_6, 4$
- $J_7, 4$ \rightarrow $J_8, 1$
Example, executions

P1

0 4 8 12
J1 J4 J7 J6
preemptive

P2

J2 J3 J5 J8
J1
J2
J3
J4
J5
J6
J7
J8

P1

0 4 8 12
J1 J4 J5 J6
non preemptive

P2

J2 J3 J7 J8
J1
Modified Example: release time of J5 = 0

P1

0 4 8 12

J1 J5 J6

P2

J2 J3 J4 J7 J8

\{ \text{non preemptive} \}

J_{1,3} \quad J_{2,1} \quad J_{3,2} \quad J_{4,2}

J_{5,2} \quad J_{6,4}

J_{7,4} \quad J_{8,1}
Which is better?

No general answer known!

If jobs have same release time:
 preemptive is better (or equal) in a multiprocessor system if cost for preemption is ignored

more precise: “makespan” is better
 (makespan = response time of job that completes last)

how much better?
 Coffman and Garey:
 2 processors:
 makespan(non-preemptive) <= 4/3 * makespan(preemptive)
Effective Release Times and Deadlines

“Inconsistencies” due to precedence relations
• a release time given for a job may be later than that of its predecessor
• a deadline may be earlier than of its successor time
From Now: use effective ...

Effective Release Time:
• of a job without predecessors: the given release time
• of a job with predecessors:
 \[\max (\text{given release time, effective release times of all predecessors}) \]

Effective Deadline:
• of a job without successor: the given deadline
• of a job with successor:
 \[\min (\text{given deadline, effective deadlines of all successors}) \]
Earliest Deadline First

Assign priorities at run time ... “the earlier the deadline the higher the priority”

Theorem:
One processor.
Jobs preemptable.
Jobs do not contend for passive resources.
Jobs have arbitrary deadlines, release times.
Then: EDF is “optimal”, i.e.
if there is a feasible schedule,
there is also one with EDF
EDF Optimality

Proof: (informal)
assume a feasible, non EDF schedule
systematically transform it to an EDF schedule (3 steps)

1.
2.
3.
Earliest Deadline First, priority assignment:

fixed per job, dynamic at task level:
the nearer the absolute deadline of a job at release time
the higher the priority
T1: (2,0.9) T2: (5,2.3)
Latest Release Time (LRT)

Rationale:
no need to complete rt-jobs before deadline
use time für other activities

Idea:
Backwards Scheduling
Run as late as possible
Use latest possible release times as „priority“

optimal (analog EDF-Definiton of Optimality)
Example (Precedence Graph):
\[J_1,3 (0,6] \quad J_2,2 (5,8] \]
\[J_3,2,(2,7] \]
Least Slack Time First / Minimum Laxity First

Slack Time = Laxity:
(time to deadline
– remaining time required to reach deadline)

also optimal (analog EDF definition)
Least Slack Time First

dynamic per job, dynamic at task level:
slack time: $d - x - t$

x remaining execution time of a job
d absolute deadline
t current time

two versions:
• strict:
 slacks are computed at all times (prohibitively slow)
• non-strict:
 slacks computed only at events (release and completion)
scheduler checks slacks of all ready jobs and reorders queue
Non-Strict LST Example

T1: (2, 0.75) T2: (5, 1.5) T3: (5.1, 1.5)

t=0 all Jobs released
 T1,J1: 1.25 T2,J1: 3.5 T3,J1: 3.6
 d.h. T2,J1 higher priority than T3,J1

T2,J1 lower priority than T3,J1

T1,J2: 1.25 T2,J1: 2.75 T3,J1: 1.6
 d.h. T2,J1 lower priority than T3,J1

T1,J2 completed
 T1,J2: 1.25 T2,J1: 2 T3,J1: 0.85
EDF and Non - Preemptivity

Job: (release time, execution time, deadline)
J1: (0,3,10) J2: (2,6,14) J3: (4,4,12)

release time job 3 ↓ J3 deadline missed

EDF

feasible

EDF is not optimal if jobs are not preemptable.
EDF and Multiple Processors

Job: (release time, execution time, deadline)
J1: (0,1,2) J2: (0,1,2) J3: (0,5,5)

deadline missed

EDF is not optimal for Multiprocessors.
Scheduling Anomaly

<table>
<thead>
<tr>
<th>release</th>
<th>deadline</th>
<th>execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1:</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>J2:</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>J3:</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>J4:</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

increasing priorities:
\[i < k \implies \text{Prio}(J_i) \text{ higher than } \text{Prio}(J_k) \]

2 processors, preemptable but not migratable

intuitive approach:
check for worst case(a) and best case(b) execution times and be confident ...
Scheduling Anomaly, cont

a

P1

P2

b

P1

P2

c

P1

P2
Scheduling Anomaly on One Processor

Job: (release time, execution time, deadline)
J1: (0,3-4,10) J2: (2,6,14) J3: (4,4,12)
Not preemptable
Predictable Execution

Informal definition:

Given a set of periodic tasks with known minimal and maximal execution times and a scheduling algorithm.

A schedule produced by the scheduler when the execution time of each job has its maximum (minimum) value is called a *maximum (minimum)* schedule.

An execution is called *predictable*, if for each actual schedule the start and completion times for each job are bound by those of the *minimum and maximal schedules*.

Predictable Execution

The execution of every job in a set of independent, preemptable jobs with fixed release times is predictable when scheduled in a priority driven manner on one processor.
Validation Algorithms

... determine whether all jobs meet their deadlines

correct or not

accurate or not

• overly pessimistic
• overly optimistic
Assumptions for Next Set of Algorithms

Periodic set of tasks with these properties:
- Tasks are independent
- one processor
- no aperiodic or sporadic tasks
- preemptable, context switch is negligibly small
- period = minimum inter-release times (not fixed)

Since tasks are independent, tasks can be added (if admitted) and deleted at any time without causing deadline misses.
Priority Assignment

- **fixed priority:** fixed for task (and jobs) relatively to other tasks
- **dynamic priority:** priority of tasks changes at release and completion times in relation to other tasks
 - fixed per job
 - dynamic per job
Rate Monotonic Scheduling

fixed priority: the shorter the period the higher the priority (rate: inverse of period)

example: T1: (4,1) T2: (5,2) T3: (20,5)
Deadline Monotonic Scheduling

fixed priority: the shorter the relative deadline the higher the priority

example: (ϕ, P, e, D)

$T_1: (50, 50, 25, 100)$ $T_2: (0, 62.5, 10, 20)$ $T_3: (0, 125, 25, 50)$

Conclusion (no proof): DM better than RM if D arbitrary
(More) Comparison Criteria

• Optimality

• Validation

• Schedulable Utilization (SU) of an algorithm: a scheduling algorithm can feasibly schedule any set of periodic tasks on a processor if $\Sigma \frac{e}{p} \leq SU$

 SU: the higher the better
dynamic priority schedulers better than fixed priority

• predictability in the presence of overload: in fixed priority systems it is possible to predict which tasks are affected due to overruns
Priority-Driven Scheduling of Periodic Tasks

To do:
• admission (required before new tasks are admitted)
• priority assignment (off line / on line)
• selection of next task (on line)

restrictions (whether they apply or not)
• dependencies (precedence, sharing)
• multiple processors
• aperiodic, sporadic

achievable resource utilization: $U = \Sigma \frac{e}{p}$
EDF and Multiple Processors

Job: (release time, execution time, deadline)
J1: (0, 1, 2) J2: (0, 1, 2) J3: (0, 5, 5)

easy for time driven schedulers

EDF is not optimal for Multiprocessors.
Another Multiprocessor Example

m processors, $m+1$ tasks

$\varepsilon: \varepsilon > 0$, $m^{2}\varepsilon < 1$, ε small

T_i, $i=1..m$: Period 1, execution time: 2ε

T_{m+1}: Period 1+ε, execution time: 1

scheduler: priority (edf or shortest period first)
allocation: dynamic

discuss!

Pathological cases, mostly dynamic performs better
very hard to analyze for worst case
EDF and Overload, examples

T1: (2, 1) T2: (5, 3) U=1.1
T1 misses

T1: (2, 0.8) T2: (5, 3.5) U=1.1
T1 und T2 miss

No easy way to determine which jobs miss deadline ...
EDF and Overload, one more example

T1: (2, 0.8) T2: (5, 4.0) U=1.2

J2,1 continues to execute after deadline and ... causes J1,3 to miss the deadline
Utilization: RM ./ EDF

T1: (2,1) U = 1
T2: (5,2.5)

EDF

RM

T2 misses deadline

RM not optimal in general
Optimality of Fixed Priority Schedulers

T: periodic tasks, independent, preemptable, one proc.

Deadline Monotonic:
relative deadlines \geq periods, in phase
if there is any feasible fixed priority schedule for T, then Deadline Monotonic is feasible as well

Rate Monotonic:
relative deadlines \leq periods
simply periodic, i.e.
for all pairs of tasks i,j: if $P_j \leq P_i$ holds $P_j = n \cdot P_j$
RM is schedulable iff $U \leq 1$ (cmp. EDF)
Some Schedulable Utilization(SU) Results

indep. tasks,
preemptable,
relative deadline=period,
one processor

N Number of Tasks
EDF: SU = 1

RMS: SU = n \left(2 \frac{1}{n} - 1 \right) \quad (n \to \text{infinite}: \ln 2)

RMS (simply periodical, D > P): SU = 1
SP: for all pairs of tasks i, j: if P_j \leq P_i \text{ holds } P_j = n \cdot P_j
Schedulibility Test for Fixed(!) Priority

(case where jobs must complete before end of period)

Critical Instant Analysis / Time Demand Analysis:

critical instant for task Ti:
 one of the jobs of Ti is released at same time with a job in every higher priority task ...

It is sufficient to check a schedule for the critical instant for the longest envolved period
(Fixed Prio) Schedulibility and Blocking

Ti may have to wait for non-preemptable, lower priority task

bi:
longest non-preemptable portion of all lower prio. Jobs

Schedulability for all tasks **Ti** with fixed priority scheduler **x**:

\[U_i = \frac{e_1}{p_1} + \frac{e_2}{p_2} \ldots \frac{e_i}{p_i} \]

\[U_i + \frac{b_i}{p_i} \leq S_{U_xi} \]
Non Negligible Context Switch Time

For Job level fixed priority schedulers ... :
i.e. each job preempts at most one other job

2 context switches:
release (when it preempts other)
completion

include CS overhead in wcet:
$\text{WCET}_i := \text{WCET}_{i\text{ original}} + 2\text{CS}$
(Fixed Prio and) Limited Priority Levels

Required: Mapping of
- Scheduling-Priorities: 1 ... n to
- Operating System Priorities: $\Pi_1, \Pi_2, \ldots, \Pi_m$

Jobs running with same OSP but different SP use:
- FIFO, Round Robin, ...

Schedulibility loss?

Notation: Π_i as grid on Scheduling Priorities

Example:
10 scheduling priorities, 3 OS priorities
possible mapping: $\Pi_1 = 3, \Pi_2 = 8, \Pi_3 = 10$

Interpretation:
0,1,2,3 mapped to Π_1, 4,5,6,7,8 to Π_2, 9,10 Π to 3

How is Schedulibility Test affected?
(Fixed Prio and) Limited Priority Levels

Mappings:

- **uniformly distributed:**
 \[k = \frac{n}{m} \]
 Scheduling Priority \(X \) mapped to \(|X/m| \ast k \)

- **constant ratio:**
 keep \(\left(\prod_{i-1} + 1 \right) / \prod_i \) as equal as possible
Schedulibility Loss

Rate Monotonic, large n ...

$g = \min\left(\frac{\prod_{i-1} + 1}{\prod_{i}} \right)$

$SU_{RM} = \ln(2g) + 1 - g$

relative schedulibility (rs): relation to $\ln(2)$

example:

$n = 100000$, $m = 256$

$rs = 0.9986$

$=> 256$ priorities is it!