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Event-Driven Scheduling
 (closely following  Jane Liu´s Book)
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Principles
Admission: Assign priorities to Jobs
At events, jobs are scheduled according to their “priorities”

Important properties:
• decisions, which job to execute next at events 

(not time instants) 
such as releases and completions of jobs

• a (timer) interrupt is an (implementation of a) special event
• never leaves a resource idle intentionally (“greedy”)
• scheduling on line,

admission on line or off line
• scheduling must be simple 

(otherwise not possible on line) 
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Restrictions Given Up

some “restrictive” assumptions of time-driven systems are 
given up: 

• fixed inter-release  times
→ minimum inter-release  times 

• fixed number of rt tasks in systems 
−p real-time and non real-time, number can vary

• a priori fairly well known parameters 
−p tasks come and go, overloading, ...
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Priority Assignment Following “Criticality” 

The more critical a task the higher its priority
T1: (2,0.9)   T2: (5,2.3)
T2 more critical than T1

T1 misses deadline in Job 1 and 2/3, unnecessarily ...

T2 T2

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

T1

T2
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Important Variants
• Static vs dynamic allocation to processors

• static:
jobs are assigned to processors once and stay there

• dynamic:
one queue served by all processors (jobs “migrate”)

• static vs. dynamic priorities
• static: jobs do not change their priorities 

(unless new tasks arrive)
• dynamic: priorities are recomputed frequently

e.g., FIFO is dynamic priority scheduling
• preemptive or non preemptive  

• some tasks
• all tasks
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Preemptive vs. Non-Preemptive Scheduling, 
Example

2 processors,  
Tasks: Notation used below: Ji ,ei 

release time of J5 is 4, all others 0; (!)

static priorities, assigned such that:
i < k  =>  Prio(Ji) higher than Prio(Jk)

Tasks can “migrate”
precedence graph:
J1,3
J2,1  J3,2  J4,2
J5,2  J6,4
J7,4  J8,1
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Example, executions

0 4 8 12
P1

J1,3
J2,1  J3,2  J4,2
J5,2  J6,4
J7,4  J8,1

preemptive

non preemptive

}

}

J1

J2
P2 J3

J7

J8

J6J4

J7J5

0 4 8 12
P1

P2 J8

J6J1

J2 J3

J4

J7

J5
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Modified Example: release time of J5 = 0 

0 4 8 12
P1

J1,3
J2,1  J3,2  J4,2
J5,2  J6,4
J7,4  J8,1

 non preemptive}
P2

J1

J2 J3 J8

J6

J7J4

J5
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Which is better?

No general answer known!

If jobs have same release time: 
preemptive is better (or equal)in a multiprocessor system if 
cost for preemption is ignored

more precise: “makespan” is better
(makespan = response time of job that completes last)

how much better?
Coffman and Garey:
2 processors:
makespan(non-preemptive) <= 4/3 * 
makespan(preemptive)
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Effective Release Times and Deadlines

“Inconsistencies” due to precedence relations
• a release time given for a job may be later than that of 

its predecessor
• a deadline may be earlier than of its successor time
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From Now: use effective ...

Effective Release Time:
• of a job without predecessors: the given release time
• of a job with  predecessors:

max ( given release time, 
effective release times of all predecessors)

Effective Deadline:
• of a job without successor: the given deadline
• of a job with successor:

min ( given deadline, 
effective deadlines of all successors)
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Earliest Deadline First

Assign priorities at run time ...
“the earlier the deadline the higher the priority”

Theorem:
One processor. 
Jobs preemptable. 
Jobs do not contend for passive resources.
Jobs have arbitrary deadlines, release times.
Then: EDF is “optimal”, i.e.

if there is a feasible schedule, 
there is also one with EDF 
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EDF Optimality

Proof: (informal)
assume a feasible, non EDF schedule
systematically transform it to an EDF schedule (3 steps)

Non
EDF

rk dk
di

1.

2.

JkJi

Jk JkJi

Jk Jk Ji

3. Jk Jk Ji
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Earliest Deadline First, priority assignment:

fixed per job, dynamic at task level:
the nearer the absolute deadline of a job at release time 
the higher the priority
T1: (2,0.9)   T2: (5,2.3)

0 2 4 6 8 10

0 2 4 6 8 10

T1

T2
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0 4 8

J2J3J1

Latest Release Time (LRT)

Rationale: 
no need to complete rt-jobs before deadline
use time für other activities

Idea: 
Backwards Scheduling
Run as late as possible
Use latest possible release times as „priority“

optimal (analog EDF-Definiton of Optimality)
Example (Precedence Graph):

J1,3 (0,6]               J2,2 (5,8] 

J3,2,(2,7]



Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 16

Least Slack Time First / Minimum Laxity First

Slack Time = Laxity:
(time to deadline

 − remaining time required to reach deadline)

also optimal (analog EDF definition)
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Least Slack Time First

dynamic per job, dynamic at task level:
slack time: d - x - t 

x remaining execution time of a job
d absolute deadline
t current time

two versions:
• strict:

slacks are computed at all times (prohibitively slow)
• non-strict:

slacks computed only at events (release and completion)
scheduler checks slacks of all ready jobs and reorders queue
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Non-Strict LST Example

T1: (2,0.75) T2:(5,1.5) T3: (5.1,1.5)

0 4 8 12 16 20 24 28

1.5 1.5

2

t=0 all Jobs released
T1,J1:1.25 T2,J1: 3.5 T3,J1: 3.6
d.h. T2,J1 higher priority than  T3,J1

t=2 T1,J2 released
T1,J2:1.25 T2,J1: 2.75 T3,J1: 1.6
d.h. T2,J1 lower priority than T3,J1

t=2.75 T1,J2 completed
T1,J2: T2,J1: 2 T3,J1: 0.85
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EDF and Non - Preemptivity

Job: (release time, execution time, deadline)
J1: (0,3,10)    J2: (2,6,14)     J3: (4,4,12)

EDF

release time job 3

0 4 8 12

J1 J2

J3 deadline missed

J3

0 4 8 12

J1 J2J3
feasible

EDF is not optimal if jobs are not preemptable.
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P1

P2

EDF feasible

0 4

0 4

deadline missed

J3J1

J2

P1

P2

0 4

0 4

J3

J1J2

EDF is not optimal for Multiprocessors.

EDF and Multiple Processors

Job: (release time, execution time, deadline)
J1: (0,1,2)    J2: (0,1,2)     J3: (0,5,5)

easy for time driven schedulers
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Scheduling Anomaly

   release /     deadline     / execution
J1: 0 / 10    / 5
J2: 0 / 10    / [2,6]     varies
J3: 4 / 15    / 8
J4: 0 / 20    / 10
increasing priorities: 

i < k  =>  Prio(Ji) higher than Prio(Jk)
2 processors, preemptable but not migratable 

intuitive approach:
check for worst case(a) and best case(b) execution times 
and be confident ...
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Scheduling Anomaly, cont

a{ 0 4 8 12 16 20

0 4 8 12 16 20

P1

P2
J2

J1

J4

b{ 0 4 8 12 16 20

0 4 8 12 16 20

P1

P2

c{ 0 4 8 12 16 20

J2

0 4 8 12 16 20

P1

P2

J1

J4

J3

J4 J3 J4

J4

J1

J2

J3
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Scheduling Anomaly on One Processor

Job: (release time, execution time, deadline)
J1: (0,3-4,10)    J2: (2,6,14)     J3: (4,4,12)
Not preemptable 

0 2 4 6 8 10 12 14 16 18 20 22

J1

J2J3

E1=3

0 2 4 6 8 10 12 14 16 18 20 22

deadline missedrelease time job 3

J2 J3

E1=4 J1
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Predictable Execution

Informal definition:

Given a set of periodic tasks with known minimal and 
maximal execution times and a scheduling algorithm.

A schedule produced by the scheduler when the 
execution time of each job has ist maximum (minimum) 
value is called a maximum (minimum) schedule.

An execution is called predictable, if for each actual 
schedule the start and completion times for each job are 
bound be those of the minimum and maximal 
schedules.
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Predictable Execution

The execution of every job in a set of independent, 
preemptable jobs with fixed release times is predictable 
when scheduled in a priority driven manner on one 
processor.
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Validation Algorithms

... determine whether all jobs meet their deadlines 

correct or not

accurate or not 
• overly pessimistic
• overly optimistic
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Assumptions for Next Set of Algorithms

Periodic set of tasks with these properties:
• Tasks are independent
• one processor
• no aperiodic or sporadic tasks
• preemptable, context switch is negligibly small
• period = minimum inter-release times (not fixed)

Since tasks are independent, 
tasks can be added (if admitted) and deleted at any time
without causing deadline misses. 
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Priority Assignment

• fixed priority:
fixed for task (and jobs) relativ to other tasks

• dynamic priority:
priority of tasks changes at release and completion 
times in relation to other tasks
• fixed per job
• dynamic per job
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0 4 8 12 16 20

Rate Monotonic Scheduling

fixed priority: 
the shorter the period the higher the priority
(rate: inverse of period)

example: T1: (4,1)  T2: (5,2) T3: (20,5) 
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0 40 80 120 160 200 240

2.5 2.51.25 1.25 2.5 2.5 2.5

Deadline Monotonic Scheduling

fixed priority: 
the shorter the relative deadline the higher the priority

example: (φ,P,e,D)
T1: (50,50,25,100)  T2: (0,62.5,10,20) T3: (0,125,25,50)

0 40 80 120 160 200 240

DM

RM
2.5 2.5 2.5 2.5X

Conclusion (no proof): DM better than RM if D arbitrary
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(More) Comparison Criteria

• Optimality 
• Validation

• Schedulable Utilization(SU) of an algorithm:
a scheduling algorithm can feasibly schedule any set of 
periodic tasks on a processor 
if  � ε/p ≤ SU
SU: the higher the better
dynamic priority schedulers better than fixed priority

• predictability in the presence of overload:
in fixed priority systems it is possible to predict which 
tasks are affected due to overruns
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Priority-Driven Scheduling of Periodic Tasks

To do:
• admission (required before new tasks are admitted)
• priority assignment (off line / on line)
• selection of next task (on line)

restrictions  (whether they apply or not )
• dependencies (precedence, sharing)
• multiple processors
• aperiodic, sporadic

achievable resource utilization: U=�e/p
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P1

P2

EDF feasible

0 4

0 4

deadline missed

J3J1

J2

P1

P2

0 4

0 4

J3

J1J2

EDF is not optimal for Multiprocessors.

EDF and Multiple Processors

Job: (release time, execution time, deadline)
J1: (0,1,2)    J2: (0,1,2)     J3: (0,5,5)

easy for time driven schedulers
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Another Multiprocessor Example

m processors, m+1 tasks 
� > 0,  m*2� < 1, � small 
Ti, i=1..m: Period 1, execution time: 2�
T m+1: Period 1+�, execution time: 1

scheduler: priority (edf or shortest period first)
allocation: dynamic

discuss !

Pathological cases, mostly dynamic performs better
very hard to analyze for worst case
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EDF and Overload, examples

T1: (2,1)  T2: (5,3)  U=1.1

T1: (2, 0.8) T2: (5,3.5) U=1.1  

No easy way to determine which jobs miss deadline ...

T1 misses

0 4 8

0 4 8

2.3

T2 T1 und T2  miss
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EDF and Overload, one more example

T1: (2, 0.8)  T2: (5, 4.0) U=1.2

J2,1 continues to execute after deadline and ...
causes J1,3 to miss the deadline

0 2 4 6 8 10

0 2 4 6 8 10

T1

T2

Missed deadline

Missed deadline
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Utilization:  RM ./. EDF

T1: (2,1) T2: (5,2.5)
U = 1

0 4 8 12

1.5
EDF

0 4 8 12
RM

T2 misses deadline

RM
not 

optimal
in general
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Optimality of Fixed Priority Schedulers

T: peridodic tasks, independent, preemptable, one proc.

Deadline Monotonic:
relative deadlines <= periods, in phase
if there is any feasible fixed priority schedule for T, 
then Deadline Mononotic is feasible as well

Rate Monotonic:
relative deadlines = periods
simply periodic, i.e.
   for all pairs of tasks i,j: if Pi <= Pj holds Pj = n * Pi
RM is schedulable iff U <= 1 (cmp. EDF)
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Some Schedulable Utilization(SU) Results

indep. tasks, 
preemptable, 
relative deadline=period, 
one processor

N Number of Tasks 
EDF: SU = 1 

RMS: SU = n (2 1/n -1 )    n * J  : ln(2)

RMS (simply periodical, D � P): SU = 1
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Schedulibility Test for Fixed(!) Priority 

(case where jobs must complete before end of period)
Critical Instant Analysis / Time Demand Analysis:
critical instant for task Ti:

one of the jobs of Ti is released at same time with a job in 
every higher priority task ...

It is sufficient to check a schedule for the critical instant for 
the longest envolved period 
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(Fixed Prio) Schedulibility and Blocking

Ti may have to wait for 
non-preemptable, lower priority task 

bi: 
longest non-preemptable portion of all lower prio. Jobs

Schedulability for all tasks Ti with fixed priority scheduler x
SU

x
(i): 

Schedulable Utilisation for scheduling method x with i tasks:

Ui = e1/p1 + e2/p2 ... ei/pi

Ui + bi/pi <= SU
x
(i)
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Non Negligible Context Switch Time

For Job level fixed priority schedulers ... :
i.e. each job preempts at most one other job

2 context switches: 
release (when it preempts other)
completion 

include CS overhead in wcet:
WCETi := WCETi_original + 2CS 
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(Fixed Prio and) Limited Priority Levels

Required: Mapping of 
• Scheduling-Priorities: 1 ... n to 
• Operating System Priorities: E1,  �2, ...       �µ
Jobs running with same OS-Prio but different Sched-Prio use:

FIFO, Round Robin, ...
Schedulibility loss ?
• Notation: �ι as grid on Scheduling Priorities
• Example: 

10 scheduling priorities, 3 OS priorities
possible mapping: �1 =3,  �2  = 8,�3  = 10
Interpretation:
0,1,2,3 mapped to �1, 4,5,6,7,8 to �2, 9,10 to �3

How is Schedulibility Test affected?
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(Fixed Prio and) Limited Priority Levels

Mappings:
• uniformly distributed:

k=n/m
Scheduling Priority X mapped to |X/m|*k

• constant ratio: 
keep (�i-1 +1)�i as equal as possible 
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Schedulilibility Loss

Rate Monotonic, large n ...
• g =  min(�ι −1 +1) / b ι 

SURM = ln(2g)+1-g
relative schedulibility(rs): relation to ln(2)

example:
n = 100000, m = 256
rs= 0.9986

=>  256 priorities is it ! 
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0 4 8 12 16 20 24 28

6.5

2.5
1.25 1.5
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