Time and Order (in Real-Time Systems)

Overview

Events, computer generated and environmental (Real) Time
The order of events, temporal and causal Logical Clocks, 2 versions
Physical Clocks and their properties
Global (real) time in distributed systems

Topics

Can clocks (logical or physical) be used

- · to derive the order of events
- · to identify events
- · to generate events at certain points in time?

Which precision can be achieved

- · to measure time?
- to measure durations?

How and how often have clocks to be synchronized?

Time in Distributed (Real-Time) Systems

Actions/events/... in distributed real-time systems

- · concurrent
- · on different nodes
- · must have a consistent behaviour / order.

Consistent order

- temporal order
- · causal order

Global Time Base

Events 1

Computer Generated Events:

- execution of statement
- sending/receiving a message
- start and end of a compilation
- · creation/modification of a file

•

Sequence of states is determined by

- · instructions, disk accesses, ...
- discrete steps

Events 2

Environmental Events:

- newton mechanics
- pipe rupture
- human interaction

•

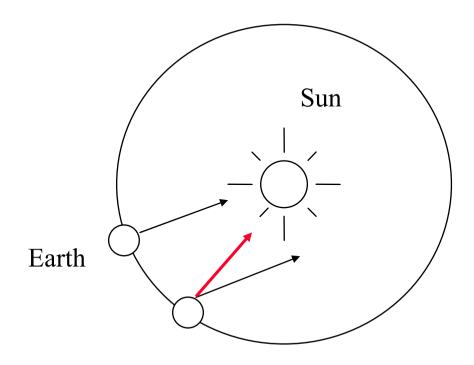
Sequence of states is determined by

- laws of physics
- · physical (or real) time: "second"
- · continuous

Astronomical Time

Solar Day: from noon to noon

Solar Second: Solar Day / (24 * 60 * 60)



Atomic Time

TAI ... International Atomic Time:

1 second =

"duration of 9192631770 (9 Gigahertz)
 periods of of the radiation of a specified transition of the
 caesium atom 133" (Kopetz)

Time Standard(s)

UTC Coordinated Universal Time (UTC)

TAI adjusted to Astronomical time

Sources:

- earth-bound radio
- Geos satellites
- · GPS

Temporal vs. Causal Order of Events

Temporal Order:

· induced by (perfect) timestamp

Causal Order:

· induced by some causal dependency between events

Example

• e1: somebody enters a room

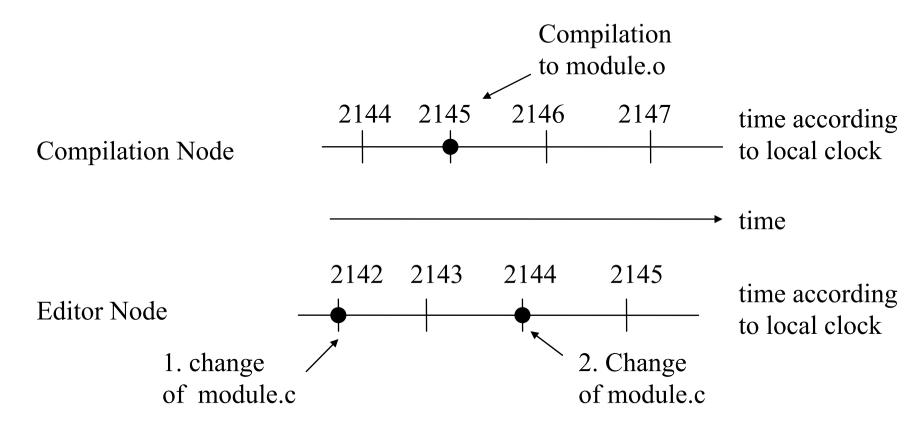
e2: the telephone rings

· cases

e1 occurs after e2 causal dependency possible e2 occurs after e1 causal dependency unlikely

Temporal order is necessary but not sufficient to establish causal order.

Another Example



Imperfect Timestamps can be misleading in establishing causal dependency.

Causal Order (for Computer Generated Events)

Partial Order for Computer Generated Events a —> b "a causes b" (happened before, causally dependent)

- (1) If a, b events within a sequential process then a —> b, if a is executed before b.
- (2) If a is "sending of a message" by a process and b the "reception of that message" by another process, then a ——> b.
- (3) —> is transitive.

Temporal Order

Modeling the continuum of time: infinite set of instants {T}

- {T} is ordered:
 if p, q any 2 instants, then either p,q simultaneous
 (i.e. the same instant),
 or (exclusive) p precedes q, or q precedes p
- {T} is dense:
 at least 1 instant q between p and r
 iff p and q are not simultaneous

Instants are totally ordered ...

Temporal Order, Timestamps, Duration, Clocks

... Instants are totally ordered

Events occur at an instant of the timeline => Timestamp.

Events in a distributed system are partially ordered. Total order can be achieved by addition of process id.

Duration is a section of the timeline.

Clocks measure time imperfectly, create imperfect Timestamps.

Clocks: Physical and Logical

Physical Clocks

- devices to measure time
- necessarily imperfect (more later)

Problems:

- how to create knowledge about causal dependency of computer events without relying on physical clocks?
 - => Logical Clocks
- how to establish a x certainly occurred after y relation (temporal order) for environmental events
 - => Global Time

Logical Clocks

Definitions:

- monotonically increasing SW counters (COULOURIS)
- clocks on different computers that are somehow consistent (LAMPORT)

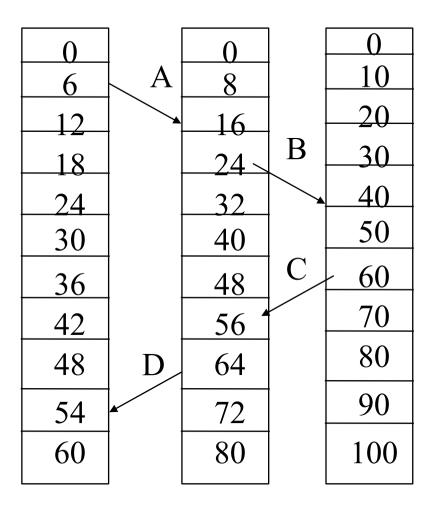
Events: a,b: a --> b: a causes b (causally dependent)

Timestamps: C(a), C(b)

Potential Requirements for logical clocks:

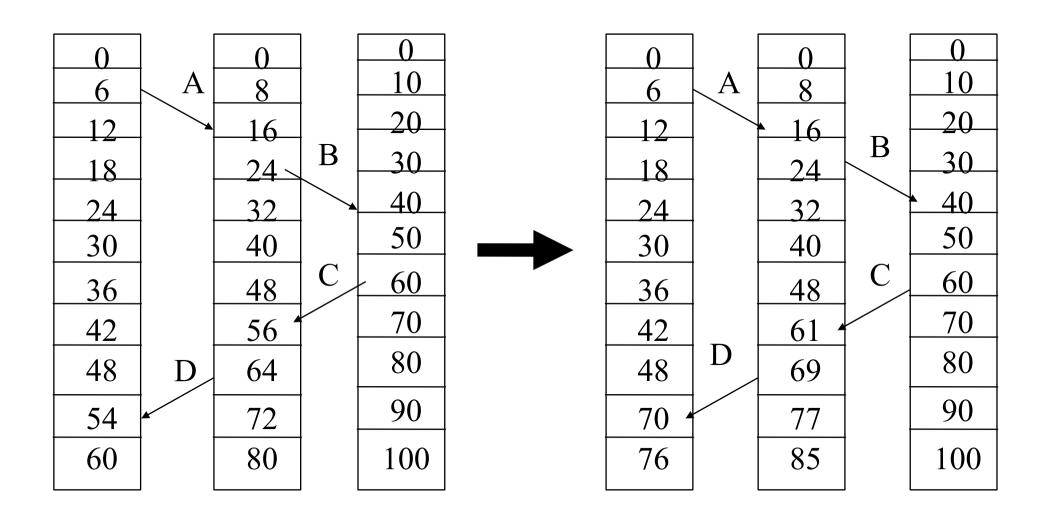
$$\cdot a \longrightarrow b \Longrightarrow C(a) < C(b)$$

$$\cdot a \longrightarrow b \longleftrightarrow C(a) \leftarrow C(b)$$



Lamport's Logical Clocks

- · each Process has local clock LCi
- · tick:
 - with each local event e: $LC_i := LC_i + 1$; e
 - with each sending of a message by process Pi: $LC_i := LC_i + 1$; send (LC_i, m)
 - with each reception of a message $_{m}(M,LC_{m})^{m}$ by Pj: $LC_{j}:=MAX(LC_{m},LC_{j});\ LC_{j}:=LC_{j}+1$



Lamport Clocks

Properties:

- a --> b => C(a) < C(b),
 but not:
 C(a) < C(b) => a --> b
- · partial order

sometimes total order convenient: extend it: e.g. by LC.Process_number

Vectortime (Mattern 1989)

Each process P_i has its own vector clock C_i . C_i : n-dimensional vector (n: number of processes).

Intuition

```
C_i[j]:
the timestamp of the last event in P_j
by which P_i has potentially been effected
```

Vectortime Ticks

Initial:

$$C_i := (0, \ldots, 0)$$
 for all i

Local event in P_i:

$$C_i[i] := C_i[i] + 1;$$

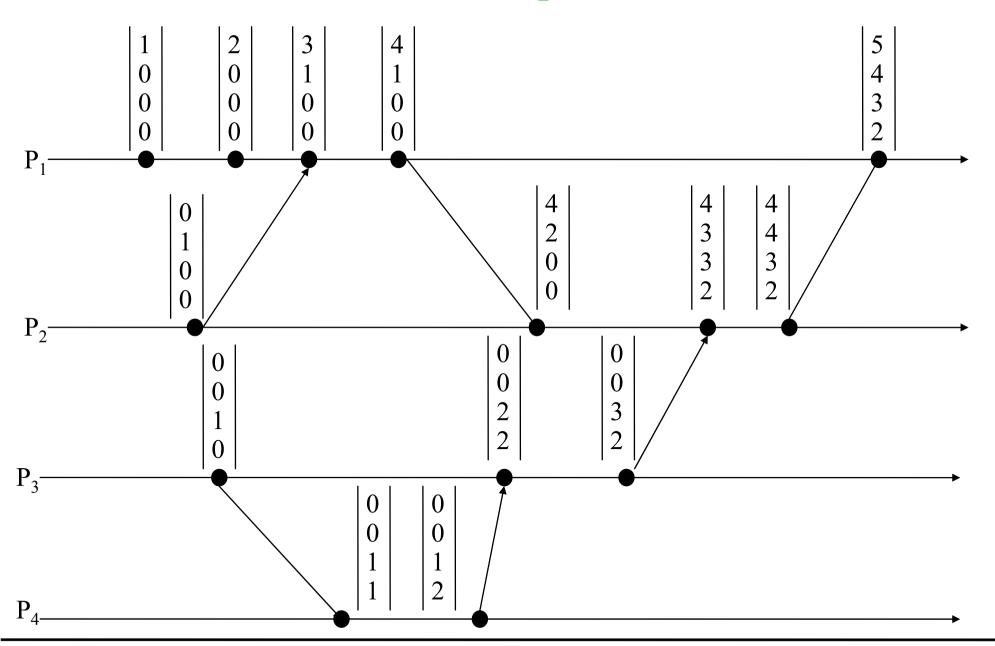
Sending message m in P_i:

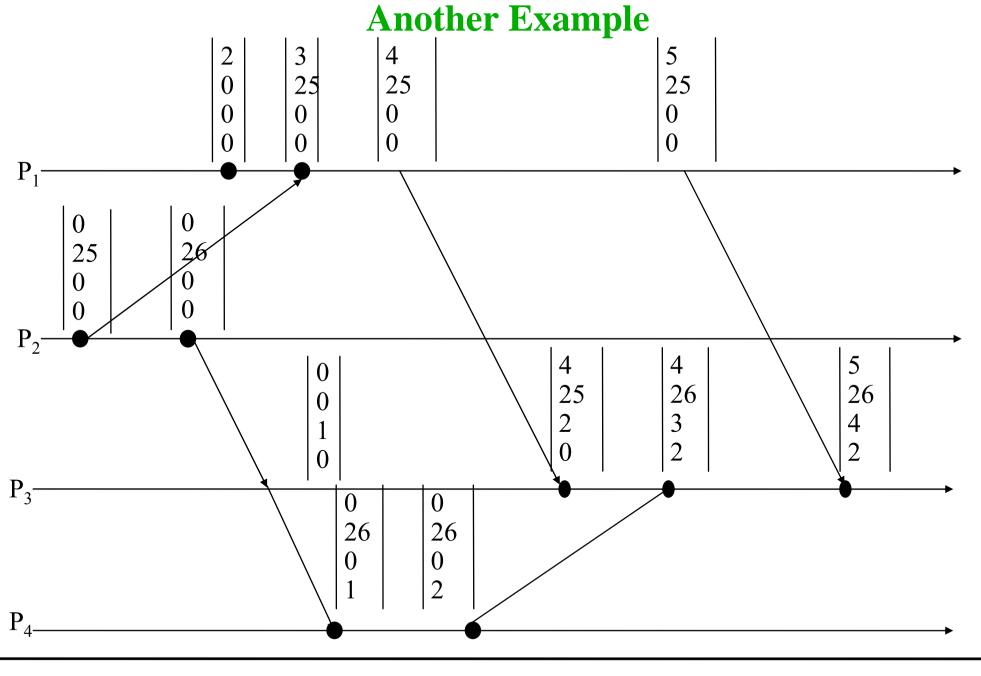
$$C_{i}[i] := C_{i}[i] + 1;$$
 send (m, C_{i})

Receiving a message (m, C_m) in P_i :

$$\begin{split} & C_{j}[j] := C_{j}[j] + 1; \\ & C_{i[k]} := \max \left(C_{m}[k], C_{j}[k] \right), \text{ for all } k \end{split}$$

Example





Properties of Vector Time

Definitions:

$$C_a \le C_b : \Leftrightarrow \forall k : C_a[k] \le C_b[k]$$

•
$$C_a < C_b : \Leftrightarrow C_a \le C_b$$
 and $C_a \ne C_b$

$$C_a || C_b : \Leftrightarrow \text{ not } (a < b) \text{ and not } (b < a)$$

Property:

$$C_a < C_b \Leftrightarrow a \to b$$

Mathematics: Quantitative Aspekte (Claude-J. Hamann)

Physical Clocks and Their Properties

Physical Clock

- · device for measuring time
- counter + oscillator => "microtick"
- time between microticks:
 granularity leads to digitalization error

Notation:

gclock, microtick clock number of tick

To discuss properties of physical clocks, we invent the perfect reference clock

Reference Clock, Notations (Kopetz)

Reference Clock z

- · perfect with regard to UTC
- very small granularity (to disregard digitalisation error)
- · Reference Ticks: Ticks of the perfect reference clock

z(event): (Absolute) Timestamp from reference clock establishes temporal order

granularity of clock k in microticks of ref. clock

Reference Clock, Notations (Daum)

Reference Clock z

- perfect with regard to UTC
- · dense (no ticks, to avoid digitalisation error)

z(event): (Absolute) Timestamp from reference clock establishes temporal order

gk granularity of clock k in terms of z-durations as specified (vs. real behavior)

Tick Tack Terms

Micro Ticks

Ticks generated by the physical oscillator of a clock

Macro Ticks

Multiple of Micro Ticks chosen by designer of clock

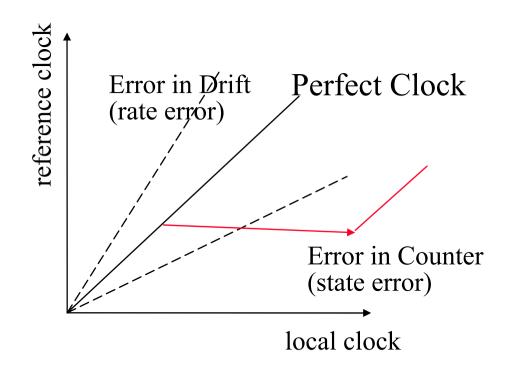
tk(event):

Timestamp in number of macro ticks of clock k

Granularity

Unit of a clock Value exposed by a clock micro or macro (dep on context)

Failure Modes of Clocks: Drift and Counter Errors



Maximum Drift Rate

Drift-Rate:

$$\rho_i^k = \left| \frac{z(microtick_{i+1}^k) - z(microtick_i^k)}{g^k} - 1 \right|$$

- varying
- influenced by environmental conditions (temperature,...)
- clocks specify maximum drift rate (10⁻² ... 10⁻⁷)

Precision of an Ensemble of Clocks

Offset

between two clocks j,k of same granularity at microtick i:

$$offset_i^{jk} = \left| z(microtick_i^j) - z(microtick_i^k) \right|$$

in the period of interest:
$$offset^{jk} = \max_{i} (offset_i^{jk})$$

Precision

of an ensemble of clocks $\{1,2,\ldots,n\}$ in the period of interest:

$$\Pi = \max_{1 \le j,k \le n} \left(offset^{jk} \right)$$

maximum offset for any two clocks

Accuracy

Accuracy

of a given clock in the period of interest:

$$accuracy^{k} = \max_{i} \left| z(microtick_{i}^{k}) - i \cdot g^{k} \right|$$

If all clocks of an ensemble have accuracy A, the precision of the ensemble is ??

Resynchronisation

External Resynchronization resynchronization with reference clock

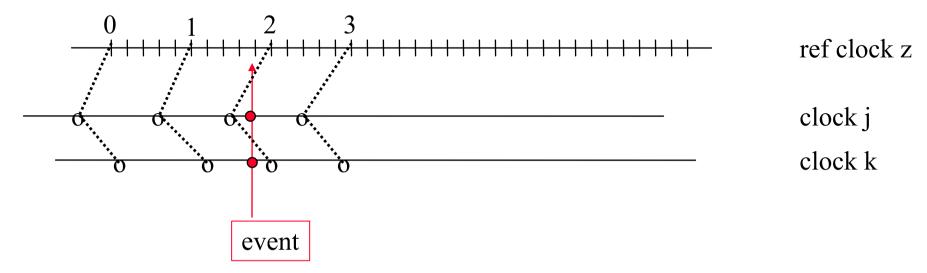
Internal Resynchronization
mutual resynchronization of an ensemble to maintain a
bounded precision

Global Time

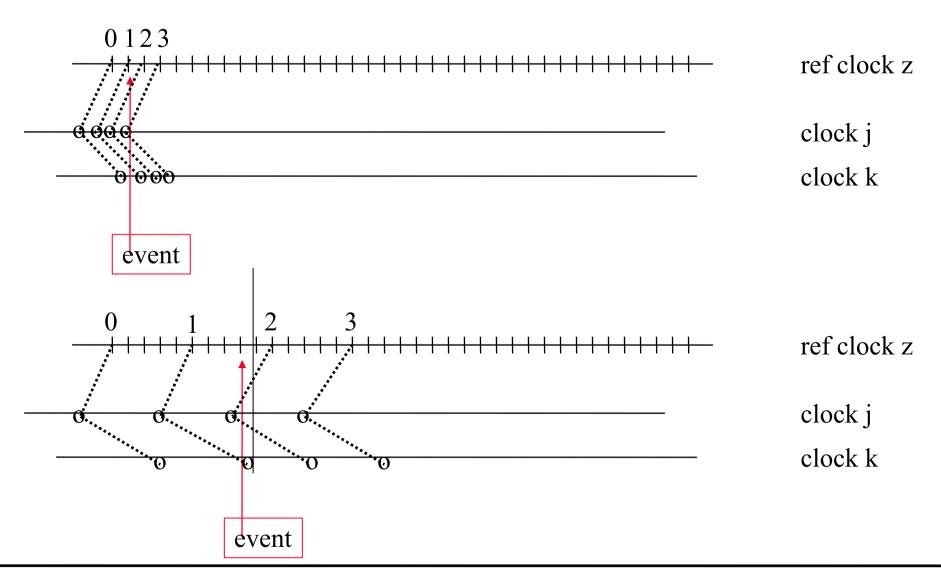
Given an ensemble of clocks (internally) synchronized with precision $\Pi \dots$

For each clock select macrotick as local implementation of a global notion of time with granularity g^{global}

We note ref clock time (real-time, UTC) in units of gglobal



Examples for Bad Choice for Global Time



Reasonable => One Tick Difference

Reasonableness Condition:

global time t is <u>reasonable</u> if $g^{\text{global}} > \Pi$ holds for all local implementations

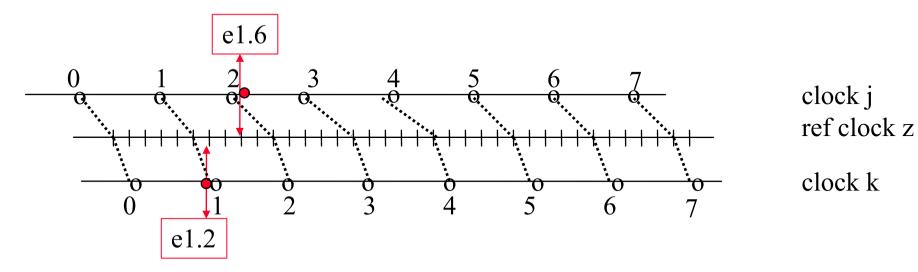
tj(event):

denotes global time for the implementation at clock j

Then: For any single event e, holds $|t^{j}(e)-t^{k}(e)| \leq 1$

Global timestamps differ at most by one (macro-)tick. Best one can achieve!

Interpretation for Temporal Order



$$z(e1.6) - z(e1.2)$$
:

0.4 q^{global} ref clock

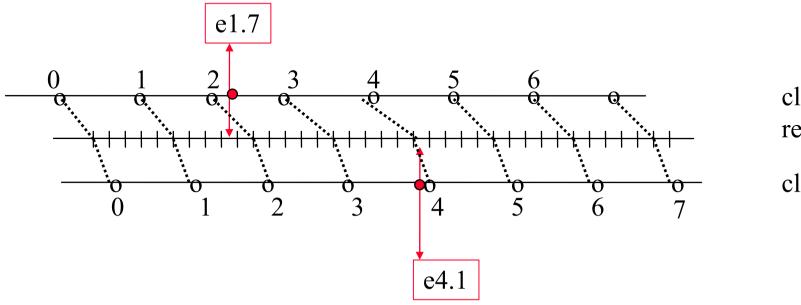
$$t^{j}(e1.6) - t^{k}(e1.2)$$
:

2 global time ticks

Temporal order can be established because Tick^k₁ must be before Tick^j₂ (Reasonabless Condition)

<u>Hence</u>: If the (global) timestamps differ by two ticks, the temporal order can be established.

Caution: Example



clock j ref clock z

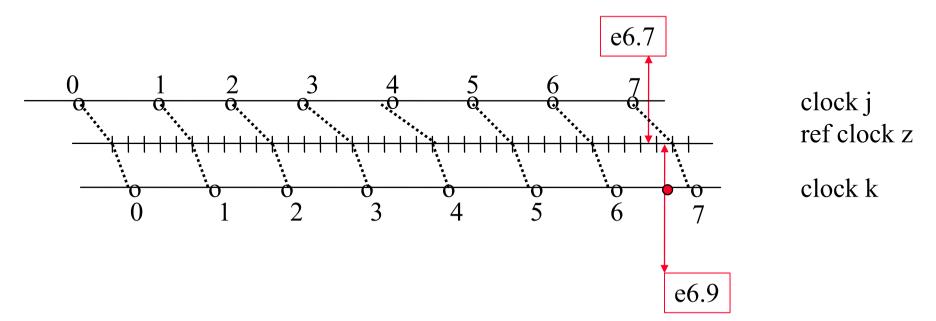
clock k

$$z(e4.1) - z(e1.7)$$
:

$$t^{k}(e4.1) - t^{j}(e1.7)$$
:

A distance of $2*g^{global}$ between two events does not suffice to determine temporal order.

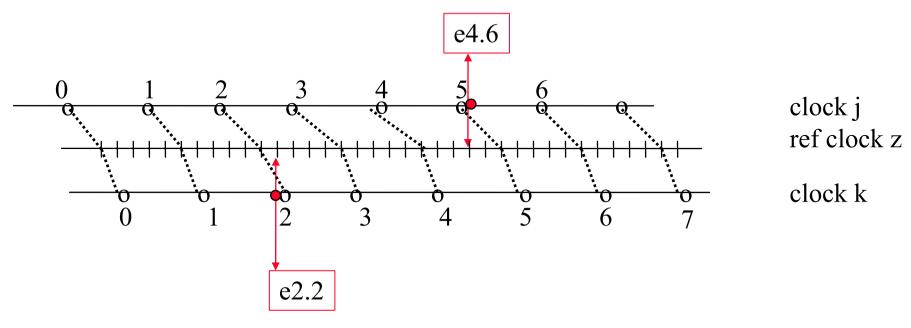
Another Example



$$z(e6.9) > z(e6.7)$$

 $t^{k}(e6.9) < t^{j}(e6.7)$

Interpretation for Durations



True duration:

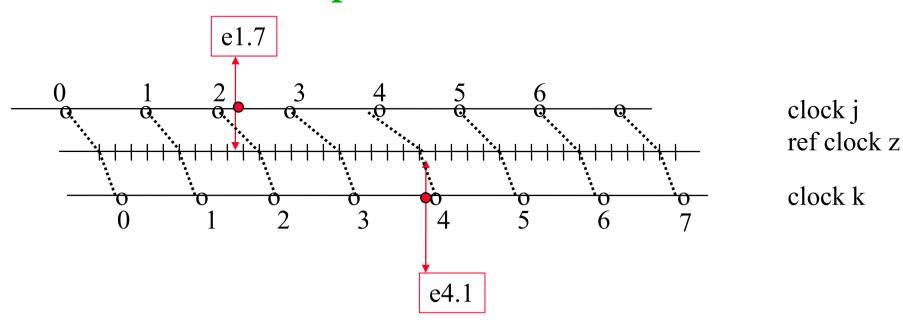
2.4

Observed duration d:
$$5-1=4$$
 ($t^{j}(e4.6) - t^{k}(e2.2)$)

Can be driven to true duration: $2+\epsilon$ for small ϵ

$$d_{obs} - 2*g^{global} < d_z$$

Interpretation for Durations



True duration: 2.4

Observed duration d: 3-2=1 ($t^{k}(e4.1) - t^{j}(e1.7)$)

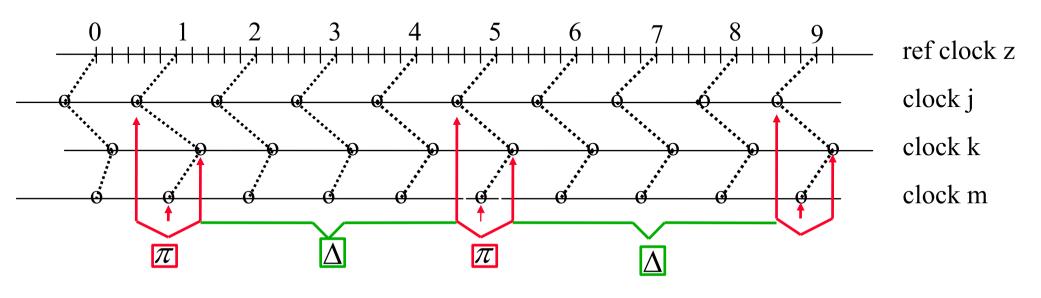
Can be driven to true duration: 3- ϵ for small ϵ

$$d_{obs} - 2*g^{global} < d_z < d_{obs} + 2*g^{global}$$

Generated Events

Cluster of three nodes: each generates event at the same global tick t= 1, 5, 9

observation:



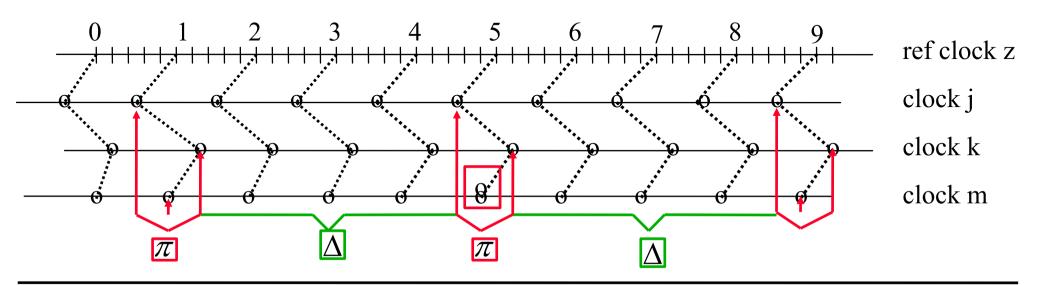
π/Δ -Precedence of Sets of Events

Properties of sets of events:

How far apart (number of granules) must events be to enable reconstruction of order

A set of events is called π/Δ -precedent, if:

$$\left\lceil |z(e_i) - z(e_j)| \le \pi \right\rceil \vee \left\lceil |z(e_i) - z(e_j)| > \Delta \right\rceil$$



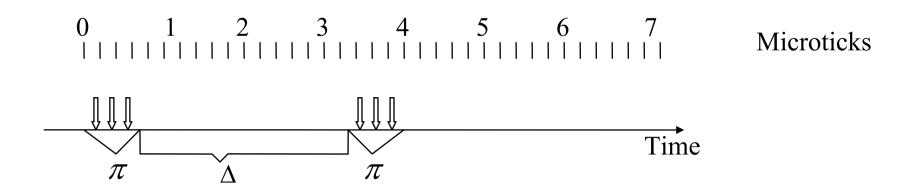
Temporal Order

Event Set		Temporal order of the events can always be reestablished		
0/1g precedent	$\left t^{j}(e_1) - t^{k}(e_2)\right \ge 0$	no		
0/2g precedent	$\left t^{j}(e_1) - t^{k}(e_2)\right \ge 1$	no		
0/3g precedent	$\left t^{j}(e_1) - t^{k}(e_2)\right \ge 2$	yes		
0/4g precedent	$\left t^{j}(e_1) - t^{k}(e_2)\right \ge 3$	yes		

Fundamental Results in Time Measurement

- A single event observed at different nodes may have timestamps differing by one; not sufficient to establish temporal order
- Duration: $d_{obs} 2*g^{global} < d_z < d_{obs} + 2*g^{global}$
- temporal order can be recovered from their timestamps if they differ by 2 global time ticks
- temporal order of events can always be recovered from timestamps if the event set is 0/3g precedent

Dense Time vs. Sparse Time



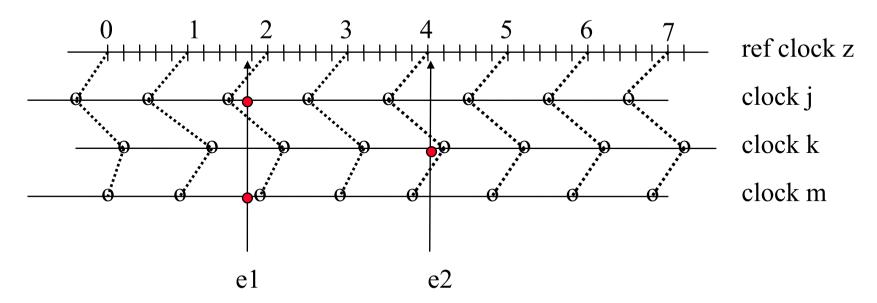
dense time: events are allowed at any time

sparse time: events are only allowed within active

time intervals π

sparse time only possible for computer controlled events

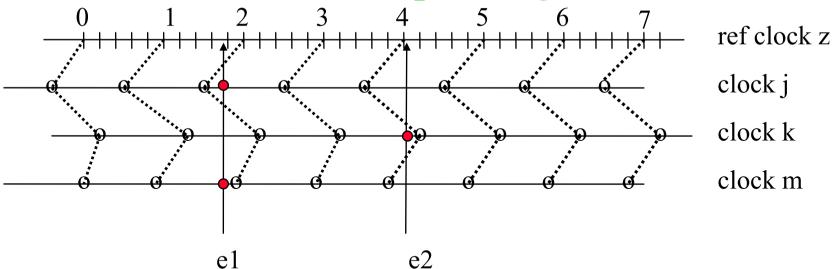
Cooperation and Clocks



(only) nodes j and m can observe e1 (only) node k can observe e2

Node k tells nodes j and m about e2 Nodes j and m draw their conclusions ...

Dense Time Requires *Agreement*



j observes e1 at t=2, m observes e1 at t=1

k observes e2 and reports to j and m: "e2 occurred at t=3"

j calculates a time difference of 1, hence concludes: "events cannot be ordered"

m calculates a time difference of 2, hence concludes: "events definitely ordered"

=> inconsistent view !!!

Agreement Protocols

- · information interchange: each node acquires local *views* from all other nodes
- deterministic algorithm that lead to same result on all nodes

expansive !!

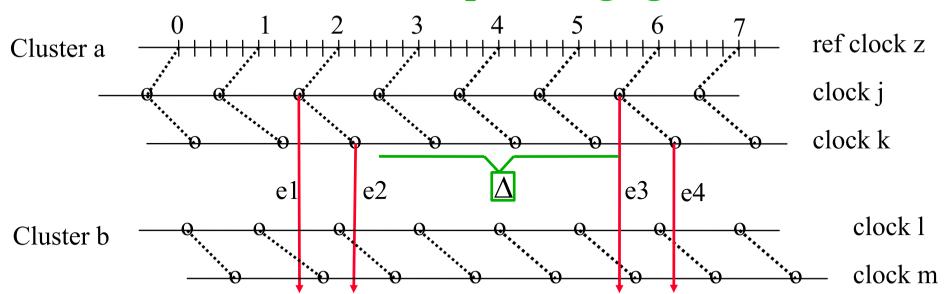
Sparse Time

Two clusters A,B with synch clocks of granularity g each, no clock synch between A and B cluster A generates events, cluster B observes: goal:

- · if at cluster A events are generated at same cluster wide tick never should temporal order be concluded
- · always establish temporal order otherwise

sufficient for A to generate 1g/3g precedent event set ??

Example for 1g/3g



$$t^{l}(e2) - t^{m}(e1) = 2$$
:

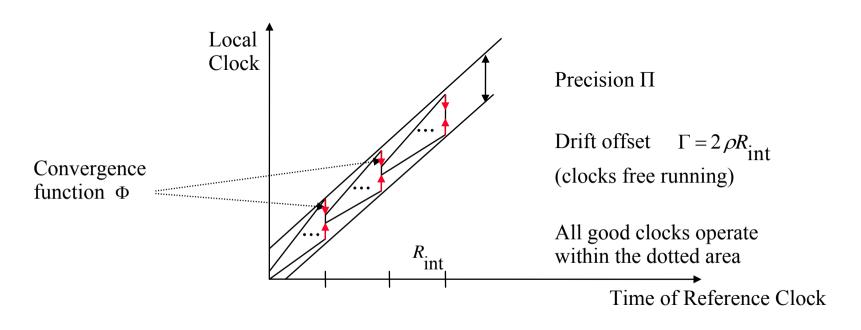
BUT: should not derive order because events were intended by cluster A for the same time

$$t^{m}(e4) - t^{l}(e2) > 2$$
 BUT: $t^{m}(e3) - t^{l}(e2) = 2$:

BUT: temporal order is intended ($\Delta = 3g$)

=> 1g/3g precedence not sufficient => 1g/4g

Internal Clock Synchronisation



$$\Phi + \Gamma \leq \Pi$$

Synchronisation Condition

resynchronization interval: R_{int}

convergence function : ϕ , offset after resynch.

drift offset: Γ

$$\Gamma = 2\rho R_{\text{int}}$$

required:

$$\Gamma + \Phi \leq \Pi$$

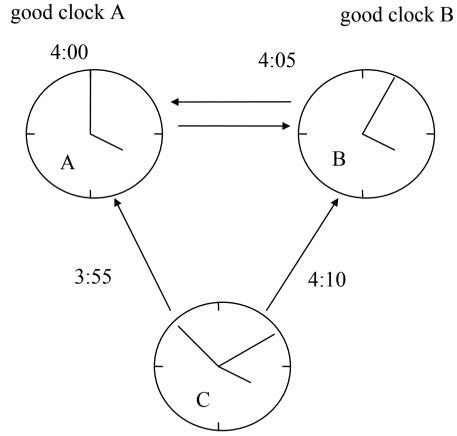
Byzantine Error

View at A

4:05

A 4:00

3:55



View at B

A 4:00

B 4:05

C 4:10

"two faced" malicious clock C

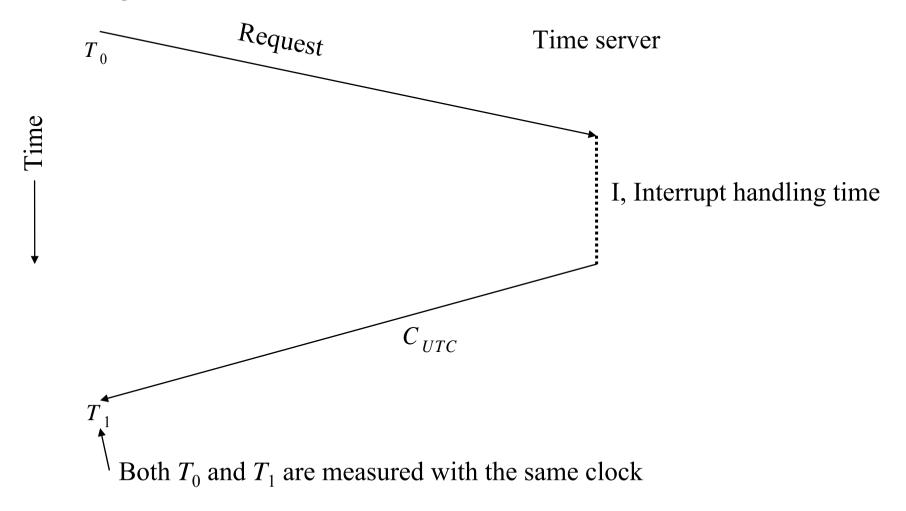
Central (Master) Synchronisation

master sends time, slaves correct message latency jitter: ϵ , difference between fastest and slowest message

$$\Pi_{central} = \varepsilon + \Gamma$$

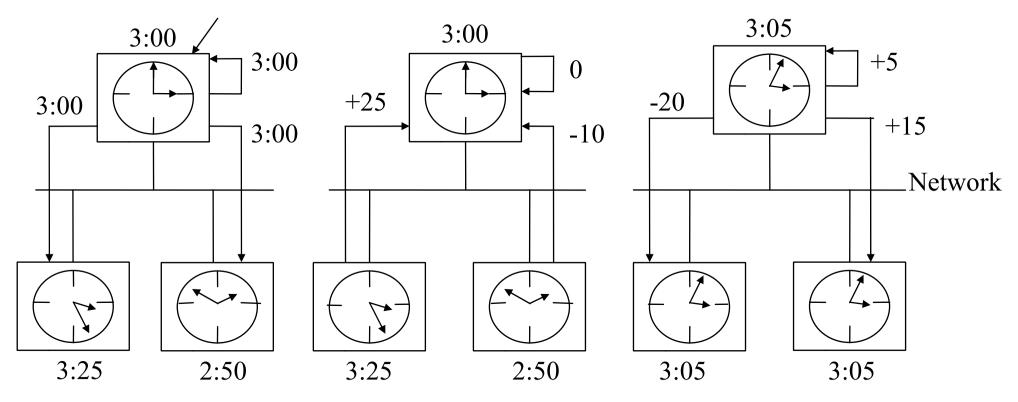
Distributed Synchronisation: Cristian

Sending machine



Distributed Synchronisation: Berkeley

Time daemon



Distributed Synchronisation: Kopetz' Tabelle

synchronisation message assembled and interpreted	approximate range of jitter			
at the application software level	500 μs to 5 ms			
in the kernel of the operating system	10 μs to 100 μs			
in the hardware of the communication controller	less than 10 µs			

Impossibility Result

$$\Pi = \varepsilon \left[1 - \frac{1}{N}\right]$$

No better precision can be achieved even with perfect clocks in all nodes (N number of nodes).

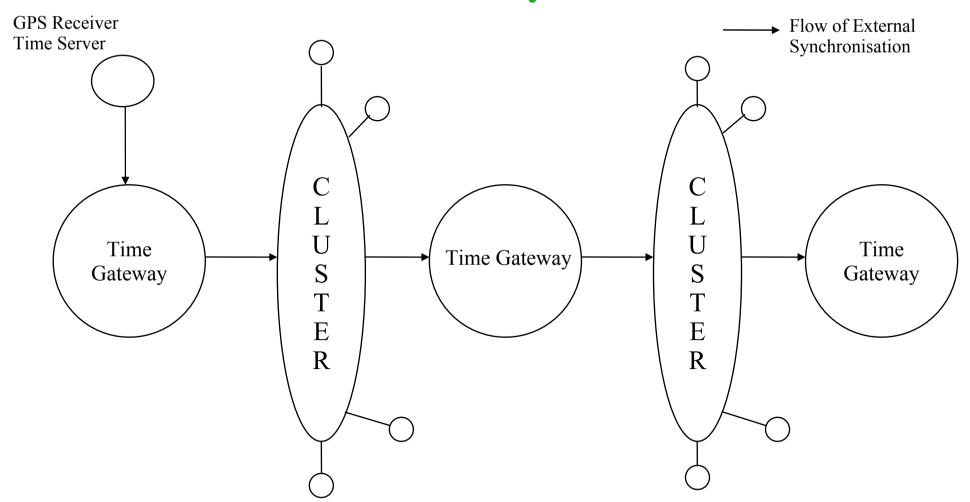
Correction: State vs. Rate

State: reset local clock

Rate: reset speed of clock

which should be used?

External Clock Synchronisation



Literature

```
Logical Clocks ...

Standard text books: Coulouris, Tanenbaum, ...
```

Physical Clocks ...
This lecture followed strictly
Hermann Kopetz, Distr. RT-Systems

David Mills: Internet Time Synchronisation: the Network Time Protokol, IEEE Transactions Communic. 39,10 (Oktober 1991)