
Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 1

Event-Driven Scheduling
 (closely following Jane Liu´s Book)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 2

Principles
Admission: Assign priorities to Jobs
At events, jobs are scheduled according to their “priorities”

Important properties:
• decisions, which job to execute next at events

(not time instants)
such as releases and completions of jobs

• a (timer) interrupt is an (implementation of a) special event
• never leaves a resource idle intentionally (“greedy”)
• scheduling on line,

admission on line or off line
• scheduling must be simple

(otherwise not possible on line)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 3

Restrictions Given Up

some “restrictive” assumptions of time-driven systems are
given up:

• fixed inter-release times
→ minimum inter-release times

• fixed number of rt tasks in systems
−p real-time and non real-time, number can vary

• a priori fairly well known parameters
−p tasks come and go, overloading, ...

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 4

Priority Assignment Following “Criticality”

The more critical a task the higher its priority
T1: (2,0.9) T2: (5,2.3)
T2 more critical than T1

T1 misses deadline in Job 1 and 2/3, unnecessarily ...

T2 T2

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

T1

T2

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 5

Important Variants
• Static vs dynamic allocation to processors

• static:
jobs are assigned to processors once and stay there

• dynamic:
one queue served by all processors (jobs “migrate”)

• static vs. dynamic priorities
• static: jobs do not change their priorities

(unless new tasks arrive)
• dynamic: priorities are recomputed frequently

e.g., FIFO is dynamic priority scheduling
• preemptive or non preemptive

• some tasks
• all tasks

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 6

Preemptive vs. Non-Preemptive Scheduling,
Example

2 processors,
Tasks: Notation used below: Ji ,ei

release time of J5 is 4, all others 0; (!)

static priorities, assigned such that:
i < k => Prio(Ji) higher than Prio(Jk)

Tasks can “migrate”
precedence graph:
J1,3
J2,1 J3,2 J4,2
J5,2 J6,4
J7,4 J8,1

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 7

Example, executions

0 4 8 12
P1

J1,3
J2,1 J3,2 J4,2
J5,2 J6,4
J7,4 J8,1

preemptive

non preemptive

}

}

J1

J2
P2 J3

J7

J8

J6J4

J7J5

0 4 8 12
P1

P2 J8

J6J1

J2 J3

J4

J7

J5

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 8

Modified Example: release time of J5 = 0

0 4 8 12
P1

J1,3
J2,1 J3,2 J4,2
J5,2 J6,4
J7,4 J8,1

 non preemptive}
P2

J1

J2 J3 J8

J6

J7J4

J5

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 9

Which is better?

No general answer known!

If jobs have same release time:
preemptive is better (or equal)in a multiprocessor system if
cost for preemption is ignored

more precise: “makespan” is better
(makespan = response time of job that completes last)

how much better?
Coffman and Garey:
2 processors:
makespan(non-preemptive) <= 4/3 *
makespan(preemptive)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 10

Effective Release Times and Deadlines

“Inconsistencies” due to precedence relations
• a release time given for a job may be later than that of

its predecessor
• a deadline may be earlier than of its successor time

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 11

From Now: use effective ...

Effective Release Time:
• of a job without predecessors: the given release time
• of a job with predecessors:

max (given release time,
effective release times of all predecessors)

Effective Deadline:
• of a job without successor: the given deadline
• of a job with successor:

min (given deadline,
effective deadlines of all successors)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 12

Earliest Deadline First

Assign priorities at run time ...
“the earlier the deadline the higher the priority”

Theorem:
One processor.
Jobs preemptable.
Jobs do not contend for passive resources.
Jobs have arbitrary deadlines, release times.
Then: EDF is “optimal”, i.e.

if there is a feasible schedule,
there is also one with EDF

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 13

EDF Optimality

Proof: (informal)
assume a feasible, non EDF schedule
systematically transform it to an EDF schedule (3 steps)

Non
EDF

rk dk
di

1.

2.

JkJi

Jk JkJi

Jk Jk Ji

3. Jk Jk Ji

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 14

Earliest Deadline First, priority assignment:

fixed per job, dynamic at task level:
the nearer the absolute deadline of a job at release time
the higher the priority
T1: (2,0.9) T2: (5,2.3)

0 2 4 6 8 10

0 2 4 6 8 10

T1

T2

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 15

0 4 8

J2J3J1

Latest Release Time (LRT)

Rationale:
no need to complete rt-jobs before deadline
use time für other activities

Idea:
Backwards Scheduling
Run as late as possible
Use latest possible release times as „priority“

optimal (analog EDF-Definiton of Optimality)
Example (Precedence Graph):

J1,3 (0,6] J2,2 (5,8]

J3,2,(2,7]

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 16

Least Slack Time First / Minimum Laxity First

Slack Time = Laxity:
(time to deadline

 − remaining time required to reach deadline)

also optimal (analog EDF definition)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 17

Least Slack Time First

dynamic per job, dynamic at task level:
slack time: d - x - t

x remaining execution time of a job
d absolute deadline
t current time

two versions:
• strict:

slacks are computed at all times (prohibitively slow)
• non-strict:

slacks computed only at events (release and completion)
scheduler checks slacks of all ready jobs and reorders queue

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 18

Non-Strict LST Example

T1: (2,0.75) T2:(5,1.5) T3: (5.1,1.5)

0 4 8 12 16 20 24 28

1.5 1.5

2

t=0 all Jobs released
T1,J1:1.25 T2,J1: 3.5 T3,J1: 3.6
d.h. T2,J1 higher priority than T3,J1

t=2 T1,J2 released
T1,J2:1.25 T2,J1: 2.75 T3,J1: 1.6
d.h. T2,J1 lower priority than T3,J1

t=2.75 T1,J2 completed
T1,J2: T2,J1: 2 T3,J1: 0.85

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 19

EDF and Non - Preemptivity

Job: (release time, execution time, deadline)
J1: (0,3,10) J2: (2,6,14) J3: (4,4,12)

EDF

release time job 3

0 4 8 12

J1 J2

J3 deadline missed

J3

0 4 8 12

J1 J2J3
feasible

EDF is not optimal if jobs are not preemptable.

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 20

P1

P2

EDF feasible

0 4

0 4

deadline missed

J3J1

J2

P1

P2

0 4

0 4

J3

J1J2

EDF is not optimal for Multiprocessors.

EDF and Multiple Processors

Job: (release time, execution time, deadline)
J1: (0,1,2) J2: (0,1,2) J3: (0,5,5)

easy for time driven schedulers

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 21

Scheduling Anomaly

 release / deadline / execution
J1: 0 / 10 / 5
J2: 0 / 10 / [2,6] varies
J3: 4 / 15 / 8
J4: 0 / 20 / 10
increasing priorities:

i < k => Prio(Ji) higher than Prio(Jk)
2 processors, preemptable but not migratable

intuitive approach:
check for worst case(a) and best case(b) execution times
and be confident ...

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 22

Scheduling Anomaly, cont

a{ 0 4 8 12 16 20

0 4 8 12 16 20

P1

P2
J2

J1

J4

b{ 0 4 8 12 16 20

0 4 8 12 16 20

P1

P2

c{ 0 4 8 12 16 20

J2

0 4 8 12 16 20

P1

P2

J1

J4

J3

J4 J3 J4

J4

J1

J2

J3

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 23

Scheduling Anomaly on One Processor

Job: (release time, execution time, deadline)
J1: (0,3-4,10) J2: (2,6,14) J3: (4,4,12)
Not preemptable

0 2 4 6 8 10 12 14 16 18 20 22

J1

J2J3

E1=3

0 2 4 6 8 10 12 14 16 18 20 22

deadline missedrelease time job 3

J2 J3

E1=4 J1

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 24

Predictable Execution

Informal definition:

Given a set of periodic tasks with known minimal and
maximal execution times and a scheduling algorithm.

A schedule produced by the scheduler when the
execution time of each job has ist maximum (minimum)
value is called a maximum (minimum) schedule.

An execution is called predictable, if for each actual
schedule the start and completion times for each job are
bound be those of the minimum and maximal
schedules.

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 25

Predictable Execution

The execution of every job in a set of independent,
preemptable jobs with fixed release times is predictable
when scheduled in a priority driven manner on one
processor.

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 26

Validation Algorithms

... determine whether all jobs meet their deadlines

correct or not

accurate or not
• overly pessimistic
• overly optimistic

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 27

Assumptions for Next Set of Algorithms

Periodic set of tasks with these properties:
• Tasks are independent
• one processor
• no aperiodic or sporadic tasks
• preemptable, context switch is negligibly small
• period = minimum inter-release times (not fixed)

Since tasks are independent,
tasks can be added (if admitted) and deleted at any time
without causing deadline misses.

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 28

Priority Assignment

• fixed priority:
fixed for task (and jobs) relativ to other tasks

• dynamic priority:
priority of tasks changes at release and completion
times in relation to other tasks
• fixed per job
• dynamic per job

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 29

0 4 8 12 16 20

Rate Monotonic Scheduling

fixed priority:
the shorter the period the higher the priority
(rate: inverse of period)

example: T1: (4,1) T2: (5,2) T3: (20,5)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 30

0 40 80 120 160 200 240

2.5 2.51.25 1.25 2.5 2.5 2.5

Deadline Monotonic Scheduling

fixed priority:
the shorter the relative deadline the higher the priority

example: (φ,P,e,D)
T1: (50,50,25,100) T2: (0,62.5,10,20) T3: (0,125,25,50)

0 40 80 120 160 200 240

DM

RM
2.5 2.5 2.5 2.5X

Conclusion (no proof): DM better than RM if D arbitrary

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 31

(More) Comparison Criteria

• Optimality
• Validation

• Schedulable Utilization(SU) of an algorithm:
a scheduling algorithm can feasibly schedule any set of
periodic tasks on a processor
if � ε/p ≤ SU
SU: the higher the better
dynamic priority schedulers better than fixed priority

• predictability in the presence of overload:
in fixed priority systems it is possible to predict which
tasks are affected due to overruns

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 32

Priority-Driven Scheduling of Periodic Tasks

To do:
• admission (required before new tasks are admitted)
• priority assignment (off line / on line)
• selection of next task (on line)

restrictions (whether they apply or not)
• dependencies (precedence, sharing)
• multiple processors
• aperiodic, sporadic

achievable resource utilization: U=�e/p

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 33

P1

P2

EDF feasible

0 4

0 4

deadline missed

J3J1

J2

P1

P2

0 4

0 4

J3

J1J2

EDF is not optimal for Multiprocessors.

EDF and Multiple Processors

Job: (release time, execution time, deadline)
J1: (0,1,2) J2: (0,1,2) J3: (0,5,5)

easy for time driven schedulers

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 34

Another Multiprocessor Example

m processors, m+1 tasks
� > 0, m*2� < 1, � small
Ti, i=1..m: Period 1, execution time: 2�
T m+1: Period 1+�, execution time: 1

scheduler: priority (edf or shortest period first)
allocation: dynamic

discuss !

Pathological cases, mostly dynamic performs better
very hard to analyze for worst case

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 35

EDF and Overload, examples

T1: (2,1) T2: (5,3) U=1.1

T1: (2, 0.8) T2: (5,3.5) U=1.1

No easy way to determine which jobs miss deadline ...

T1 misses

0 4 8

0 4 8

2.3

T2 T1 und T2 miss

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 36

EDF and Overload, one more example

T1: (2, 0.8) T2: (5, 4.0) U=1.2

J2,1 continues to execute after deadline and ...
causes J1,3 to miss the deadline

0 2 4 6 8 10

0 2 4 6 8 10

T1

T2

Missed deadline

Missed deadline

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 37

Utilization: RM ./. EDF

T1: (2,1) T2: (5,2.5)
U = 1

0 4 8 12

1.5
EDF

0 4 8 12
RM

T2 misses deadline

RM
not

optimal
in general

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 38

Optimality of Fixed Priority Schedulers

T: peridodic tasks, independent, preemptable, one proc.

Deadline Monotonic:
relative deadlines <= periods, in phase
if there is any feasible fixed priority schedule for T,
then Deadline Mononotic is feasible as well

Rate Monotonic:
relative deadlines = periods
simply periodic, i.e.
 for all pairs of tasks i,j: if Pi <= Pj holds Pj = n * Pi
RM is schedulable iff U <= 1 (cmp. EDF)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 39

Some Schedulable Utilization(SU) Results

indep. tasks,
preemptable,
relative deadline=period,
one processor

N Number of Tasks
EDF: SU = 1

RMS: SU = n (2 1/n -1) n * J : ln(2)

RMS (simply periodical, D � P): SU = 1

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 40

Schedulibility Test for Fixed(!) Priority

(case where jobs must complete before end of period)
Critical Instant Analysis / Time Demand Analysis:
critical instant for task Ti:

one of the jobs of Ti is released at same time with a job in
every higher priority task ...

It is sufficient to check a schedule for the critical instant for
the longest envolved period

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 41

(Fixed Prio) Schedulibility and Blocking

Ti may have to wait for
non-preemptable, lower priority task

bi:
longest non-preemptable portion of all lower prio. Jobs

Schedulability for all tasks Ti with fixed priority scheduler x
SU

x
(i):

Schedulable Utilisation for scheduling method x with i tasks:

Ui = e1/p1 + e2/p2 ... ei/pi

Ui + bi/pi <= SU
x
(i)

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 42

Non Negligible Context Switch Time

For Job level fixed priority schedulers ... :
i.e. each job preempts at most one other job

2 context switches:
release (when it preempts other)
completion

include CS overhead in wcet:
WCETi := WCETi_original + 2CS

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 43

(Fixed Prio and) Limited Priority Levels

Required: Mapping of
• Scheduling-Priorities: 1 ... n to
• Operating System Priorities: E1, �2, ... �µ
Jobs running with same OS-Prio but different Sched-Prio use:

FIFO, Round Robin, ...
Schedulibility loss ?
• Notation: �ι as grid on Scheduling Priorities
• Example:

10 scheduling priorities, 3 OS priorities
possible mapping: �1 =3, �2 = 8,�3 = 10
Interpretation:
0,1,2,3 mapped to �1, 4,5,6,7,8 to �2, 9,10 to �3

How is Schedulibility Test affected?

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 44

(Fixed Prio and) Limited Priority Levels

Mappings:
• uniformly distributed:

k=n/m
Scheduling Priority X mapped to |X/m|*k

• constant ratio:
keep (�i-1 +1)�i as equal as possible

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 45

Schedulilibility Loss

Rate Monotonic, large n ...
• g = min(�ι −1 +1) / b ι

SURM = ln(2g)+1-g
relative schedulibility(rs): relation to ln(2)

example:
n = 100000, m = 256
rs= 0.9986

=> 256 priorities is it !

Hermann Härtig, TU-DresdenReal-Time Systems, 2008 Event-Driven Systems, 46

0 4 8 12 16 20 24 28

6.5

2.5
1.25 1.5

	Event-Driven Scheduling (closely following Jane Liu´s Book)
	Principles
	Restrictions Given Up
	Priority Assignment Following “Criticality”
	Important Variants
	Preemptive vs. Non-Preemptive Scheduling, Example
	Example, executions
	Modified Example: release time of J5 = 0
	Which is better?
	Effective Release Times and Deadlines
	From Now: use effective ...
	Earliest Deadline First
	EDF Optimality
	Earliest Deadline First, priority assignment:
	Latest Release Time (LRT)
	Least Slack Time First / Minimum Laxity First
	Least Slack Time First
	Non-Strict LST Example
	EDF and Non - Preemptivity
	EDF and Multiple Processors
	Scheduling Anomaly
	Scheduling Anomaly, cont
	Scheduling Anomaly on One Processor
	Predictable Execution
	Slide 25
	Validation Algorithms
	Assumptions for Next Set of Algorithms
	Priority Assignment
	Rate Monotonic Scheduling
	Deadline Monotonic Scheduling
	(More) Comparison Criteria
	Priority-Driven Scheduling of Periodic Tasks
	Slide 33
	Another Multiprocessor Example
	EDF and Overload, examples
	EDF and Overload, one more example
	Utilization: RM ./. EDF
	Optimality of Fixed Priority Schedulers
	Some Schedulable Utilization(SU) Results
	Schedulibility Test for Fixed(!) Priority
	(Fixed Prio) Schedulibility and Blocking
	Non Negligible Context Switch Time
	(Fixed Prio and) Limited Priority Levels
	Slide 44
	Schedulilibility Loss
	PowerPoint Presentation

